

 Abstract— Over the past few years, a number of efforts have
been exerted to build parallel processing systems that utilize the idle
power of LAN’s and PC’s available in many homes and corporations.
The main advantage of these approaches is that they provide cheap
parallel processing environments for those who cannot afford the
expenses of supercomputers and parallel processing hardware.
However, most of the solutions provided are not very flexible in the
use of available resources and very difficult to install and setup.

In this paper, a multi-level web-based parallel processing system
(MWPS) is designed (appendix). MWPS is based on the idea of
volunteer computing, very flexible, easy to setup and easy to use.
MWPS allows three types of subscribers: simple volunteers (single
computers), super volunteers (full networks) and end users. All of
these entities are coordinated transparently through a secure web site.
Volunteer nodes provide the required processing power needed by
the system end users. There is no limit on the number of volunteer
nodes, and accordingly the system can grow indefinitely. Both
volunteer and system users must register and subscribe. Once, they
subscribe, each entity is provided with the appropriate MWPS
components. These components are very easy to install.

Super volunteer nodes are provided with special components that
make it possible to delegate some of the load to their inner nodes.
These inner nodes may also delegate some of the load to some other
lower level inner nodes …. and so on. It is the responsibility of the
parent super nodes to coordinate the delegation process and deliver
the results back to the user.

MWPS uses a simple behavior-based scheduler that takes into
consideration the current load and previous behavior of processing
nodes. Nodes that fulfill their contracts within the expected time get a
high degree of trust. Nodes that fail to satisfy their contract get a
lower degree of trust.

MWPS is based on the .NET framework and provides the minimal
level of security expected in distributed processing environments.
Users and processing nodes are fully authenticated. Communications
and messages between nodes are very secure. The system has been
implemented using C#.

MWPS may be used by any group of people or companies to
establish a parallel processing or grid environment.

Keywords—Volunteer computing, Parallel Processing, XML-
Web Services, .NET Remoting, Tuplespace.

I. INTRODUCTION
ESPITE the dramatic increase in computer processing
power over the past few years [8], the appetite for more

processing power is still rising. The main reason is that: as
more power becomes available, new types of work and
applications that require more power are generated. The
general trend is that new technology enables new applications
and opens new horizons that demand further power and the
introduction of some newer technologies.

According to [2], developments at the high end of
computing have been motivated by numerical simulations of
complex systems such as:

Simulation and Modeling problems
speech recognitions training
Problems dependent on computations / manipulations of

large amounts of data
Image and Signal Processing
Entertainment (Image Rendering)
Database and Data Mining
Seismic
Climate Modeling
Human Genome

However, there are indications that commercial applications

will also be in demand for high processing powers. This is
mainly because of the increase in the volumes of data treated
by these applications.

There are two main approaches to increase computer
processing power:

Improving the processing power of computer
processors: This can be achieved by decreasing the clock
cycle of the processor and optimizing the way instructions are
executed. The clock cycle of the processor is the time required
to execute the most primitive operation. There is evidence
now that processor clock cycles are decreasing slowly and
approaching their physical limit (the speed of light) [3].
Instruction execution optimization is achieved using some
techniques such as pipelining.

Using multiple processors to perform computations:
Multiple processors can use a shared memory (multiprocessor
systems) or independent memory, where each processor is
equipped with its own RAM (multi-computer systems). This

Abdelrahman Ahmed Mohamed Osman

A Multi-Level WEB Based Parallel Processing
System

A Hierarchical Volunteer Computing Approach

D

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:1, 2008

176International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

04
38

.p
df

approach is very promising and has known physical limit.
Multiprocessor and multi-computer systems are the building
blocks of parallel processing systems.

The traditional approach to build parallel processing
systems is to build a single-box computer with one or more
boards, each equipped with a number of processors. However,
another rising approach is to use computer network
technologies to build loosely coupled parallel systems.

Computer network capabilities improved dramatically over
the past few years, both in speed and reliability. While the
speed of early computer networks is only 1.5 Mbits per
second, the speed of most current computer network exceeds
1000 Mbits per second. The use of optical fiber technology
greatly improved the reliability of computer networks and
made them as reliable as standalone systems. This implies that
a wide variety of flexible parallel systems can be built using
computer network technologies.

Observing this, a number of efforts has been made to build
loosely coupled parallel systems using computer network
technologies. One of the first well known efforts is the parallel
virtual machine [1]. A number of similar projects have been
initiated in different places. These systems represent the first
generation of loosely coupled parallel systems.

The second generation of loosely coupled systems relied on
distributed technologies such as DCOM, and CORBA [4].
These technologies are object-oriented and provide interfaces
for communication between distributed objects.

II. .NET
In this paper, the newly emerging .NET technology [5] is

used to build a multi-level loosely parallel processing system.
.NET provides a mature, reliable, secure development
environment that can be used to build distributed applications
of any kind. Although, many options are available in the .NET
framework, web services and the .NET remoting are the two
techniques chosen to build the system. This is mainly because
of their power and wide acceptability. Web services are based
on the standard SOAP protocol and the .NET remoting
provides a reliable replacement for the classical RPC
technology.

In our system, web services are used at the top level, while
.NET remoting is used at lower inner nodes.

The security and reliability features of the .NET framework
have been used to strengthen the system and close all security
gaps.

In addition, the system uses a simple behavior-based
scheduling algorithm to distribute and execute processing
tasks.

III. MWPS COMPONENTS
The MWPS system consists of four software components,

three components are downloadable from the web site after
user registration. The fourth one (the main part) is installed in
the server which represents the web site that contains other
components and Task-coordinator to work with these

components (Fig. 1).

Fig. 1 MWPS main components

The three downloadable components are:
The front-end component: This is a simple visual tool used

to submit parallel processing applications to the system. The
tools allow the user to upload the code, configure the
participant nodes and perform other tasks.

The back-end component: This component is installed on
ordinary volunteer nodes. It enables volunteer nodes to get
tasks from coordinators and return results to user nodes.

The super back-end component: This component is
installed on super volunteer nodes. It enables these nodes to
get tasks from coordinators, distribute tasks among their lower
level nodes.

Note:
The difference between the two types of back-end

components is that the first type represents single computer
resources that volunteered to perform computations in MWPS,
while the second represent a special type of volunteer node
which may be full LANs or Multi-level LANs. This type of
node may take a full parallel processing application and
distribute it among its local nodes.

A. Front-end Component
This component represents a visual tool used to submit

parallel processing applications; these applications are
executed by volunteer's remote machines (back-ends). The
system interface makes accessing remote resources as easy as
accessing local ones. Thus, when the user uploads new tasks,
the Task Coordinator puts them in MWPS tuplespace [7],
available volunteer machines (back-ends) can get tasks from
tuplespace using a special scheduling strategy.

The visual tools enable the user to upload new tasks, view
the progress of his current tasks. When the application first
starts, the user is prompted to log in (Fig. 2).

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:1, 2008

177International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

04
38

.p
df

Fig. 2 MWPS login form

If the user can be successfully authenticated the user's main

menu appears (Fig. 3).

Fig. 3 MWPS user client in action

When the user writes her/his code, s/he can upload it to the

tuplespace in the server by clicking upload task button (which
will compile the code before uploading it). The user can
logout from the system by choosing exit from file or simply
by closing main menu.

B. Back--end Component
On the server side, a Task Coordinator performs two main

jobs:

Receive Tasks from System user
Put tasks in tuplespace

The database represents a tuplespace, where the new tasks

(received tasks) are inserted in the tuplespace using a web
method uploadTask() (like out() used in Linda[6] to store
tasks in tuplespace) , volunteers send requests for the
tuplespace by calling a web method called downloadTasks().
This method checks for available new tasks (this looks like
in() function used in Linda for retrieving tasks from
tuplespace).

The protocol of communication between the volunteer

(back-end) and Task-Coordinator to execute tasks is shown in
(Fig. 4).

Fig. 4 Volunteer-Task-coordinator protocol

C. Storing Results
When a volunteer finishes executing a task, it sends the

result to the task coordinator and the task coordinator records
the results in a tuplespace with other information that is used
later by the scheduler for improving system performance. The
information includes:

The task results
User ID (who executed the task)
Time spent in executing the task
Number of failures occurred during execution

D. Super back-end Component
A super volunteer is special type of volunteer node, which

may work on a full LAN or Multi-level LANs. This type of
node may take a full parallel processing application and
distribute it among its local nodes.

The main structure of the system consists of four
components (Fig. 5):

Task holder (ITask) as interface
Task Implementer (designed to take in any object from the

client that implements the ITask interface)
Task Server
Task Client

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:1, 2008

178International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

04
38

.p
df

Fig. 5 Super-back end components

The connections of super volunteer with its clients in LAN

is done by a peace of software that is installed while
configuring the super volunteer component, this software
(ITask) receives tasks from super volunteers (Task
implementer), executes them, and returns the result back to
super volunteer.

The protocol used between task coordinator and super
back-end components is shown in (Fig. 6).

Fig. 6 Super volunteer-Task-coordinator protocol

IV. IMPLEMENTING MWPS

MWPS divided into two parts:
1. Server side part
2. Client side part (downloadable components)

1. Server side part
The server part (Fig. 7) consists of:
Web site (registration and download components)
Task Coordinator consists of TuplespaceCompnonet and a

Web service
Database to implement the tuplespace

Fig. 7 Task-Coordinator

A. Task Coordinator
This is the main part of the MWPS and its main purpose is

to distribute parallel tasks among the various volunteer nodes
using a scheduling mechanism. Coordinator receives parallel
processing requests from the system user and distributes these
tasks to available registered volunteer nodes. The volunteer
nodes return results to task coordinator when they finish.
Coordinator maintains and updates database tables of all types
of volunteer nodes on the system.

B. Tuplespace
Task Coordinator uses a database to implement the

tuplespace. The tuplespace consists of four tables: Users,
ActiveVol, Tasks, and Scheduler. The Users table contains the
logic information for all the users who are registered in the
system. For increased security, this field could hold encrypted
binary information.

The ActiveVol table is used to store a record for each active
volunteer. Volunteers are identified by their unique numbers.
The ActiveVol table also indicates the time the volunteer is
started, which is useful for scheduling and securing policies.

The Tasks table stores the tasks that have been uploaded for
processing; also the status of each task and the time the task is
uploaded and completed will be recorded.

Finally, the Scheduler table records all the information of

Tuple-
space

tuplespace
Component

MWPS-
Web

Service

MWPS
web site

Intranet

Second-level
LAN

Super Volunteer
(Task client
With Task

Implementer)

Volunteer

(ITask hosted
in Task Server)

Volunteer

(ITask hosted
in Task Server)

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:1, 2008

179International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

04
38

.p
df

the volunteer that helps in improving system performance.
The system user provides the functionality that allows the

registered users to query task information and upload new
tasks.

C. MWPS Web Service
The web service provides two functions: store tasks in

tuplespace (uploading) and retrieving tasks from tuplespace
(download tasks).

2. Client side part
This part consists of three components:
System user (front-end)
Normal Volunteer (back-end)
Super volunteer (super back-end)

These components could be downloaded from the web site

after registration (Fig. 8).
The process of registration is done through the web site.

The user fills his/her information, indicating his role.

Fig. 8 MWPS registration page

When user registers successfully, s/he can download the

appropriate components and start working with MWPS.

V. THE SCHEDULING ALGORITHM
Task coordinator can receive more that one request at the

same time from many volunteers to execute a task, the task
coordinator check for available tasks:

If the number of tasks is more or equal to number of free
volunteers, each task is sent to a volunteer, and the task
coordinator waits for the results. When a given volunteer
returns the results, the task coordinator checks the scheduler
table for this volunteer performance if it is better than the
other working volunteers that have not yet completed their
tasks, it sends a copy of the task on one of the slow volunteers
to the free volunteer and receives the result of this task from

the one that finishes first (replication). Also Task-coordinator
sends the larger tasks to the best volunteer and the smallest
one for the worst volunteers.

In case that the available tasks are less than the number of
free volunteers: The task-coordinator sends tasks for the
volunteers that have good history in executing the previous
tasks, starting by the fastest one. Also the scheduler utilizes
the scheduler information table to estimate approximately the
time needed for each task and hence if any volunteer exceeds
this time the task is sent again for another volunteer (the delay
in returning the results may be because of crash in the system
or problem in the connection…).

Note: Task coordinator can check the performance of each
volunteer by sending a test task and calculate the execution
time for each volunteer.

VI. CONCLUSION
A loosely coupled multilevel web-based parallel processing

system (MWPS) has been designed and implemented using
the .NET framework. The system has been implemented using
.NET remoting and web services and is based on the concept
of volunteer computing. Two types of volunteer nodes are
allowed: simple volunteer nodes (single machines) and super
volunteers (LANS or other types of networks). The system
distributes tasks between volunteer nodes. Super volunteers
can further delegate the tasks assigned to them to junior
nodes. In this sense the system is multilevel. Users and service
providers should register before using the system. MWPS is
secure and dynamic. A simple behavior-based scheduling
algorithm is used to control the performance of the system.

REFERENCES
[1] Geist, A. et al (1994), PVM: Parallel Virtual Machine A Users' Guide

and Tutorial for Networked Parallel Computing, Massachusetts Institute
of Technology.

[2] Sasikumar, M. et al (2003), Introduction to Parallel Processing, Prentice
Hall of India.

[3] aether.lbl.gov/www/classes/p139/speed/space-time.html
[4] Lowy, J (2005), Programming .NET Components, O'REILLY.
[5] Fedorov, A, (2002), A Programmer Guide to .NET, Addison Wesley.
[6] http://www.cs.york.ac.uk/linda
[7] http://wiki.tcl.tk/3947
[8] Tanenbaum , A. AND Van Steen, M. (2002), Distributed Systems

Principles and Paradigms, Prentice Hall

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:1, 2008

180International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

04
38

.p
df

APPENDIX

Fig. 9 MWPS main structure

MWPS coordinator Hosted in a Web Server

Internet

Volunteer

Volunteer

Volunteer

Super
volunteer

Intranet

Volunteer

Volunteer

Intranet

Volunteer

Volunteer

Super
volunteer

Super
volunteer

Intranet

Tuple-
space

tuplespace
Component

MWPS-
Web

Service

MWPS
web site

……….

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:1, 2008

181International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

04
38

.p
df

