Search results for: Modified Cross Correlation
478 The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry
Authors: G. Sekeroglu, M. Altan
Abstract:
Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.
Keywords: Profitability, regression analysis, inventory management, working capital.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7217477 Exploiting Two Intelligent Models to Predict Water Level: A Field Study of Urmia Lake, Iran
Authors: Shahab Kavehkar, Mohammad Ali Ghorbani, Valeriy Khokhlov, Afshin Ashrafzadeh, Sabereh Darbandi
Abstract:
Water level forecasting using records of past time series is of importance in water resources engineering and management. For example, water level affects groundwater tables in low-lying coastal areas, as well as hydrological regimes of some coastal rivers. Then, a reliable prediction of sea-level variations is required in coastal engineering and hydrologic studies. During the past two decades, the approaches based on the Genetic Programming (GP) and Artificial Neural Networks (ANN) were developed. In the present study, the GP is used to forecast daily water level variations for a set of time intervals using observed water levels. The measurements from a single tide gauge at Urmia Lake, Northwest Iran, were used to train and validate the GP approach for the period from January 1997 to July 2008. Statistics, the root mean square error and correlation coefficient, are used to verify model by comparing with a corresponding outputs from Artificial Neural Network model. The results show that both these artificial intelligence methodologies are satisfactory and can be considered as alternatives to the conventional harmonic analysis.
Keywords: Water-Level variation, forecasting, artificial neural networks, genetic programming, comparative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334476 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test
Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath
Abstract:
As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.
Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279475 Representing Shared Join Points with State Charts: A High Level Design Approach
Authors: Muhammad Naveed, Muhammad Khalid Abdullah, Khalid Rashid, Hafiz Farooq Ahmad
Abstract:
Aspect Oriented Programming promises many advantages at programming level by incorporating the cross cutting concerns into separate units, called aspects. Join Points are distinguishing features of Aspect Oriented Programming as they define the points where core requirements and crosscutting concerns are (inter)connected. Currently, there is a problem of multiple aspects- composition at the same join point, which introduces the issues like ordering and controlling of these superimposed aspects. Dynamic strategies are required to handle these issues as early as possible. State chart is an effective modeling tool to capture dynamic behavior at high level design. This paper provides methodology to formulate the strategies for multiple aspect composition at high level, which helps to better implement these strategies at coding level. It also highlights the need of designing shared join point at high level, by providing the solutions of these issues using state chart diagrams in UML 2.0. High level design representation of shared join points also helps to implement the designed strategy in systematic way.Keywords: Aspect Oriented Software Development, Shared Join Points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719474 Sorption of Charged Organic Dyes from Anionic Hydrogels
Authors: Georgios Linardatos, Miltiadis Zamparas, Vlasoula Bekiari, Georgios Bokias, Georgios Hotos
Abstract:
Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,Ndimethylacrylamide), PDMAM, was also used for reasons of comparison.Keywords: Anionic organic hydrogels, sorption, organic dyes, water purification agents.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067473 Trends in Use of Millings in Pavement Maintenance
Authors: Rafiqul Tarefder, Mohiuddin Ahmad, Mohammad Hossain
Abstract:
While millings materials from old pavement surface can be an important component of cost effective maintenance operation, their use in maintenance projects are not uniform and well documented. This study documents the different maintenance practices followed by four transportation districts of New Mexico Department of Transportation (NMDOT) in an attempt to find whether millings are being used in maintenance projects by those districts. Based on existing literature, a questionnaire was developed related to six common maintenance practices. NMDOT district personal were interviewed face to face to discuss and get answers to that questionnaire. It revealed that NMDOT districts mainly use chip seal and patching. Other maintenance procedures such as sand seal, scrub seal, slurry seal, and thin overlay have limited use. Two out of four participating districts do not have any documents on chip sealing; rather they employ the experiences of the chip seal crew. All districts use polymer modified high float emulsion (HFE100P) for chip seal with an application rate ranging from 0.4 to 0.56 gallons per square yard. Chip application rate varies from 15 to 40 lb/ square yard. State wide, the thickness of chip seal varies from 3/8'' to 1'' and life varies from 3 to 10 years. NMDOT districts mainly use three type of patching: pothole, dig-out and blade patch. Pothole patches are used for small potholes and during emergency, dig-out patches are used for all type of potholes sometimes after pothole patching, and blade patch is used when a significant portion of the pavement is damaged. Pothole patches last as low as three days whereas, blade patch lasts as long as 3 years. It was observed that all participating districts use millings in maintenance projects.
Keywords: Chip seal, sand seal, scrub seal, slurry seal, overlay, patching, millings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001472 Molecular Epidemiology and Genotyping of Bovine Viral Diarrhea Virus in Xinjiang Uygur Autonomous Region of China
Authors: Yan Ren, Jun Qiao, Xianxia Liu, Pengyan Wang, Qiang Fu, Huijun Shi, Fei Guo, Yuanzhi Wang, Hui Zhang, Jinliang Sheng, Xinli Gu, Xiao-Jun Liu, Chuangfu Chen
Abstract:
As part of national epidemiological survey on bovine viral diarrhea virus (BVDV), a total of 274 dejecta samples were collected from 14 cattle farms in 8 areas of Xinjiang Uygur Autonomous Region in northwestern China. Total RNA was extracted from each sample, and 5--untranslated region (UTR) of BVDV genome was amplified by using two-step reverse transcriptase-polymerase chain reaction (RT-PCR). The PCR products were subsequently sequenced to study the genetic variations of BVDV in these areas. Among the 274 samples, 33 samples were found virus-positive. According to sequence analysis of the PCR products, the 33 samples could be arranged into 16 groups. All the sequences, however, were highly conserved with BVDV Osloss strains. The virus possessed theses sequences belonged to BVDV-1b subtype by phylogenetic analysis. Based on these data, we established a typing tree for BVDV in these areas. Our results suggested that BVDV-1b was a predominant subgenotype in northwestern China and no correlation between the genetic and geographical distances could be observed above the farm level.Keywords: bovine viral diarrhea virus, molecular epidemiology, phylogenetic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494471 Multi-Linear Regression Based Prediction of Mass Transfer by Multiple Plunging Jets
Abstract:
The paper aims to compare the performance of vertical and inclined multiple plunging jets and to model and predict their mass transfer capacity by multi-linear regression based approach. The multiple vertical plunging jets have jet impact angle of θ = 90O; whereas, multiple inclined plunging jets have jet impact angle of θ = 60O. The results of the study suggests that mass transfer is higher for multiple jets, and inclined multiple plunging jets have up to 1.6 times higher mass transfer than vertical multiple plunging jets under similar conditions. The derived relationship, based on multi-linear regression approach, has successfully predicted the volumetric mass transfer coefficient (KLa) from operational parameters of multiple plunging jets with a correlation coefficient of 0.973, root mean square error of 0.002 and coefficient of determination of 0.946. The results suggests that predicted overall mass transfer coefficient is in good agreement with actual experimental values; thereby, suggesting the utility of derived relationship based on multi-linear regression based approach and can be successfully employed in modeling mass transfer by multiple plunging jets.
Keywords: Mass transfer, multiple plunging jets, multi-linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203470 Image Compression with Back-Propagation Neural Network using Cumulative Distribution Function
Authors: S. Anna Durai, E. Anna Saro
Abstract:
Image Compression using Artificial Neural Networks is a topic where research is being carried out in various directions towards achieving a generalized and economical network. Feedforward Networks using Back propagation Algorithm adopting the method of steepest descent for error minimization is popular and widely adopted and is directly applied to image compression. Various research works are directed towards achieving quick convergence of the network without loss of quality of the restored image. In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Back-propagation Network, it takes longer time to converge. The reason for this is, the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbors with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative distribution function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used, the Back-propagation Neural Network yields high compression ratio as well as it converges quickly.Keywords: Back-propagation Neural Network, Cumulative Distribution Function, Correlation, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555469 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature
Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak
Abstract:
In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151468 Patient Perspectives on Telehealth during the Pandemic in the United States
Authors: Manal Sultan Alhussein, Xiang Michelle Liu
Abstract:
Telehealth is an advanced technology using digital information and telecommunication facilities that provide access to health services from a distance. It slows the transmission factor of COVID-19, especially for elderly patients and patients with chronic diseases during the pandemic. Therefore, understanding patient perspectives on telehealth services and the factors impacting their option of telehealth service will shed light on the measures that healthcare providers can take to improve the quality of telehealth services. This study aimed to evaluate perceptions of telehealth services among different patient groups and explore various aspects of telehealth utilization in the United States during the COVID-19 pandemic. An online survey distributed via social media platforms was used to collect research data. In addition to the descriptive statistics, both correlation and regression analyses were conducted to test research hypotheses. The empirical results highlighted that the factors such as accessibility to telehealth services and the type of specialty clinics that the patients required play important roles in the effectiveness of telehealth services they received. However, the results found that patients’ waiting time to receive telehealth services and their annual income did not significantly influence their desire to select receiving healthcare services via telehealth. The limitations of the study and future research directions are discussed.
Keywords: Telehealth, patient satisfaction, pandemic, healthcare, remote patient monitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732467 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages
Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh
Abstract:
Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.
Keywords: Chickpea, drought stress, growth stage, tolerance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996466 Experimental on Free and Forced Heat Transfer and Pressure Drop of Copper Oxide-Heat Transfer Oil Nanofluid in Horizontal and Inclined Microfin Tube
Authors: F. Hekmatipour, M. A. Akhavan-Behabadi, B. Sajadi
Abstract:
In this paper, the combined free and forced convection heat transfer of the Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid flow in horizontal and inclined microfin tubes is studied experimentally. The flow regime is laminar, and pipe surface temperature is constant. The effect of nanoparticle and microfin tube on the heat transfer rate is investigated with the Richardson number which is between 0.1 and 0.7. The results show an increasing nanoparticle concentration between 0% and 1.5% leads to enhance the combined free and forced convection heat transfer rate. According to the results, five correlations are proposed to provide estimating the free and forced heat transfer rate as the increasing Richardson number from 0.1 to 0.7. The maximum deviation of both correlations is less than 16%. Moreover, four correlations are suggested to assess the Nusselt number based on the Rayleigh number in inclined tubes from 1800000 to 7000000. The maximum deviation of the correlation is almost 16%. The Darcy friction factor of the nanofluid flow has been investigated. Furthermore, CuO-HTO nanofluid flows in inclined microfin tubes.
Keywords: Nanofluid; heat transfer oil; mixed convection; inclined tube; laminar flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 675465 Public Private Partnership for Infrastructure Projects: Mapping the Key Risks
Authors: Julinda Keçi
Abstract:
In many countries, governments have been promoting the involvement of private sector entities to enter into long-term agreements for the development and delivery of large infrastructure projects, with a focus on overcoming the limitations upon public fund of the traditional approach. The involvement of private sector through public private partnerships (PPP) brings in new capital investments, value for money and additional risks to handle. Worldwide research studies have shown that an objective, systematic, reliable and useroriented risk assessment process and an optimal allocation mechanism among different stakeholders is crucial to the successful completion. In this framework, this paper, which is the first stage of a research study, aims to identify the main risks for the delivery of PPP projects. A review of cross-countries research projects and case studies was performed to map the key risks affecting PPP infrastructure delivery. The matrix of mapping offers a summary of the frequency of factors, clustered in eleven categories: construction, design, economic, legal, market, natural, operation, political, project finance, project selection and relationship. Results will highlight the most critical risk factors, and will hopefully assist the project managers in directing the managerial attention in the further stages of risk allocation.
Keywords: Construction, infrastructure, public private partnerships, risks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3528464 Design and Performance of Adaptive Polarized MIMO MC-SS-CDMA System for Downlink Mobile Communications
Authors: Joseph V. M. Halim, Hesham El-Badawy, Hadia M. El-Hennawy
Abstract:
In this paper, an adaptive polarized Multiple-Input Multiple-Output (MIMO) Multicarrier Spread Spectrum Code Division Multiple Access (MC-SS-CDMA) system is designed for downlink mobile communications. The proposed system will be examined in Frequency Division Duplex (FDD) mode for both macro urban and suburban environments. For the same transmission bandwidth, a performance comparison between both nonoverlapped and orthogonal Frequency Division Multiplexing (FDM) schemes will be presented. Also, the proposed system will be compared with both the closed loop vertical MIMO MC-SS-CDMA system and the synchronous vertical STBC-MIMO MC-SS-CDMA system. As will be shown, the proposed system introduces a significant performance gain as well as reducing the spatial dimensions of the MIMO system and simplifying the receiver implementation. The effect of the polarization diversity characteristics on the BER performance will be discussed. Also, the impact of excluding the cross-polarization MCSS- CDMA blocks in the base station will be investigated. In addition, the system performance will be evaluated under different Feedback Information (FBI) rates for slowly-varying channels. Finally, a performance comparison for vehicular and pedestrian environments will be presentedKeywords: Closed loop technique, MC-SS-CDMA, Polarized MIMO systems, Transmit diversity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624463 Computer Aided Docking Studies on Antiviral Drugs for SARS
Authors: Virupakshaiah DBM, Chandrakanth Kelmani, Rachanagouda Patil, Prasad Hegade
Abstract:
Severe acute respiratory syndrome (SARS) is a respiratory disease in humans which is caused by the SARS coronavirus. The treatment of coronavirus-associated SARS has been evolving and so far there is no consensus on an optimal regimen. The mainstream therapeutic interventions for SARS involve broad-spectrum antibiotics and supportive care, as well as antiviral agents and immunomodulatory therapy. The Protein- Ligand interaction plays a significant role in structural based drug designing. In the present work we have taken the receptor Angiotensin converting enzyme 2 and identified the drugs that are commonly used against SARS. They are Lopinavir, Ritonavir, Ribavirin, and Oseltamivir. The receptor Angiotensin converting enzyme 2 (ACE-2) was docked with above said drugs and the energy value obtained are as follows, Lopinavir (-292.3), Ritonavir (-325.6), Oseltamivir (- 229.1), Ribavirin (-208.8). Depending on the least energy value we have chosen the best two drugs out of the four conventional drugs. We tried to improve the binding efficiency and steric compatibility of the two drugs namely Ritonavir and Lopinavir. Several modifications were made to the probable functional groups (phenylic, ketonic groups in case of Ritonavir and carboxylic groups in case of Lopinavir respectively) which were interacting with the receptor molecule. Analogs were prepared by Marvin Sketch software and were docked using HEX docking software. Lopinavir analog 8 and Ritonavir analog 11 were detected with significant energy values and are probable lead molecule. It infers that some of the modified drugs are better than the original drugs. Further work can be carried out to improve the steric compatibility of the drug based upon the work done above for a more energy efficient binding of the drugs to the receptor.
Keywords: Protein data bank, Rasmol, Marvin sketch, Hexdocking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263462 The Moderation Effect of Smart Phone Addiction in Relationship between Self-Leadership and Innovative Behavior
Authors: Gi-Ryun Park, Gye-Wan Moon, Dong-Hoon Yang
Abstract:
This study aims to explore the positive effects of self-leadership and innovative behavior that'd been proven in the existing researches proactively and understand the regulation effects of smartphone addiction which has recently become an issue in Korea. This study conducted a convenient sampling of college students attending the four colleges located at Daegu. A total of 210 questionnaires in 5-point Likert scale were distributed to college students. Among which, a total of 200 questionnaires were collected for our final analysis data. Both correlation analysis and regression analysis were carried out to verify those questionnaires through SPSS 20.0. As a result, college students' self-leadership had a significantly positive impact on innovative behavior (B= .210, P= .003). In addition, it is found that the relationship between self-leadership and innovative behavior can be adjusted depending on the degree of smartphone addiction in college students (B= .264, P= .000). This study could first understand the negative effects of smartphone addiction and find that if students' self-leadership is improved in terms of self-management and unnecessary use of smartphone is controlled properly, innovative behavior can be improved. In addition, this study is significant in that it attempts to identify a new impact of smartphone addiction with the recent environmental changes, unlike the existing researches that'd been carried out from the perspective of organizational behavior theory.
Keywords: Innovative Behavior, Revolutionary Behavior, Self-leadership, Smartphone Addiction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3077461 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis
Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra
Abstract:
This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.Keywords: Driver support systems, intelligent transportation systems, fuzzy logic, real time data processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205460 Preparation and Characterization of Pure PVA and PVA/MMT Matrix: Effect of Thermal Treatment
Authors: Albana Hasimi, Edlira Tako, Partizan Malkaj, Elvin Çomo, Blerina Papajani, Mirela Ndrita, Ledjan Malaj
Abstract:
Many endeavors have been exerted during the last years for developing new artificial polymeric membranes, which fulfill the demanded conditions for biomedical uses. One of the most tested polymers is Poly(vinyl alcohol) [PVA]. Our teams are based on the possibility of using PVA for personal protective equipment against COVID-19. In personal protective equipment, we explore the possibility of modifying the properties of the polymer by adding Montmorillonite [MMT]. Heat-treatment above the glass transition temperature is used to improve mechanical properties mainly by increasing the crystallinity of the polymer, which acts as a physical network. Temperature-Modulated Differential Scanning Calorimetry (TMDSC) measurements indicated that the presence of 0.5% MMT in PVA causes a higher Tg value and shaped peak of crystallinity. Decomposition is observed at two of the melting points of the crystals during heating 25-240 oC and overlap of the recrystallization ridges during cooling 240-25 oC. This is indicative of the presence of two types (quality or structure) of polymer crystals. On the other hand, some indication of improvement of the quality of the crystals by heat-treatment is given by the distinct non-reversing contribution to melting. Data on sorption and transport of water in PVA films: PVA pure and PVA/MMT matrix, modified by thermal treatment are presented. The membranes become more rigid as a result of the heat treatment and because of this the water uptake is significantly lower in membranes. That is indicated by analysis of the resulting water uptake kinetics. The presence of 0.5% w/w of MMT has no significant impact on the properties of PVA membranes. Water uptake kinetics deviate from Fick’s law due to slow relaxation of glassy polymer matrix for all types of membranes.
Keywords: Crystallinity, montmorillonite, nanocomposite, poly(vinyl alcohol).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232459 Holistic Approach to Assess the Potential of Using Traditional and Advance Insulation Materials for Energy Retrofit of Office Buildings
Authors: Marco Picco, Mahmood Alam
Abstract:
Improving the energy performance of existing buildings can be challenging, particularly when facades cannot be modified, and the only available option is internal insulation. In such cases, the choice of the most suitable material becomes increasingly complex, as in addition to thermal transmittance and capital cost, the designer needs to account for the impact of the intervention on the internal spaces, and in particular the loss of usable space due to the additional layers of materials installed. This paper explores this issue by analyzing a case study of an average office building needing to go through a refurbishment in order to reach the limits imposed by current regulations to achieve energy efficiency in buildings. The building is simulated through dynamic performance simulation under three different climate conditions in order to evaluate its energy needs. The use of Vacuum Insulated Panels as an option for energy refurbishment is compared to traditional insulation materials (XPS, Mineral Wool). For each scenario, energy consumptions are calculated and, in combination with their expected capital costs, used to perform a financial feasibility analysis. A holistic approach is proposed, taking into account the impact of the intervention on internal space by quantifying the value of the lost usable space and used in the financial feasibility analysis. The proposed approach highlights how taking into account different drivers will lead to the choice of different insulation materials, showing how accounting for the economic value of space can make VIPs an attractive solution for energy retrofitting under various climate conditions.
Keywords: Vacuum insulated panels, building performance simulation, payback period, building energy retrofit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524458 Effect of Clustering on Energy Efficiency and Network Lifetime in Wireless Sensor Networks
Authors: Prakash G L, Chaitra K Meti, Poojitha K, Divya R.K.
Abstract:
Wireless Sensor Network is Multi hop Self-configuring Wireless Network consisting of sensor nodes. The deployment of wireless sensor networks in many application areas, e.g., aggregation services, requires self-organization of the network nodes into clusters. Efficient way to enhance the lifetime of the system is to partition the network into distinct clusters with a high energy node as cluster head. The different methods of node clustering techniques have appeared in the literature, and roughly fall into two families; those based on the construction of a dominating set and those which are based solely on energy considerations. Energy optimized cluster formation for a set of randomly scattered wireless sensors is presented. Sensors within a cluster are expected to be communicating with cluster head only. The energy constraint and limited computing resources of the sensor nodes present the major challenges in gathering the data. In this paper we propose a framework to study how partially correlated data affect the performance of clustering algorithms. The total energy consumption and network lifetime can be analyzed by combining random geometry techniques and rate distortion theory. We also present the relation between compression distortion and data correlation.Keywords: Clusters, multi hop, random geometry, rate distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639457 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model
Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu
Abstract:
The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.
Keywords: CFD, mechanistic model, subcooled boiling flow, two-fluid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273456 Classifier Based Text Mining for Neural Network
Authors: M. Govindarajan, R. M. Chandrasekaran
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.Keywords: Back propagation, classification accuracy, textmining, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4220455 Integration of Seismic and Seismological Data Interpretation for Subsurface Structure Identification
Authors: Iftikhar Ahmed Satti, Wan Ismail Wan Yusoff
Abstract:
The structural interpretation of a part of eastern Potwar (Missa Keswal) has been carried out with available seismological, seismic and well data. Seismological data contains both the source parameters and fault plane solution (FPS) parameters and seismic data contains ten seismic lines that were re-interpreted by using well data. Structural interpretation depicts two broad types of fault sets namely, thrust and back thrust faults. These faults together give rise to pop up structures in the study area and also responsible for many structural traps and seismicity. Seismic interpretation includes time and depth contour maps of Chorgali Formation while seismological interpretation includes focal mechanism solution (FMS), depth, frequency, magnitude bar graphs and renewal of Seismotectonic map. The Focal Mechanism Solutions (FMS) that surrounds the study area are correlated with the different geological and structural maps of the area for the determination of the nature of subsurface faults. Results of structural interpretation from both seismic and seismological data show good correlation. It is hoped that the present work will help in better understanding of the variations in the subsurface structure and can be a useful tool for earthquake prediction, planning of oil field and reservoir monitoring.Keywords: Focal mechanism solution (FMS), Fault plane solution (FPS), Reservoir monitoring, earthquake prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2484454 Malaysian Multi-Ethnic Discrimination Scale: Preliminary Factor and Psychometric Analysis
Authors: Chua Bee Seok, Shamsul Amri Baharuddin, Rosnah Ismail, Ferlis Bahari, Jasmine Adela Mutang, Lailawati Madlan, Asong Joseph
Abstract:
The aims of this study were to determine the factor structure and psychometric properties (i.e., reliability and convergent validity) of the Malaysian Multi-Ethnic Discrimination Scale (MMEDS). It consists of 71-items measure experience, strategies used and consequences of ethnic discrimination. A sample of 649 university students from one of the higher education institution in Malaysia was asked to complete MMEDS, as well as Perceived Ethnic and Racial Discrimination. The exploratory factor analysis on ethnic discrimination experience extracted two factors labeled ‘unfair treatment’ (15 items) and ‘Denial of the ethnic right’ (12 items) which accounted for 60.92% of the total variance. The two sub scales demonstrated clear reliability with internal consistency above .70. The convergent validity of the Scale was supported by an expected pattern of correlations (positive and significant correlation) between the score of unfair treatment and denial of the ethnic right and the score of Perceived Ethnic and Racial Discrimination by Peers Scale. The results suggest that the MMEDS is a reliable and valid measure. However, further studies need to be carried out in other groups of sample as to validate the Scale.Keywords: Factor structure, psychometric properties, exploratory factor analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499453 Numerical Simulations of Cross-Flow around Four Square Cylinders in an In-Line Rectangular Configuration
Authors: Shams Ul Islam, Chao Ying Zhou, Farooq Ahmad
Abstract:
A two-dimensional numerical simulation of crossflow around four cylinders in an in-line rectangular configuration is studied by using the lattice Boltzmann method (LBM). Special attention is paid to the effect of the spacing between the cylinders. The Reynolds number ( Re ) is chosen to be e 100 R = and the spacing ratio L / D is set at 0.5, 1.5, 2.5, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10.0. Results show that, as in the case of four cylinders in an inline rectangular configuration , flow fields show four different features depending on the spacing (single square cylinder, stable shielding flow, wiggling shielding flow and a vortex shedding flow) are observed in this study. The effects of spacing ratio on physical quantities such as mean drag coefficient, Strouhal number and rootmean- square value of the drag and lift coefficients are also presented. There is more than one shedding frequency at small spacing ratios. The mean drag coefficients for downstream cylinders are less than that of the single cylinder for all spacing ratios. The present results using the LBM are compared with some existing experimental data and numerical studies. The comparison shows that the LBM can capture the characteristics of the bluff body flow reasonably well and is a good tool for bluff body flow studies.Keywords: Four square cylinders, Lattice Boltzmann method, rectangular configuration, spacing ratios, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2704452 Prevalence and Associated Risk Factors of Eimeria in Sheep of Punjab, Pakistan
Authors: M.N. Khan, T. Rehman, Z Iqbal, M.S Sajid, M Ahmad, M Riaz
Abstract:
A cross-sectional study was carried out to determine the prevalence, species characterization and associated risk factors with Eimeria (E.) in sheep of district Toba Tek Singh from April, 2009 to March, 2010. Of the total 486 faecal samples examined for Eimeria, 209 (43%) were found infected with five species of Eimeria. Amongst the identified species of Eimeria, E. ovinoidalis was the commonest one (48.32%), followed in order by E. ahsata, E. intricata, E. parva and E. faurei with prevalence of 45.45, 28.71, 24.40 and 19.14 percent respectively. Peak prevalence was observed in August. Wet season (rainy and post-rainy) was found to be favourable for Eimeria infection. Lambs had significantly higher prevalence (P < 0.05) of Eimeria than adults. Similarly higher prevalence of Eimeria was observed in female as compared to male. Among management and husbandry practices; watering system, housing system, floor type and herd size strongly influenced the prevalence of Eimeria. Coccidiosis was more prevalent in closed housing system, non-cemented floor type, pond watered animals and larger herds (P < 0.05) as compared to open housing system, partially cemented floor type, tap watered animals and smaller herds respectively. Feeding system, breed and body condition of animals were not found as risk factors (P>0.05) influencing prevalence of Eimeria.
Keywords: Eimeria, Pakistan prevalence, sheep.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582451 Effects of Virtual Reality on the Upper Extremity Spasticity and Motor Function in Patients with Stroke: A Single Blinded Randomized Controlled Trial
Authors: K. Afsahi, M. Soheilifar, S. H. Hosseini, O. S. Esmaeili, R. Kezemi, N. Mehrbod, N. Vahed, T. Hajiahmad, N. N. Ansari
Abstract:
Background: Stroke is a disabling neurological disease. Rehabilitative therapies are important treatment methods. This clinical trial was done to compare the effects of virtual reality (VR) beside conventional rehabilitation versus conventional rehabilitation alone on the spasticity and motor function in stroke patients. Materials and methods: In this open-label randomized controlled clinical trial, 40 consecutive patients with stable first-ever ischemic stroke in the past three to 12 months that were referred to a rehabilitation clinic in Tehran, Iran in 2020 were enrolled. After signing the informed written consent form, subjects were randomly assigned by block randomization of five in each block as cases with 1:1 into two groups of 20 cases; conventional plus VR therapy group: 45-minute conventional therapy session plus 15-minute VR therapy, and conventional group: 60-minute conventional therapy session. VR rehabilitation is designed and developed with different stages. Outcomes were Modified Ashworth scale, Recovery Stage score for motor function, range of motion (ROM) of shoulder abduction/wrist extension, and patients’ satisfaction rate. Data were compared after study termination. Results: The satisfaction rate among the patients was significantly better in combination group (P = 0.003). Only wrist extension was varied between groups and was better in combination group. The variables generally had statistically significant difference (P < 0.05). Conclusion: VR plus conventional rehabilitation therapy is superior versus conventional rehabilitation alone on the wrist and elbow spasticity and motor function in patients with stroke.
Keywords: Stroke, virtual therapy, efficacy, rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769450 Development and Validation of a HPLC Method for 6-Gingerol and 6-Shogaol in Joint Pain Relief Gel Containing Ginger (Zingiber officinale)
Authors: Tanwarat Kajsongkram, Saowalux Rotamporn, Sirinat Limbunruang, Sirinan Thubthimthed
Abstract:
High Performance Liquid Chromatography (HPLC) method was developed and validated for simultaneous estimation of 6-Gingerol(6G) and 6-Shogaol(6S) in joint pain relief gel containing ginger extract. The chromatographic separation was achieved by using C18 column, 150 x 4.6mm i.d., 5μ Luna, mobile phase containing acetonitrile and water (gradient elution). The flow rate was 1.0 ml/min and the absorbance was monitored at 282 nm. The proposed method was validated in terms of the analytical parameters such as specificity, accuracy, precision, linearity, range, limit of detection (LOD), limit of quantification (LOQ), and determined based on the International Conference on Harmonization (ICH) guidelines. The linearity ranges of 6G and 6S were obtained over 20- 60 and 6-18 μg/ml respectively. Good linearity was observed over the above-mentioned range with linear regression equation Y= 11016x- 23778 for 6G and Y = 19276x-19604 for 6S (x is concentration of analytes in μg/ml and Y is peak area). The value of correlation coefficient was found to be 0.9994 for both markers. The limit of detection (LOD) and limit of quantification (LOQ) for 6G were 0.8567 and 2.8555 μg/ml and for 6S were 0.3672 and 1.2238 μg/ml respectively. The recovery range for 6G and 6S were found to be 91.57 to 102.36 % and 84.73 to 92.85 % for all three spiked levels. The RSD values from repeated extractions for 6G and 6S were 3.43 and 3.09% respectively. The validation of developed method on precision, accuracy, specificity, linearity, and range were also performed with well-accepted results.
Keywords: Ginger, 6-gingerol, HPLC, 6-shogaol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3425449 Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms
Authors: Chia-Ta Tsai, Wen-Lin Huang, Shinn-Jang Ho, Li-Sun Shu, Shinn-Ying Ho
Abstract:
Prediction of bacterial virulent protein sequences can give assistance to identification and characterization of novel virulence-associated factors and discover drug/vaccine targets against proteins indispensable to pathogenicity. Gene Ontology (GO) annotation which describes functions of genes and gene products as a controlled vocabulary of terms has been shown effectively for a variety of tasks such as gene expression study, GO annotation prediction, protein subcellular localization, etc. In this study, we propose a sequence-based method Virulent-GO by mining informative GO terms as features for predicting bacterial virulent proteins. Each protein in the datasets used by the existing method VirulentPred is annotated by using BLAST to obtain its homologies with known accession numbers for retrieving GO terms. After investigating various popular classifiers using the same five-fold cross-validation scheme, Virulent-GO using the single kind of GO term features with an accuracy of 82.5% is slightly better than VirulentPred with 81.8% using five kinds of sequence-based features. For the evaluation of independent test, Virulent-GO also yields better results (82.0%) than VirulentPred (80.7%). When evaluating single kind of feature with SVM, the GO term feature performs much well, compared with each of the five kinds of features.Keywords: Bacterial virulence factors, GO terms, prediction, protein sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191