Search results for: train schedule.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 327

Search results for: train schedule.

87 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force

Authors: L. Parisi

Abstract:

In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.

Keywords: Kinemic gait data, Neural networks, Hip joint implant, Hip arthroplasty, Rehabilitation Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
86 Designing a Model for Preparing Reports on the Automatic Earned Value Management Progress by the Integration of Primavera P6, SQL Database, and Power BI: A Case Study of a Six-Storey Concrete Building in Mashhad, Iran

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

Project planners and controllers are frequently faced with the challenge of inadequate software for the preparation of automatic project progress reports based on actual project information updates. They usually make dashboards in Microsoft Excel, which is local and not applicable online. Another shortcoming is that Microsoft project does not store the data in database, so the data cannot automatically be imported from Microsoft Project into Microsoft Excel. This study aimed to propose a model for the preparation of reports on automatic online project progress based on actual project information updates by the integration of Primavera P6, SQL database, and Power BI (Business Intelligence) for a construction project. The designed model could be applicable to project planners and controller agents by enabling them to prepare project reports automatically and immediately after updating the project schedule using actual information. To develop the model, the data were entered into P6, and the information was stored on the SQL database. The proposed model could prepare a wide range of reports, such as earned value management, Human Resource (HR) reports, and financial, physical, and risk reports automatically on the Power BI application. Furthermore, the reports could be published and shared online.

Keywords: Primavera P6, SQL, Power BI, Earned Value Management, Integration Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 432
85 A Study of Efficiency and Prioritize of Eurasian Logistics Network

Authors: Ji-Young Song, Moon-Shuk Song, Hee-Seung Na

Abstract:

Recently, Northeast Asia has become one of the three largest trade areas, covering approximately 30% of the total trade volume of the world. However, the distribution facilities are saturated due to the increase in the transportation volume within the area and with the European countries. In order to accommodate the increase of the transportation volume, the transportation networking with the major countries in Northeast Asia and Europe is absolutely necessary. The Eurasian Logistics Network will develop into an international passenger transportation network covering the Northeast Asian region and an international freight transportation network connecting across Eurasia Continent. This paper surveys the changes and trend of the distribution network in the Eurasian Region according to the political, economic and environmental changes of the region, analyses the distribution network according to the changes in the transportation policies of the related countries, and provides the direction of the development of composite transportation on the basis of the present conditions of transportation means. The transportation means optimal for the efficiency of transportation system are suggested to be train ferries, sea & rail or sea & rail & sea. It is suggested to develop diversified composite transportation means and routes within the boundary of international cooperation system.

Keywords: Eurasian Logistics, Integrated Distribution Transport, Northeast Asia, Transportation Networking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
84 Family Communication Patterns between Muslim and Santal Communities in Rural Bangladesh: A Cross-Cultural Perspective

Authors: Md. Emaj Uddin

Abstract:

This study compares family communication patterns in association with family socio-cultural status, especially marriage and family pattern, and couples- socio-economic status between Muslim and Santal communities in rural Bangladesh. A total of 288 couples, 145 couples from the Muslim and 143 couples from the Santal were randomly selected through cluster sampling procedure from Kalna village situated in Tanore Upazila of Rajshahi district of Bangladesh, where both the communities dwell as neighbors. In order to collect data from the selected samples, interview method with semistructural questionnaire schedule was applied. The responses given by the respondents were analyzed by Pearson-s chi-squire test and bivariate correlation techniques. The results of Pearson-s chi-squire test revealed that family communication patterns (X2= 25. 90, df= 2, p<0.01, p>0.05) were significantly different between the Muslim and Santal communities. In addition, Spearman-s bivariate correlation coefficients suggested that among the exogenous factors, family type (rs=.135, p<0.05) and occupation of both husband (rs= .197, p<0.01) and wife (rs= .265, p<0.01) were significantly positive associations, and marital arrangement (rs= -.177, p<0.01), education of husband (rs= -.108, p<0.05) and wife (rs= -.142, p<0.01 & p<0.05), and family income (rs= -.164, p<0.01) were significantly negative relations with the family communication patterns followed between the two communities, although age difference between husband and wife, family head and residence patterns were not significant relations with ones.

Keywords: Bangladesh, Cross-Cultural Comparison, Family Communication Patterns, Family Socio-Cultural Status, Muslim, Santal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
83 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models

Authors: Ramin Vafadary, Maryam Khanbaghi

Abstract:

Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.

Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483
82 Design for Manufacturability and Concurrent Engineering for Product Development

Authors: Alemu Moges Belay

Abstract:

In the 1980s, companies began to feel the effect of three major influences on their product development: newer and innovative technologies, increasing product complexity and larger organizations. And therefore companies were forced to look for new product development methods. This paper tries to focus on the two of new product development methods (DFM and CE). The aim of this paper is to see and analyze different product development methods specifically on Design for Manufacturability and Concurrent Engineering. Companies can achieve and be benefited by minimizing product life cycle, cost and meeting delivery schedule. This paper also presents simplified models that can be modified and used by different companies based on the companies- objective and requirements. Methodologies that are followed to do this research are case studies. Two companies were taken and analysed on the product development process. Historical data, interview were conducted on these companies in addition to that, Survey of literatures and previous research works on similar topics has been done during this research. This paper also tries to show the implementation cost benefit analysis and tries to calculate the implementation time. From this research, it has been found that the two companies did not achieve the delivery time to the customer. Some of most frequently coming products are analyzed and 50% to 80 % of their products are not delivered on time to the customers. The companies are following the traditional way of product development that is sequentially design and production method, which highly affect time to market. In the case study it is found that by implementing these new methods and by forming multi disciplinary team in designing and quality inspection; the company can reduce the workflow steps from 40 to 30.

Keywords: Design for manufacturability, Concurrent Engineering, Time-to-Market, Product development

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5586
81 Machine Learning for Music Aesthetic Annotation Using MIDI Format: A Harmony-Based Classification Approach

Authors: Lin Yang, Zhian Mi, Jiacheng Xiao, Rong Li

Abstract:

Swimming with the tide of deep learning, the field of music information retrieval (MIR) experiences parallel development and a sheer variety of feature-learning models has been applied to music classification and tagging tasks. Among those learning techniques, the deep convolutional neural networks (CNNs) have been widespreadly used with better performance than the traditional approach especially in music genre classification and prediction. However, regarding the music recommendation, there is a large semantic gap between the corresponding audio genres and the various aspects of a song that influence user preference. In our study, aiming to bridge the gap, we strive to construct an automatic music aesthetic annotation model with MIDI format for better comparison and measurement of the similarity between music pieces in the way of harmonic analysis. We use the matrix of qualification converted from MIDI files as input to train two different classifiers, support vector machine (SVM) and Decision Tree (DT). Experimental results in performance of a tag prediction task have shown that both learning algorithms are capable of extracting high-level properties in an end-to end manner from music information. The proposed model is helpful to learn the audience taste and then the resulting recommendations are likely to appeal to a niche consumer.

Keywords: Harmonic analysis, machine learning, music classification and tagging, MIDI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 758
80 Detecting Email Forgery using Random Forests and Naïve Bayes Classifiers

Authors: Emad E Abdallah, A.F. Otoom, ArwaSaqer, Ola Abu-Aisheh, Diana Omari, Ghadeer Salem

Abstract:

As emails communications have no consistent authentication procedure to ensure the authenticity, we present an investigation analysis approach for detecting forged emails based on Random Forests and Naïve Bays classifiers. Instead of investigating the email headers, we use the body content to extract a unique writing style for all the possible suspects. Our approach consists of four main steps: (1) The cybercrime investigator extract different effective features including structural, lexical, linguistic, and syntactic evidence from previous emails for all the possible suspects, (2) The extracted features vectors are normalized to increase the accuracy rate. (3) The normalized features are then used to train the learning engine, (4) upon receiving the anonymous email (M); we apply the feature extraction process to produce a feature vector. Finally, using the machine learning classifiers the email is assigned to one of the suspects- whose writing style closely matches M. Experimental results on real data sets show the improved performance of the proposed method and the ability of identifying the authors with a very limited number of features.

Keywords: Digital investigation, cybercrimes, emails forensics, anonymous emails, writing style, and authorship analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5254
79 Co-existence of Thai Muslim People and Other in an Ancient Community Located in the Heart of Bangkok: The Case Study of Petchaburi 7 Community

Authors: Saowapa Phaithayawat

Abstract:

The objectives of study are the following: To study the way of life in terms of one hundred years co-existence of the Muslim and local community in this area 2) To analyze factors affect to this community with happy co-existence. The study requires quantitative research to study a history together with the study of humanity. The result of this study showed that the area of Petchburi 7 community is an ancient area which has owned by the Muslim for almost 100 years. There is a sanctuary as & center of unity. Later Bangkok becomes developed and provides more infrastructures like motorway and other transportation: however, the owners of lands in this community still keep their lands and build many buildings to run business. With this purpose, there are many non-Muslim people come to live here with co-existence. Not only are they convenient to work but also easy to transport by sky train. There are factors that make them live harmonious as following: 1) All Muslims in this area are strict to follow their rules and allocate their community for business. 2) All people, who come and live here, are middle-aged and working men and women. They, rent rooms closed to their work. 3) There are Muslim food and desserts, especially Roti, the popular fried flour, and local Chachak, tea originated from the south of Thailand. All these food and desserts are famous for working men and women to home and join after work 4) All Muslim in this area are independent to lead their own lives although a society changes rapidly.

Keywords: Co-existence, Muslim and other group of people, the ancient community.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
78 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran

Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi

Abstract:

Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.

Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
77 Tuning for a Small Engine with a Supercharger

Authors: Shinji Kajiwara, Tadamasa Fukuoka

Abstract:

The formula project of Kinki University has been involved in the student Formula SAE of Japan (JSAE) since the second year the competition was held. The vehicle developed in the project uses a ZX-6R engine, which has been manufactured by Kawasaki Heavy Industries for the JSAE competition for the eighth time. The limited performance of the concept vehicle was improved through the development of a power train. The supercharger loading, engine dry sump, and engine cooling management of the vehicle were also enhanced. The supercharger loading enabled the vehicle to achieve a maximum output of 59.6 kW (80.6 PS)/9000 rpm and a maximum torque of 70.6 Nm (7.2 kgf m)/8000 rpm. We successfully achieved 90% of the engine’s torque band (4000–10000 rpm) with 50% of the revolutions in regular engine use (2000–12000 rpm). Using a dry sump system, we periodically managed hydraulic pressure during engine operation. A system that controls engine stoppage when hydraulic pressure falls was also constructed. Using the dry sump system at 80 mm reduced the required engine load and the vehicle’s center of gravity. Even when engine motion was suspended by the electromotive force exerted by the water pump, the circulation of cooling water was still possible. These findings enabled us to create a cooling system in accordance with the requirements of the competition.

Keywords: Engine, combustion, cooling system, dry sump system, numerical simulation, power, torque, mechanical supercharger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
76 Dynamic TDMA Slot Reservation Protocol for QoS Provisioning in Cognitive Radio Ad Hoc Networks

Authors: S. M. Kamruzzaman

Abstract:

In this paper, we propose a dynamic TDMA slot reservation (DTSR) protocol for cognitive radio ad hoc networks. Quality of Service (QoS) guarantee plays a critically important role in such networks. We consider the problem of providing QoS guarantee to users as well as to maintain the most efficient use of scarce bandwidth resources. According to one hop neighboring information and the bandwidth requirement, our proposed protocol dynamically changes the frame length and the transmission schedule. A dynamic frame length expansion and shrinking scheme that controls the excessive increase of unassigned slots has been proposed. This method efficiently utilizes the channel bandwidth by assigning unused slots to new neighboring nodes and increasing the frame length when the number of slots in the frame is insufficient to support the neighboring nodes. It also shrinks the frame length when half of the slots in the frame of a node are empty. An efficient slot reservation protocol not only guarantees successful data transmissions without collisions but also enhance channel spatial reuse to maximize the system throughput. Our proposed scheme, which provides both QoS guarantee and efficient resource utilization, be employed to optimize the channel spatial reuse and maximize the system throughput. Extensive simulation results show that the proposed mechanism achieves desirable performance in multichannel multi-rate cognitive radio ad hoc networks.

Keywords: TDMA, cognitive radio, ad hoc networks, QoSguarantee, dynamic frame length.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2654
75 Dynamic Interaction between Two Neighboring Tunnels in a Layered Half-Space

Authors: Chao He, Shunhua Zhou, Peijun Guo

Abstract:

The vast majority of existing underground railway lines consist of twin tunnels. In this paper, the dynamic interaction between two neighboring tunnels in a layered half-space is investigated by an analytical model. The two tunnels are modelled as cylindrical thin shells, while the soil in the form of a layered half-space with two cylindrical cavities is simulated by the elastic continuum theory. The transfer matrix method is first used to derive the relationship between the plane wave vectors in arbitrary layers and the source layer. Thereafter, the wave translation and transformation are introduced to determine the plane and cylindrical wave vectors in the source layer. The solution for the dynamic interaction between twin tunnels in a layered half-space is obtained by means of the compatibility of displacements and equilibrium of stresses on the two tunnel–soil interfaces. By coupling the proposed model with a fully track model, the train-induced vibrations from twin tunnels in a multi-layered half-space are investigated. The numerical results demonstrate that the existence of a neighboring tunnel has a significant effect on ground vibrations.

Keywords: Underground railway, twin tunnels, wave translation and transformation, transfer matrix method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
74 Exploring the Need to Study the Efficacy of VR Training Compared to Traditional Cybersecurity Training

Authors: Shaila Rana, Wasim Alhamdani

Abstract:

Effective cybersecurity training is of the utmost importance, given the plethora of attacks that continue to increase in complexity and ubiquity. VR cybersecurity training remains a starkly understudied discipline. Studies that evaluated the effectiveness of VR cybersecurity training over traditional methods are required. An engaging and interactive platform can support knowledge retention of the training material. Consequently, an effective form of cybersecurity training is required to support a culture of cybersecurity awareness. Measurements of effectiveness varied throughout the studies, with surveys and observations being the two most utilized forms of evaluating effectiveness. Further research is needed to evaluate the effectiveness of VR cybersecurity training and traditional training. Additionally, research for evaluating if VR cybersecurity training is more effective than traditional methods is vital. This paper proposes a methodology to compare the two cybersecurity training methods and their effectiveness. The proposed framework includes developing both VR and traditional cybersecurity training methods and delivering them to at least 100 users. A quiz along with a survey will be administered and statistically analyzed to determine if there is a difference in knowledge retention and user satisfaction. The aim of this paper is to bring attention to the need to study VR cybersecurity training and its effectiveness compared to traditional training methods. This paper hopes to contribute to the cybersecurity training field by providing an effective way to train users for security awareness. If VR training is deemed more effective, this could create a new direction for cybersecurity training practices.

Keywords: Virtual reality cybersecurity training, VR cybersecurity training, traditional cybersecurity training, evaluating efficacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1083
73 Classifier Based Text Mining for Neural Network

Authors: M. Govindarajan, R. M. Chandrasekaran

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

Keywords: Back propagation, classification accuracy, textmining, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218
72 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
71 Hand Gesture Recognition Based on Combined Features Extraction

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis

Abstract:

Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.

Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4032
70 Awareness and Attitudes of Primary Grade Teachers (1-4thGrade) towards Inclusive Education

Authors: P. Maheshwari, M. Shapurkar

Abstract:

The present research aimed at studying the awareness and attitudes of teachers towards inclusive education. The sample consisted of 60 teachers, teaching in the primary section (1st – 4th) of regular schools affiliated to the SSC board in Mumbai. Sample was selected by Multi-stage cluster sampling technique. A semi-structured self-constructed interview schedule and a self-constructed attitude scale was used to study the awareness of teachers about disability and Inclusive education, and their attitudes towards inclusive education respectively. Themes were extracted from the interview data and quantitative data was analyzed using SPSS package. Results revealed that teachers had some amount of awareness but an inadequate amount of information on disabilities and inclusive education. Disability to most (37) teachers meant “an inability to do something”. The difference between disability and handicap was stated by most as former being cognitive while handicap being physical in nature. With regard to Inclusive education, a large number (46) stated that they were unaware of the term and did not know what it meant. Majority (52) of them perceived maximum challenges for themselves in an inclusive set up, and emphasized on the role of teacher training courses in the area of providing knowledge (49) and training in teaching methodology (53). Although, 83.3% of teachers held a moderately positive attitude towards inclusive education, a large percentage (61.6%) of participants felt that being in inclusive set up would be very challenging for both children with special needs and without special needs. Though, most (49) of the teachers stated that children with special needs should be educated in regular classroom but they further clarified that only those should be in a regular classroom who have physical impairments of mild or moderate degree.

Keywords: Attitudes, awareness, inclusive education, teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396
69 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
68 Approach for Demonstrating Reliability Targets for Rail Transport during Low Mileage Accumulation in the Field: Methodology and Case Study

Authors: Nipun Manirajan, Heeralal Gargama, Sushil Guhe, Manoj Prabhakaran

Abstract:

In railway industry, train sets are designed based on contractual requirements (mission profile), where reliability targets are measured in terms of mean distance between failures (MDBF). However, during the beginning of revenue services, trains do not achieve the designed mission profile distance (mileage) within the timeframe due to infrastructure constraints, scarcity of commuters or other operational challenges thereby not respecting the original design inputs. Since trains do not run sufficiently and do not achieve the designed mileage within the specified time, car builder has a risk of not achieving the contractual MDBF target. This paper proposes a constant failure rate based model to deal with the situations where mileage accumulation is not a part of the design mission profile. The model provides appropriate MDBF target to be demonstrated based on actual accumulated mileage. A case study of rolling stock running in the field is undertaken to analyze the failure data and MDBF target demonstration during low mileage accumulation. The results of case study prove that with the proposed method, reliability targets are achieved under low mileage accumulation.

Keywords: Mean distance between failures, mileage based reliability, reliability target normalization, rolling stock reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
67 Lifelong Distance Learning and Skills Development: A Case Study Analysis in Greece

Authors: Eleni Giouli

Abstract:

Distance learning provides a flexible approach to education, enabling busy learners to complete their coursework at their own pace, on their own schedule, and from a convenient location. This flexibility combined with a series of other issues; make the benefits of lifelong distance learning numerous. The purpose of the paper is to investigate whether distance education can contribute to the improvement of adult skills in Greece, highlighting in this way the necessity of the lifelong distance learning. To investigate this goal, a questionnaire is constructed and analyzed based on responses from 3,016 attendees of lifelong distance learning programs in the e-learning of the National and Kapodistrian University of Athens in Greece. In order to do so, a series of relationships is examined including the effects of a) the gender, b) the previous educational level, c) the current employment status, and d) the method used in the distance learning program, on the development of new general, technical, administrative, social, cultural, entrepreneurial and green skills. The basic conclusions that emerge after using a binary logistic framework are that the following factors are critical in order to develop new skills: the gender, the education level and the educational method used in the lifelong distance learning program. The skills more significantly affected by those factors are the acquiring new skills in general, as well as acquiring general, language and cultural, entrepreneurial and green skills, while for technical and social skills only gender and educational method play a crucial role. Moreover, routine skills and social skills are not affected by the four factors included in the analysis.

Keywords: Adult skills, distance learning, education, lifelong learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596
66 Developing a New Vibration Analysis Calculative Method for Esfahan Subway Train and Railways Design, Manufacturing, and Construction

Authors: Omid A. Zargar

Abstract:

The simulated mass and spring method evaluation for subway or railways construction and installation systems have a wide application in rail industries. This kind of design should be optimizing all related parameters to reduce the amount of vibration in cities, homelands, historical zones and other critical locations. Finite element method could help us a lot to analysis such applications with an excellent accuracy but always developing some simple, fast and user friendly evaluation method required in subway industrial applications. In addition, process parameter optimization extremely required in railway industries to achieve some optimal design of railways with maximum safety, reliability and performance. Furthermore, it is important to reduce vibrations and further related maintenance costs as well as possible. In this paper a simple but useful simulated mass and spring evaluation system developed for Esfahan subway construction. Besides, some of related recent patent and innovations in rail world industries like Suspension mass tuned vibration reducer, short sleeper vibration attenuation fastener and Airtight track vibration-noise reducing fastener discussed in details.

Keywords: Subway construction engineering, natural frequency, operation frequency, vibration analysis, polyurethane layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
65 110 MW Geothermal Power Plant Multiple Simulator, Using Wireless Technology

Authors: Guillermo Romero-Jiménez, Luis A. Jiménez-Fraustro, Mayolo Salinas-Camacho, Heriberto Avalos-Valenzuela

Abstract:

A geothermal power plant multiple simulator for operators training is presented. The simulator is designed to be installed in a wireless local area network and has a capacity to train one to six operators simultaneously, each one with an independent simulation session. The sessions must be supervised only by one instructor. The main parts of this multiple simulator are: instructor and operator-s stations. On the instructor station, the instructor controls the simulation sessions, establishes training exercises and supervises each power plant operator in individual way. This station is hosted in a Main Personal Computer (NS) and its main functions are: to set initial conditions, snapshots, malfunctions or faults, monitoring trends, and process and soft-panel diagrams. On the other hand the operators carry out their actions over the power plant simulated on the operator-s stations; each one is also hosted in a PC. The main software of instructor and operator-s stations are executed on the same NS and displayed in PCs through graphical Interactive Process Diagrams (IDP). The geothermal multiple simulator has been installed in the Geothermal Simulation Training Center (GSTC) of the Comisi├│n Federal de Electricidad, (Federal Commission of Electricity, CFE), Mexico, and is being utilized as a part of the training courses for geothermal power plant operators.

Keywords: Geothermal power plant, multiple simulator, training operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
64 Smart Power Scheduling to Reduce Peak Demand and Cost of Energy in Smart Grid

Authors: Hemant I. Joshi, Vivek J. Pandya

Abstract:

This paper discusses the simulation and experimental work of small Smart Grid containing ten consumers. Smart Grid is characterized by a two-way flow of real-time information and energy. RTP (Real Time Pricing) based tariff is implemented in this work to reduce peak demand, PAR (peak to average ratio) and cost of energy consumed. In the experimental work described here, working of Smart Plug, HEC (Home Energy Controller), HAN (Home Area Network) and communication link between consumers and utility server are explained. Algorithms for Smart Plug, HEC, and utility server are presented and explained in this work. After receiving the Real Time Price for different time slots of the day, HEC interacts automatically by running an algorithm which is based on Linear Programming Problem (LPP) method to find the optimal energy consumption schedule. Algorithm made for utility server can handle more than one off-peak time period during the day. Simulation and experimental work are carried out for different cases. At the end of this work, comparison between simulation results and experimental results are presented to show the effectiveness of the minimization method adopted.

Keywords: Smart Grid, Real Time Pricing, Peak to Average Ratio, Home Area Network, Home Energy Controller, Smart Plug, Utility Server, Linear Programming Problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
63 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
62 A State Aggregation Approach to Singularly Perturbed Markov Reward Processes

Authors: Dali Zhang, Baoqun Yin, Hongsheng Xi

Abstract:

In this paper, we propose a single sample path based algorithm with state aggregation to optimize the average rewards of singularly perturbed Markov reward processes (SPMRPs) with a large scale state spaces. It is assumed that such a reward process depend on a set of parameters. Differing from the other kinds of Markov chain, SPMRPs have their own hierarchical structure. Based on this special structure, our algorithm can alleviate the load in the optimization for performance. Moreover, our method can be applied on line because of its evolution with the sample path simulated. Compared with the original algorithm applied on these problems of general MRPs, a new gradient formula for average reward performance metric in SPMRPs is brought in, which will be proved in Appendix, and then based on these gradients, the schedule of the iteration algorithm is presented, which is based on a single sample path, and eventually a special case in which parameters only dominate the disturbance matrices will be analyzed, and a precise comparison with be displayed between our algorithm with the old ones which is aim to solve these problems in general Markov reward processes. When applied in SPMRPs, our method will approach a fast pace in these cases. Furthermore, to illustrate the practical value of SPMRPs, a simple example in multiple programming in computer systems will be listed and simulated. Corresponding to some practical model, physical meanings of SPMRPs in networks of queues will be clarified.

Keywords: Singularly perturbed Markov processes, Gradient of average reward, Differential reward, State aggregation, Perturbed close network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
61 Analysis and Research of Two-Level Scheduling Profile for Open Real-Time System

Authors: Yongxian Jin, Jingzhou Huang

Abstract:

In an open real-time system environment, the coexistence of different kinds of real-time and non real-time applications makes the system scheduling mechanism face new requirements and challenges. One two-level scheduling scheme of the open real-time systems is introduced, and points out that hard and soft real-time applications are scheduled non-distinctively as the same type real-time applications, the Quality of Service (QoS) cannot be guaranteed. It has two flaws: The first, it can not differentiate scheduling priorities of hard and soft real-time applications, that is to say, it neglects characteristic differences between hard real-time applications and soft ones, so it does not suit a more complex real-time environment. The second, the worst case execution time of soft real-time applications cannot be predicted exactly, so it is not worth while to cost much spending in order to assure all soft real-time applications not to miss their deadlines, and doing that may cause resource wasting. In order to solve this problem, a novel two-level real-time scheduling mechanism (including scheduling profile and scheduling algorithm) which adds the process of dealing with soft real-time applications is proposed. Finally, we verify real-time scheduling mechanism from two aspects of theory and experiment. The results indicate that our scheduling mechanism can achieve the following objectives. (1) It can reflect the difference of priority when scheduling hard and soft real-time applications. (2) It can ensure schedulability of hard real-time applications, that is, their rate of missing deadline is 0. (3) The overall rate of missing deadline of soft real-time applications can be less than 1. (4) The deadline of a non-real-time application is not set, whereas the scheduling algorithm that server 0 S uses can avoid the “starvation" of jobs and increase QOS. By doing that, our scheduling mechanism is more compatible with different types of applications and it will be applied more widely.

Keywords: Hard real-time, two-level scheduling profile, open real-time system, non-distinctive schedule, soft real-time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
60 Injury Prevention among Construction Workers: A Case Study on Iranian Steel Bar Bending Workers

Authors: S. Behnam Asl, H. Sadeghi Naeini, L. Sadat Ensaniat, R. Khorshidian, S. Alipour, S. Behnam Asl

Abstract:

Nowadays the construction industry is growing specially among developing counties. Iran also has a critical role in these industries in terms of workers disorders. Work-related musculoskeletal disorders (WMSDs) assign 7% of the whole diseases in the society, which make some limitations. One of the main factors, which are ended to WMSDs, is awkward posture. Steel bar bending is considered as one of the prominent performance among construction workers. In this case study we conducted to find the major tasks of bar benders and the most important related risk factors. This study was carried out among twenty workers (18-45 years) as our volunteer samples in some construction sites with less than 6 floors in two regions of Tehran municipality. The data was gathered through in depth observation, interview and questionnaire. Also postural analysis was done by OWAS. In another part of study we used NMQ for gathering some data about psychosocial effects of work related disorders. Our findings show that 64% of workers were not aware of work risks, also about 59% of workers had troubles in their wrists, hands, and especially among workers who worked in steel bar bending. In 46% cases low back pain were prevalence. Considering with gathered data and results, awkward postures and long term tasks and its duration are known as the main risk factors in WMSDs among construction workers, so work-rest schedule and also tools design should be considered to make an ergonomic condition for the mentioned workers.

Keywords: Bar benders, construction workers, musculoskeletal disorders (WMSDs), OWAS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3365
59 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
58 Introduce Applicability of Multi-Layer Perceptron to Predict the Behaviour of Semi-Interlocking Masonry Panel

Authors: O. Zarrin, M. Ramezanshirazi

Abstract:

The Semi Interlocking Masonry (SIM) system has been developed in Masonry Research Group at the University of Newcastle, Australia. The main purpose of this system is to enhance the seismic resistance of framed structures with masonry panels. In this system, SIM panels dissipate energy through the sliding friction between rows of SIM units during earthquake excitation. This paper aimed to find the applicability of artificial neural network (ANN) to predict the displacement behaviour of the SIM panel under out-of-plane loading. The general concept of ANN needs to be trained by related force-displacement data of SIM panel. The overall data to train and test the network are 70 increments of force-displacement from three tests, which comprise of none input nodes. The input data contain height and length of panels, height, length and width of the brick and friction and geometry angle of brick along the compressive strength of the brick with the lateral load applied to the panel. The aim of designed network is prediction displacement of the SIM panel by Multi-Layer Perceptron (MLP). The mean square error (MSE) of network was 0.00042 and the coefficient of determination (R2) values showed the 0.91. The result revealed that the ANN has significant agreement to predict the SIM panel behaviour.

Keywords: Semi interlocking masonry, artificial neural network, ANN, multi-layer perceptron, MLP, displacement, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816