Search results for: Linear flutter analysis
9687 Solution of Fuzzy Maximal Flow Problems Using Fuzzy Linear Programming
Authors: Amit Kumar, Manjot Kaur
Abstract:
In this paper, the fuzzy linear programming formulation of fuzzy maximal flow problems are proposed and on the basis of the proposed formulation a method is proposed to find the fuzzy optimal solution of fuzzy maximal flow problems. In the proposed method all the parameters are represented by triangular fuzzy numbers. By using the proposed method the fuzzy optimal solution of fuzzy maximal flow problems can be easily obtained. To illustrate the proposed method a numerical example is solved and the obtained results are discussed.Keywords: Fuzzy linear programming, Fuzzy maximal flow problem, Ranking function, Triangular fuzzy number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19749686 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35189685 Order Reduction by Least-Squares Methods about General Point ''a''
Authors: Integral square error, Least-squares, Markovparameters, Moment matching, Order reduction.
Abstract:
The concept of order reduction by least-squares moment matching and generalised least-squares methods has been extended about a general point ?a?, to obtain the reduced order models for linear, time-invariant dynamic systems. Some heuristic criteria have been employed for selecting the linear shift point ?a?, based upon the means (arithmetic, harmonic and geometric) of real parts of the poles of high order system. It is shown that the resultant model depends critically on the choice of linear shift point ?a?. The validity of the criteria is illustrated by solving a numerical example and the results are compared with the other existing techniques.
Keywords: Integral square error, Least-squares, Markovparameters, Moment matching, Order reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16939684 Optimization of Slider Crank Mechanism Using Design of Experiments and Multi-Linear Regression
Authors: Galal Elkobrosy, Amr M. Abdelrazek, Bassuny M. Elsouhily, Mohamed E. Khidr
Abstract:
Crank shaft length, connecting rod length, crank angle, engine rpm, cylinder bore, mass of piston and compression ratio are the inputs that can control the performance of the slider crank mechanism and then its efficiency. Several combinations of these seven inputs are used and compared. The throughput engine torque predicted by the simulation is analyzed through two different regression models, with and without interaction terms, developed according to multi-linear regression using LU decomposition to solve system of algebraic equations. These models are validated. A regression model in seven inputs including their interaction terms lowered the polynomial degree from 3rd degree to 1st degree and suggested valid predictions and stable explanations.
Keywords: Design of experiments, regression analysis, SI Engine, statistical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12529683 Aircraft Gas Turbine Engines Technical Condition Identification System
Authors: A. M. Pashayev, C. Ardil, D. D. Askerov, R. A. Sadiqov, P. S. Abdullayev
Abstract:
In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients' changes. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-bystage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.
Keywords: Gas turbine engines, neural networks, fuzzy logic, fuzzy statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19039682 Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques
Authors: C. Ardil
Abstract:
This paper presents an original application of multiple criteria decision making analysis theory to the evaluation of aircraft selection problem. The selection of an optimal, efficient and reliable fleet, network and operations planning policy is one of the most important factors in aircraft selection problem. Given that decision making in aircraft selection involves the consideration of a number of opposite criteria and possible solutions, such a selection can be considered as a multiple criteria decision making analysis problem. This study presents a new integrated approach to decision making by considering the multiple criteria utility theory and the maximal regret minimization theory methods as well as aircraft technical, economical, and environmental aspects. Multiple criteria decision making analysis method uses different normalization techniques to allow criteria to be aggregated with qualitative and quantitative data of the decision problem. Therefore, selecting a suitable normalization technique for the model is also a challenge to provide data aggregation for the aircraft selection problem. To compare the impact of different normalization techniques on the decision problem, the vector, linear (sum), linear (max), and linear (max-min) data normalization techniques were identified to evaluate aircraft selection problem. As a logical implication of the proposed approach, it enhances the decision making process through enabling the decision maker to: (i) use higher level knowledge regarding the selection of criteria weights and the proposed technique, (ii) estimate the ranking of an alternative, under different data normalization techniques and integrated criteria weights after a posteriori analysis of the final rankings of alternatives. A set of commercial passenger aircraft were considered in order to illustrate the proposed approach. The obtained results of the proposed approach were compared using Spearman's rho tests. An analysis of the final rank stability with respect to the changes in criteria weights was also performed so as to assess the sensitivity of the alternative rankings obtained by the application of different data normalization techniques and the proposed approach.
Keywords: Normalization Techniques, Aircraft Selection, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5869681 Optimal Control Strategies for Speed Control of Permanent-Magnet Synchronous Motor Drives
Authors: Roozbeh Molavi, Davood A. Khaburi
Abstract:
The permanent magnet synchronous motor (PMSM) is very useful in many applications. Vector control of PMSM is popular kind of its control. In this paper, at first an optimal vector control for PMSM is designed and then results are compared with conventional vector control. Then, it is assumed that the measurements are noisy and linear quadratic Gaussian (LQG) methodology is used to filter the noises. The results of noisy optimal vector control and filtered optimal vector control are compared to each other. Nonlinearity of PMSM and existence of inverter in its control circuit caused that the system is nonlinear and time-variant. With deriving average model, the system is changed to nonlinear time-invariant and then the nonlinear system is converted to linear system by linearization of model around average values. This model is used to optimize vector control then two optimal vector controls are compared to each other. Simulation results show that the performance and robustness to noise of the control system has been highly improved.Keywords: Kalman filter, Linear quadratic Gaussian (LQG), Linear quadratic regulator (LQR), Permanent-Magnet synchronousmotor (PMSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30089680 A Fuzzy Linear Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy.Keywords: Dissemblance index, fuzzy linear regression, graded mean integration, mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14429679 On the Sphere Method of Linear Programming Using Multiple Interior Points Approach
Authors: Job H. Domingo, Carolina Bancayrin-Baguio
Abstract:
The Sphere Method is a flexible interior point algorithm for linear programming problems. This was developed mainly by Professor Katta G. Murty. It consists of two steps, the centering step and the descent step. The centering step is the most expensive part of the algorithm. In this centering step we proposed some improvements such as introducing two or more initial feasible solutions as we solve for the more favorable new solution by objective value while working with the rigorous updates of the feasible region along with some ideas integrated in the descent step. An illustration is given confirming the advantage of using the proposed procedure.
Keywords: Interior point, linear programming, sphere method, initial feasible solution, feasible region, centering and descent steps, optimal solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18039678 3-D Visualization and Optimization for SISO Linear Systems Using Parametrization of Two-Stage Compensator Design
Authors: Kazuyoshi Mori, Keisuke Hashimoto
Abstract:
In this paper, we consider the two-stage compensator designs of SISO plants. As an investigation of the characteristics of the two-stage compensator designs, which is not well investigated yet, of SISO plants, we implement three dimensional visualization systems of output signals and optimization system for SISO plants by the parametrization of stabilizing controllers based on the two-stage compensator design. The system runs on Mathematica by using “Three Dimensional Surface Plots,” so that the visualization can be interactively manipulated by users. In this paper, we use the discrete-time LTI system model. Even so, our approach is the factorization approach, so that the result can be applied to many linear models.Keywords: Linear systems, visualization, optimization, two-Stage compensator design, Mathematica.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11929677 Simplified Models to Determine Nodal Voltagesin Problems of Optimal Allocation of Capacitor Banks in Power Distribution Networks
Authors: A. Pereira, S. Haffner, L. V. Gasperin
Abstract:
This paper presents two simplified models to determine nodal voltages in power distribution networks. These models allow estimating the impact of the installation of reactive power compensations equipments like fixed or switched capacitor banks. The procedure used to develop the models is similar to the procedure used to develop linear power flow models of transmission lines, which have been widely used in optimization problems of operation planning and system expansion. The steady state non-linear load flow equations are approximated by linear equations relating the voltage amplitude and currents. The approximations of the linear equations are based on the high relationship between line resistance and line reactance (ratio R/X), which is valid for power distribution networks. The performance and accuracy of the models are evaluated through comparisons with the exact results obtained from the solution of the load flow using two test networks: a hypothetical network with 23 nodes and a real network with 217 nodes.Keywords: Distribution network models, distribution systems, optimization, power system planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15619676 A Case Study on Appearance Based Feature Extraction Techniques and Their Susceptibility to Image Degradations for the Task of Face Recognition
Authors: Vitomir Struc, Nikola Pavesic
Abstract:
Over the past decades, automatic face recognition has become a highly active research area, mainly due to the countless application possibilities in both the private as well as the public sector. Numerous algorithms have been proposed in the literature to cope with the problem of face recognition, nevertheless, a group of methods commonly referred to as appearance based have emerged as the dominant solution to the face recognition problem. Many comparative studies concerned with the performance of appearance based methods have already been presented in the literature, not rarely with inconclusive and often with contradictory results. No consent has been reached within the scientific community regarding the relative ranking of the efficiency of appearance based methods for the face recognition task, let alone regarding their susceptibility to appearance changes induced by various environmental factors. To tackle these open issues, this paper assess the performance of the three dominant appearance based methods: principal component analysis, linear discriminant analysis and independent component analysis, and compares them on equal footing (i.e., with the same preprocessing procedure, with optimized parameters for the best possible performance, etc.) in face verification experiments on the publicly available XM2VTS database. In addition to the comparative analysis on the XM2VTS database, ten degraded versions of the database are also employed in the experiments to evaluate the susceptibility of the appearance based methods on various image degradations which can occur in "real-life" operating conditions. Our experimental results suggest that linear discriminant analysis ensures the most consistent verification rates across the tested databases.
Keywords: Biometrics, face recognition, appearance based methods, image degradations, the XM2VTS database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22839675 A Novel Non-Uniformity Correction Algorithm Based On Non-Linear Fit
Authors: Yang Weiping, Zhang Zhilong, Zhang Yan, Chen Zengping
Abstract:
Infrared focal plane arrays (IRFPA) sensors, due to their high sensitivity, high frame frequency and simple structure, have become the most prominently used detectors in military applications. However, they suffer from a common problem called the fixed pattern noise (FPN), which severely degrades image quality and limits the infrared imaging applications. Therefore, it is necessary to perform non-uniformity correction (NUC) on IR image. The algorithms of non-uniformity correction are classified into two main categories, the calibration-based and scene-based algorithms. There exist some shortcomings in both algorithms, hence a novel non-uniformity correction algorithm based on non-linear fit is proposed, which combines the advantages of the two algorithms. Experimental results show that the proposed algorithm acquires a good effect of NUC with a lower non-uniformity ratio.Keywords: Non-uniformity correction, non-linear fit, two-point correction, temporal Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23169674 A Self Organized Map Method to Classify Auditory-Color Synesthesia from Frontal Lobe Brain Blood Volume
Authors: Takashi Kaburagi, Takamasa Komura, Yosuke Kurihara
Abstract:
Absolute pitch is the ability to identify a musical note without a reference tone. Training for absolute pitch often occurs in preschool education. It is necessary to clarify how well the trainee can make use of synesthesia in order to evaluate the effect of the training. To the best of our knowledge, there are no existing methods for objectively confirming whether the subject is using synesthesia. Therefore, in this study, we present a method to distinguish the use of color-auditory synesthesia from the separate use of color and audition during absolute pitch training. This method measures blood volume in the prefrontal cortex using functional Near-infrared spectroscopy (fNIRS) and assumes that the cognitive step has two parts, a non-linear step and a linear step. For the linear step, we assume a second order ordinary differential equation. For the non-linear part, it is extremely difficult, if not impossible, to create an inverse filter of such a complex system as the brain. Therefore, we apply a method based on a self-organizing map (SOM) and are guided by the available data. The presented method was tested using 15 subjects, and the estimation accuracy is reported.
Keywords: Absolute pitch, functional near-infrared spectroscopy, prefrontal cortex, synesthesia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9779673 Analysis of Heart Beat Dynamics through Singularity Spectrum
Authors: Harish Kumar, Hussein Yahia, Oriol Pont, Michel Haissaguerre, Nicolas Derval, Meleze Hocini
Abstract:
The analysis to detect arrhythmias and life-threatening conditions are highly essential in today world and this analysis can be accomplished by advanced non-linear processing methods for accurate analysis of the complex signals of heartbeat dynamics. In this perspective, recent developments in the field of multiscale information content have lead to the Microcanonical Multiscale Formalism (MMF). We show that such framework provides several signal analysis techniques that are especially adapted to the study of heartbeat dynamics. In this paper, we just show first hand results of whether the considered heartbeat dynamics signals have the multiscale properties by computing local preticability exponents (LPEs) and the Unpredictable Points Manifold (UPM), and thereby computing the singularity spectrum.Keywords: Microcanonical Multiscale Formalism (MMF), UnpredictablePoints Manifold (UPM), Heartbeat Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15179672 Laplace Transformation on Ordered Linear Space of Generalized Functions
Authors: K. V. Geetha, N. R. Mangalambal
Abstract:
Aim. We have introduced the notion of order to multinormed spaces and countable union spaces and their duals. The topology of bounded convergence is assigned to the dual spaces. The aim of this paper is to develop the theory of ordered topological linear spaces La,b, L(w, z), the dual spaces of ordered multinormed spaces La,b, ordered countable union spaces L(w, z), with the topology of bounded convergence assigned to the dual spaces. We apply Laplace transformation to the ordered linear space of Laplace transformable generalized functions. We ultimately aim at finding solutions to nonhomogeneous nth order linear differential equations with constant coefficients in terms of generalized functions and comparing different solutions evolved out of different initial conditions. Method. The above aim is achieved by • Defining the spaces La,b, L(w, z). • Assigning an order relation on these spaces by identifying a positive cone on them and studying the properties of the cone. • Defining an order relation on the dual spaces La,b, L(w, z) of La,b, L(w, z) and assigning a topology to these dual spaces which makes the order dual and the topological dual the same. • Defining the adjoint of a continuous map on these spaces and studying its behaviour when the topology of bounded convergence is assigned to the dual spaces. • Applying the two-sided Laplace Transformation on the ordered linear space of generalized functions W and studying some properties of the transformation which are used in solving differential equations. Result. The above techniques are applied to solve non-homogeneous n-th order linear differential equations with constant coefficients in terms of generalized functions and to compare different solutions of the differential equation.Keywords: Laplace transformable generalized function, positive cone, topology of bounded convergence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12339671 Analysis of Partially Shaded PV Modules Using Piecewise Linear Parallel Branches Model
Authors: Yaw-Juen Wang, Po-Chun Hsu
Abstract:
This paper presents an equivalent circuit model based on piecewise linear parallel branches (PLPB) to study solar cell modules which are partially shaded. The PLPB model can easily be used in circuit simulation software such as the ElectroMagnetic Transients Program (EMTP). This PLPB model allows the user to simulate several different configurations of solar cells, the influence of partial shadowing on a single or multiple cells, the influence of the number of solar cells protected by a bypass diode and the effect of the cell connection configuration on partial shadowing.
Keywords: Cell Connection Configurations, EMTP, Equivalent Circuit, Partial Shading, Photovoltaic Module
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29349670 Pricing Strategy Selection Using Fuzzy Linear Programming
Authors: Elif Alaybeyoğlu, Y. Esra Albayrak
Abstract:
Marketing establishes a communication network between producers and consumers. Nowadays, marketing approach is customer-focused and products are directly oriented to meet customer needs. Marketing, which is a long process, needs organization and management. Therefore strategic marketing planning becomes more and more important in today’s competitive conditions. Main focus of this paper is to evaluate pricing strategies and select the best pricing strategy solution while considering internal and external factors influencing the company’s pricing decisions associated with new product development. To reflect the decision maker’s subjective preference information and to determine the weight vector of factors (attributes), the fuzzy linear programming technique for multidimensional analysis of preference (LINMAP) under intuitionistic fuzzy (IF) environments is used.
Keywords: IF Sets, LINMAP, MAGDM, Marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22629669 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays
Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang
Abstract:
This paper considers H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.
Keywords: H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16159668 Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories
Authors: Arkady Bolotin
Abstract:
Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.
Keywords: Categorization, Uncertain medical categories, Binomial regression model, Fuzzy dependent variable, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15589667 Image Restoration in Non-Linear Filtering Domain using MDB approach
Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, C. Ardil
Abstract:
This paper proposes a new technique based on nonlinear Minmax Detector Based (MDB) filter for image restoration. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Image degradation can be due to the addition of different types of noise in the original image. Image noise can be modeled of many types and impulse noise is one of them. Impulse noise generates pixels with gray value not consistent with their local neighborhood. It appears as a sprinkle of both light and dark or only light spots in the image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly efficient but for large window and in case of high noise it gives rise to more blurring to image. The Centre Weighted Mean (CWM) filter has got a better average performance over the median filter. However the original pixel corrupted and noise reduction is substantial under high noise condition. Hence this technique has also blurring affect on the image. To illustrate the superiority of the proposed approach, the proposed new scheme has been simulated along with the standard ones and various restored performance measures have been compared.
Keywords: Filtering, Minmax Detector Based (MDB), noise, centre weighted mean filter, PSNR, restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27399666 New Explicit Group Newton's Iterative Methods for the Solutions of Burger's Equation
Authors: Tan K. B., Norhashidah Hj. M. Ali
Abstract:
In this article, we aim to discuss the formulation of two explicit group iterative finite difference methods for time-dependent two dimensional Burger-s problem on a variable mesh. For the non-linear problems, the discretization leads to a non-linear system whose Jacobian is a tridiagonal matrix. We discuss the Newton-s explicit group iterative methods for a general Burger-s equation. The proposed explicit group methods are derived from the standard point and rotated point Crank-Nicolson finite difference schemes. Their computational complexity analysis is discussed. Numerical results are given to justify the feasibility of these two proposed iterative methods.
Keywords: Standard point Crank-Nicolson (CN), Rotated point Crank-Nicolson (RCN), Explicit Group (EG), Explicit Decoupled Group (EDG).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16029665 Process Analysis through Length Consistency
Authors: James E. Ponder
Abstract:
The requirement for consistency in physics can sometimes offer a common ground between disciplines such that their fundamental equations share a common parameter set and mathematical method for equation extraction. The parameter set shared by Relativity and Quantum Wave Mechanics enables an analysis which will be seen to be very straightforward, primarily classical in nature using linear algebra concepts, yet deriving a theoretical estimate of the value of the Gravitational Constant along with dependencies never before known.
Keywords: Gravitational Constant, Physical Consistency, Quantum Mechanics, Relativity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15399664 Sensitivity Analysis for Direction of Arrival Estimation Using Capon and Music Algorithms in Mobile Radio Environment
Authors: Mustafa Abdalla, Khaled A. Madi, Rajab Farhat
Abstract:
An array antenna system with innovative signal processing can improve the resolution of a source direction of arrival (DoA) estimation. High resolution techniques take the advantage of array antenna structures to better process the incoming waves. They also have the capability to identify the direction of multiple targets. This paper investigates performance of the DOA estimation algorithm namely; Capon and MUSIC on the uniform linear array (ULA). The simulation results show that in Capon and MUSIC algorithm the resolution of the DOA techniques improves as number of snapshots, number of array elements, signal-to-noise ratio and separation angle between the two sources θ increases.Keywords: Antenna array, Capon, MUSIC, Direction-of-arrival estimation, signal processing, uniform linear arrays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27309663 Model Order Reduction of Linear Time Variant High Speed VLSI Interconnects using Frequency Shift Technique
Authors: J.V.R.Ravindra, M.B.Srinivas,
Abstract:
Accurate modeling of high speed RLC interconnects has become a necessity to address signal integrity issues in current VLSI design. To accurately model a dispersive system of interconnects at higher frequencies; a full-wave analysis is required. However, conventional circuit simulation of interconnects with full wave models is extremely CPU expensive. We present an algorithm for reducing large VLSI circuits to much smaller ones with similar input-output behavior. A key feature of our method, called Frequency Shift Technique, is that it is capable of reducing linear time-varying systems. This enables it to capture frequency-translation and sampling behavior, important in communication subsystems such as mixers, RF components and switched-capacitor filters. Reduction is obtained by projecting the original system described by linear differential equations into a lower dimension. Experiments have been carried out using Cadence Design Simulator cwhich indicates that the proposed technique achieves more % reduction with less CPU time than the other model order reduction techniques existing in literature. We also present applications to RF circuit subsystems, obtaining size reductions and evaluation speedups of orders of magnitude with insignificant loss of accuracy.Keywords: Model order Reduction, RLC, crosstalk
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16519662 Systematic Unit-Memory Binary Convolutional Codes from Linear Block Codes over F2r + vF2r
Authors: John Mark Lampos, Virgilio Sison
Abstract:
Two constructions of unit-memory binary convolutional codes from linear block codes over the finite semi-local ring F2r +vF2r , where v2 = v, are presented. In both cases, if the linear block code is systematic, then the resulting convolutional encoder is systematic, minimal, basic and non-catastrophic. The Hamming free distance of the convolutional code is bounded below by the minimum Hamming distance of the block code. New examples of binary convolutional codes that meet the Heller upper bound for systematic codes are given.Keywords: Convolutional codes, semi-local ring, free distance, Heller bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16529661 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time
Authors: Jyh-Da Wei, Hsin-Chen Tsai
Abstract:
This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14169660 Complexity Reduction Approach with Jacobi Iterative Method for Solving Composite Trapezoidal Algebraic Equations
Authors: Mohana Sundaram Muthuvalu, Jumat Sulaiman
Abstract:
In this paper, application of the complexity reduction approach based on half- and quarter-sweep iteration concepts with Jacobi iterative method for solving composite trapezoidal (CT) algebraic equations is discussed. The performances of the methods for CT algebraic equations are comparatively studied by their application in solving linear Fredholm integral equations of the second kind. Furthermore, computational complexity analysis and numerical results for three test problems are also included in order to verify performance of the methods.
Keywords: Complexity reduction approach, Composite trapezoidal scheme, Jacobi method, Linear Fredholm integral equations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15949659 Validation of the Linear Trend Estimation Technique for Prediction of Average Water and Sewerage Charge Rate Prices in the Czech Republic
Authors: Aneta Oblouková, Eva Vítková
Abstract:
The article deals with the issue of water and sewerage charge rate prices in the Czech Republic. The research is specifically focused on the analysis of the development of the average prices of water and sewerage charge rate in the Czech Republic in 1994-2021 and on the validation of the chosen methodology relevant for the prediction of the development of the average prices of water and sewerage charge rate in the Czech Republic. The research is based on data collection. The data for this research were obtained from the Czech Statistical Office. The aim of the paper is to validate the relevance of the mathematical linear trend estimate technique for the calculation of the predicted average prices of water and sewerage charge rates. The real values of the average prices of water and sewerage charge rates in the Czech Republic in 1994-2018 were obtained from the Czech Statistical Office and were converted into a mathematical equation. The same type of real data was obtained from the Czech Statistical Office for 2019-2021. Prediction of the average prices of water and sewerage charge rates in the Czech Republic in 2019-2021 was also calculated using a chosen method – a linear trend estimation technique. The values obtained from the Czech Statistical Office and the values calculated using the chosen methodology were subsequently compared. The research result is a validation of the chosen mathematical technique to be a suitable technique for this research.
Keywords: Czech Republic, linear trend estimation, price prediction, water and sewerage charge rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019658 Effect of Channel Estimation on Capacity of MIMO System Employing Circular or Linear Receiving Array Antennas
Authors: Xia Liu, Marek E. Bialkowski
Abstract:
This paper reports on investigations into capacity of a Multiple Input Multiple Output (MIMO) wireless communication system employing a uniform linear array (ULA) at the transmitter and either a uniform linear array (ULA) or a uniform circular array (UCA) antenna at the receiver. The transmitter is assumed to be surrounded by scattering objects while the receiver is postulated to be free from scattering objects. The Laplacian distribution of angle of arrival (AOA) of a signal reaching the receiver is postulated. Calculations of the MIMO system capacity are performed for two cases without and with the channel estimation errors. For estimating the MIMO channel, the scaled least square (SLS) and minimum mean square error (MMSE) methods are considered.Keywords: MIMO, channel capacity, channel estimation, ULA, UCA, spatial correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364