Search results for: Brain drain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 280

Search results for: Brain drain

100 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems

Authors: Ali Reza Mehrabian, Caro Lucas

Abstract:

In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.

Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
99 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/ deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.

Keywords: Epilepsy, Seizure, Phase Correlation, Fluctuation, Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2469
98 Effect of Soaking Period of Clay on Its California Bearing Ratio Value

Authors: Robert G. Nini

Abstract:

The quality of road pavement is affected mostly by the type of sub-grade which is acting as road foundation. The roads degradation is related to many factors especially the climatic conditions, the quality, and the thickness of the base materials. The thickness of this layer depends on its California Bearing Ratio (CBR) test value which by its turn is highly affected by the quantity of water infiltrated under the road after heavy rain. The capacity of the base material to drain out its water is predominant factor because any change in moisture content causes change in sub-grade strength. This paper studies the effect of the soaking period of soil especially clay on its CBR value. For this reason, we collected many clayey samples in order to study the effect of the soaking period on its CBR value. On each soil, two groups of experiments were performed: main tests consisting of Proctor and CBR test from one side and from other side identification tests consisting of other tests such as Atterberg limits tests. Each soil sample was first subjected to Proctor test in order to find its optimum moisture content which will be used to perform the CBR test. Four CBR tests were performed on each soil with different soaking period. The first CBR was done without soaking the soil sample; the second one with two days soaking, the third one with four days soaking period and the last one was done under eight days soaking. By comparing the results of CBR tests performed with different soaking time, a more detailed understanding was given to the role of the water in reducing the CBR of soil. In fact, by extending the soaking period, the CBR was found to be reduced quickly the first two days and slower after. A precise reduction factor of the CBR in relation with soaking period was found at the end of this paper.

Keywords: California bearing ratio, clay, proctor test, soaking period, sub-grade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
97 Dual-Task – Immersion in the Interactions of Simultaneously Performed Tasks

Authors: M. Liebherr, P. Schubert, S. Kersten, C. Dietz, L. Franz, C. T. Haas

Abstract:

With a long history, dual-task has become one of the most intriguing research fields regarding human brain functioning and cognition. However, findings considering effects of taskinterrelations are limited (especially, in combined motor and cognitive tasks). Therefore, we aimed at developing a measurement system in order to analyse interrelation effects of cognitive and motor tasks. On the one hand, the present study demonstrates the applicability of the measurement system and on the other hand first results regarding a systematisation of different task combinations are shown. Future investigations should combine imagine technologies and this developed measurement system.

Keywords: Dual-task, interference, cognition, measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
96 Coherence Analysis for Epilepsy Patients: An MEG Study

Authors: S. Ge, T. Wu, HY. Tang, X. Xiao, K. Iramina, W. Wu

Abstract:

It is crucial to quantitatively evaluate the treatment of epilepsy patients. This study was undertaken to test the hypothesis that compared to the healthy control subjects, the epilepsy patients have abnormal resting-state connectivity. In this study, we used the imaginary part of coherency to measure the resting-state connectivity. The analysis results shown that compared to the healthy control subjects, epilepsy patients tend to have abnormal rhythm brain connectivity over their epileptic focus.

Keywords: Coherence, connectivity, resting-state, epilepsy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
95 Neuroplasticity: A Fresh Beginning for Life

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. This paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

Keywords: Neuroplasticity, Cognitive plasticity, Plasticity theories, Plasticity mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
94 Classification of Right and Left-Hand Movement Using Multi-Resolution Analysis Method

Authors: Nebi Gedik

Abstract:

The aim of the brain-computer interface studies on electroencephalogram (EEG) signals containing motor imagery is to extract the effective features that will provide the highest possible classification accuracy for the detection of the desired motor movement. However, achieving this goal is difficult as the most suitable frequency band and time frame vary from subject to subject. In this study, the classification success of the two-feature data obtained from raw EEG signals and the coefficients of the multi-resolution analysis method applied to the EEG signals were analyzed comparatively. The method was applied to several EEG channels (C3, Cz and C4) signals obtained from the EEG data set belonging to the publicly available BCI competition III.

Keywords: Motor imagery, EEG, wave atom transform, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591
93 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Das Gupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: Case based reasoning, Exudates, Retina image, Similarity based retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
92 Altered States of Consciousness in Narrative Cinema: Subjective Film Sound

Authors: Mladen Milicevic

Abstract:

In this paper subjective film sound will be addressed as it gets represented in narrative cinema. First, “meta-diegetic” sound will be briefly explained followed by transition to “oneiric” sound. The representation of oneiric sound refers to a situation where film characters are experiencing some sort of an altered state of consciousness. Looking at an antlered state of consciousness in terms of human brain processes will point out to the cinematic ways of expression, which “mimic” those processes. Using several examples for different films will illustrate these points.

Keywords: Oneiric, ASC (altered states of consciousness), film, sound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
91 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: HTM, Real time anomaly detection, ECG, Cardiac Anomalies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 797
90 Artificial Visual Percepts for Image Understanding

Authors: Jeewanee Bamunusinghe, Damminda Alahakoon

Abstract:

Visual inputs are one of the key sources from which humans perceive the environment and 'understand' what is happening. Artificial systems perceive the visual inputs as digital images. The images need to be processed and analysed. Within the human brain, processing of visual inputs and subsequent development of perception is one of its major functionalities. In this paper we present part of our research project, which aims at the development of an artificial model for visual perception (or 'understanding') based on the human perceptive and cognitive systems. We propose a new model for perception from visual inputs and a way of understaning or interpreting images using the model. We demonstrate the implementation and use of the model with a real image data set.

Keywords: Image understanding, percept, visual perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
89 Drive-Related Behaviors as Elements of Thinking

Authors: Peter Pfeifer, Julian Pfeifer, Niko Pfeifer

Abstract:

Information processing is at the focus of brain and cognition research. This work has a different perspective, it starts with behaviors. The detailed analysis of behaviors leads to the discovery that a significant proportion of them are based on only five basic drives. These basic drives are combinable, and the combinations result in the diversity of human behavior and thinking. The key elements are drive memories. They collect memories of drive-related situations and feelings. They contain variations of basic drives in numerous areas of life and build combinations with different meanings depending on the area. Human thinking could be explained with variations on these nested combinations of basic drives.

Keywords: Cognitive modeling, psycholinguistics, psychology, psychophysiology of cognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
88 Learning Human-Like Color Categorization through Interaction

Authors: Rinaldo Christian Tanumara, Ming Xie, Chi Kit Au

Abstract:

Human perceives color in categories, which may be identified using color name such as red, blue, etc. The categorization is unique for each human being. However despite the individual differences, the categorization is shared among members in society. This allows communication among them, especially when using color name. Sociable robot, to live coexist with human and become part of human society, must also have the shared color categorization, which can be achieved through learning. Many works have been done to enable computer, as brain of robot, to learn color categorization. Most of them rely on modeling of human color perception and mathematical complexities. Differently, in this work, the computer learns color categorization through interaction with humans. This work aims at developing the innate ability of the computer to learn the human-like color categorization. It focuses on the representation of color categorization and how it is built and developed without much mathematical complexity.

Keywords: Color categorization, color learning, machinelearning, color naming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
87 Changes in EEG and HRV during Event-Related Attention

Authors: Sun K. Yoo, Chung K. Lee

Abstract:

Determination of attentional status is important because working performance and an unexpected accident is highly related with the attention. The autonomic nervous and the central nervous systems can reflect the changes in person’s attentional status. Reduced number of suitable pysiological parameters among autonomic and central nervous systems related signal parameters will be critical in optimum design of attentional devices. In this paper, we analyze the EEG (Electroencephalography) and HRV (Heart Rate Variability) signals to demonstrate the effective relation with brain signal and cardiovascular signal during event-related attention, which will be later used in selecting the minimum set of attentional parameters. Time and frequency domain parameters from HRV signal and frequency domain parameters from EEG signal are used as input to the optimum feature parameters selector.

Keywords: EEG, HRV, attentional status.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790
86 Investigation into the Optimum Hydraulic Loading Rate for Selected Filter Media Packed in a Continuous Upflow Filter

Authors: A. Alzeyadi, E. Loffill, R. Alkhaddar

Abstract:

Continuous upflow filters can combine the nutrient (nitrogen and phosphate) and suspended solid removal in one unit process. The contaminant removal could be achieved chemically or biologically; in both processes the filter removal efficiency depends on the interaction between the packed filter media and the influent. In this paper a residence time distribution (RTD) study was carried out to understand and compare the transfer behaviour of contaminants through a selected filter media packed in a laboratory-scale continuous up flow filter; the selected filter media are limestone and white dolomite. The experimental work was conducted by injecting a tracer (red drain dye tracer –RDD) into the filtration system and then measuring the tracer concentration at the outflow as a function of time; the tracer injection was applied at hydraulic loading rates (HLRs) (3.8 to 15.2 m h-1). The results were analysed according to the cumulative distribution function F(t) to estimate the residence time of the tracer molecules inside the filter media. The mean residence time (MRT) and variance σ2 are two moments of RTD that were calculated to compare the RTD characteristics of limestone with white dolomite. The results showed that the exit-age distribution of the tracer looks better at HLRs (3.8 to 7.6 m h-1) and (3.8 m h-1) for limestone and white dolomite respectively. At these HLRs the cumulative distribution function F(t) revealed that the residence time of the tracer inside the limestone was longer than in the white dolomite; whereas all the tracer took 8 minutes to leave the white dolomite at 3.8 m h-1. On the other hand, the same amount of the tracer took 10 minutes to leave the limestone at the same HLR. In conclusion, the determination of the optimal level of hydraulic loading rate, which achieved the better influent distribution over the filtration system, helps to identify the applicability of the material as filter media. Further work will be applied to examine the efficiency of the limestone and white dolomite for phosphate removal by pumping a phosphate solution into the filter at HLRs (3.8 to 7.6 m h-1).

Keywords: Filter media, hydraulic loading rate, residence time distribution, tracer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1871
85 Independent Component Analysis to Mass Spectra of Aluminium Sulphate

Authors: M. Heikkinen, A. Sarpola, H. Hellman, J. Rämö, Y. Hiltunen

Abstract:

Independent component analysis (ICA) is a computational method for finding underlying signals or components from multivariate statistical data. The ICA method has been successfully applied in many fields, e.g. in vision research, brain imaging, geological signals and telecommunications. In this paper, we apply the ICA method to an analysis of mass spectra of oligomeric species emerged from aluminium sulphate. Mass spectra are typically complex, because they are linear combinations of spectra from different types of oligomeric species. The results show that ICA can decomposite the spectral components for useful information. This information is essential in developing coagulation phases of water treatment processes.

Keywords: Independent component analysis, massspectroscopy, water treatment, aluminium sulphate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371
84 Sustainable Water Utilization in Arid Region of Iran by Qanats

Authors: F. Boustani

Abstract:

To make use of the limited amounts of water in arid region, the Iranians developed man-made underground water channels called qanats (kanats) .In fact, qanats may be considered as the first long-distance water transfer system. Qanats are an ancient water transfer system found in arid regions wherein groundwater from mountainous areas, aquifers and sometimes from rivers, was brought to points of re-emergence such as an oasis, through one or more underground tunnels. The tunnels, many of which were kilometers in length, had designed for slopes to provide gravitational flow. The tunnels allowed water to drain out to the surface by gravity to supply water to lower and flatter agricultural land. Qanats have been an ancient, sustainable system facilitating the harvesting of water for centuries in Iran, and more than 35 additional countries of the world such as India, Arabia, Egypt, North Africa, Spain and even to New world. There are about 22000 qanats in Iran with 274000 kilometers of underground conduits all built by manual labor. The amount of water of the usable qanats of Iran produce is altogether 750 to 1000 cubic meter per second. The longest chain of qanat is situated in Gonabad region in Khorasan province. It is 70 kilometers long. Qanats are renewable water supply systems that have sustained agricultural settlement on the Iranian plateau for millennia. The great advantages of Qanats are no evaporation during transit, little seepage , no raising of the water- table and no pollution in the area surrounding the conduits. Qanat systems have a profound influence on the lives of the water users in Iran, and conform to Iran-s climate. Qanat allows those living in a desert environment adjacent to a mountain watershed to create a large oasis in an otherwise stark environment. This paper explains qanats structure designs, their history, objectives causing their creation, construction materials, locations and their importance in different times, as well as their present sustainable role in Iran.

Keywords: Iran, qanat, Sustainable water utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
83 Odor Discrimination Using Neural Decoding of Olfactory Bulbs in Rats

Authors: K.-J. You, H.J. Lee, Y. Lang, C. Im, C.S. Koh, H.-C. Shin

Abstract:

This paper presents a novel method for inferring the odor based on neural activities observed from rats- main olfactory bulbs. Multi-channel extra-cellular single unit recordings were done by micro-wire electrodes (tungsten, 50μm, 32 channels) implanted in the mitral/tufted cell layers of the main olfactory bulb of anesthetized rats to obtain neural responses to various odors. Neural response as a key feature was measured by substraction of neural firing rate before stimulus from after. For odor inference, we have developed a decoding method based on the maximum likelihood (ML) estimation. The results have shown that the average decoding accuracy is about 100.0%, 96.0%, 84.0%, and 100.0% with four rats, respectively. This work has profound implications for a novel brain-machine interface system for odor inference.

Keywords: biomedical signal processing, neural engineering, olfactory, neural decoding, BMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
82 New Graph Similarity Measurements based on Isomorphic and Nonisomorphic Data Fusion and their Use in the Prediction of the Pharmacological Behavior of Drugs

Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto

Abstract:

New graph similarity methods have been proposed in this work with the aim to refining the chemical information extracted from molecules matching. For this purpose, data fusion of the isomorphic and nonisomorphic subgraphs into a new similarity measure, the Approximate Similarity, was carried out by several approaches. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting several pharmacological parameters: binding of steroids to the globulin-corticosteroid receptor, the activity of benzodiazepine receptor compounds, and the blood brain barrier permeability. Acceptable results were obtained for the models presented here.

Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drug activity prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
81 Hybrid Authentication Scheme for Graphical Password Using QR Code and Integrated Sound Signature

Authors: Salim Istyaq, Mohammad Sarosh Umar

Abstract:

Today, the mankind is in the stage of development, every day comes with new proposal of technology, in order to secure these types of technology, we also prepare high yielding security modules to conserve these resources. The capacity of human brain to recognize anything is far more than any species; this is all due to our developing cycle of curiosity. In this paper, we proposed a scheme based on graphical password using QR Code which provides more security to the recent online system. It also contains a supportive sound signature. In this system, authentication is done using sequence of images in QR code form. Users select one click-point per image with the help of QR scanner or recognizer. The encoded phrase in a QR code emphasizes the minimum probability of attacking via shoulder surfing or other attacks.

Keywords: Graphical password, QR code, sound signature, image authentication, cued click point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
80 Curvelet Transform Based Two Class Motor Imagery Classification

Authors: Nebi Gedik

Abstract:

One of the important parts of the brain-computer interface (BCI) studies is the classification of motor imagery (MI) obtained by electroencephalography (EEG). The major goal is to provide non-muscular communication and control via assistive technologies to people with severe motor disorders so that they can communicate with the outside world. In this study, an EEG signal classification approach based on multiscale and multi-resolution transform method is presented. The proposed approach is used to decompose the EEG signal containing motor image information (right- and left-hand movement imagery). The decomposition process is performed using curvelet transform which is a multiscale and multiresolution analysis method, and the transform output was evaluated as feature data. The obtained feature set is subjected to feature selection process to obtain the most effective ones using t-test methods. SVM and k-NN algorithms are assigned for classification.

Keywords: motor imagery, EEG, curvelet transform, SVM, k-NN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624
79 An Amalgam Approach for DICOM Image Classification and Recognition

Authors: J. Umamaheswari, G. Radhamani

Abstract:

This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.

Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
78 Two Wheels Balancing Robot with Line Following Capability

Authors: Nor Maniha Abdul Ghani, Faradila Naim, Tan Piow Yon

Abstract:

This project focuses on the development of a line follower algorithm for a Two Wheels Balancing Robot. In this project, ATMEGA32 is chosen as the brain board controller to react towards the data received from Balance Processor Chip on the balance board to monitor the changes of the environment through two infra-red distance sensor to solve the inclination angle problem. Hence, the system will immediately restore to the set point (balance position) through the implementation of internal PID algorithms at the balance board. Application of infra-red light sensors with the PID control is vital, in order to develop a smooth line follower robot. As a result of combination between line follower program and internal self balancing algorithms, we are able to develop a dynamically stabilized balancing robot with line follower function.

Keywords: infra-red sensor, PID algorithms, line followerBalancing robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7524
77 Technical Support of Intracranial Single Unit Activity Measurement

Authors: Richard Grünes, Karel Roubik

Abstract:

The article deals with technical support of intracranial single unit activity measurement. The parameters of the whole measuring set were tested in order to assure the optimal conditions of extracellular single-unit recording. Metal microelectrodes for measuring the single-unit were tested during animal experiments. From signals recorded during these experiments, requirements for the measuring set parameters were defined. The impedance parameters of the metal microelectrodes were measured. The frequency-gain and autonomous noise properties of preamplifier and amplifier were verified. The measurement and the description of the extracellular single unit activity could help in prognoses of brain tissue damage recovery.

Keywords: Measuring set, metal microelectrodes, single-unit, noise, impedance parameters, gain characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
76 Objective Evaluation of Mathematical Morphology Edge Detection on Computed Tomography (CT) Images

Authors: Emhimed Saffor, Abdelkader Salama

Abstract:

In this paper problem of edge detection in digital images is considered. Edge detection based on morphological operators was applied on two sets (brain & chest) ct images. Three methods of edge detection by applying line morphological filters with multi structures in different directions have been used. 3x3 filter for first method, 5x5 filter for second method, and 7x7 filter for third method. We had applied this algorithm on (13 images) under MATLAB program environment. In order to evaluate the performance of the above mentioned edge detection algorithms, standard deviation (SD) and peak signal to noise ratio (PSNR) were used for justification for all different ct images. The objective method and the comparison of different methods of edge detection,  shows that high values of both standard deviation and PSNR values of edge detection images were obtained. 

Keywords: Medical images, Matlab, Edge detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
75 A Neural Model of Object Naming

Authors: Alessio Plebe

Abstract:

One astonishing capability of humans is to recognize thousands of different objects visually, and to learn the semantic association between those objects and words referring to them. This work is an attempt to build a computational model of such capacity,simulating the process by which infants learn how to recognize objects and words through exposure to visual stimuli and vocal sounds.One of the main fact shaping the brain of a newborn is that lights and colors come from entities of the world. Gradually the visual system learn which light sensations belong to same entities, despite large changes in appearance. This experience is common between humans and several other mammals, like non-human primates. But humans only can recognize a huge variety of objects, most manufactured by himself, and make use of sounds to identify and categorize them. The aim of this model is to reproduce these processes in a biologically plausible way, by reconstructing the essential hierarchy of cortical circuits on the visual and auditory neural paths.

Keywords: Auditory cortex, object recognition, self-organizingmaps

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
74 Endometrial Cancer Recognition via EEG Dependent upon 14-3-3 Protein Leading to an Ontological Diagnosis

Authors: Marios Poulos, Eirini Maliagani, Minas Paschopoulos, George Bokos

Abstract:

The purpose of my research proposal is to demonstrate that there is a relationship between EEG and endometrial cancer. The above relationship is based on an Aristotelian Syllogism; since it is known that the 14-3-3 protein is related to the electrical activity of the brain via control of the flow of Na+ and K+ ions and since it is also known that many types of cancer are associated with 14-3-3 protein, it is possible that there is a relationship between EEG and cancer. This research will be carried out by well-defined diagnostic indicators, obtained via the EEG, using signal processing procedures and pattern recognition tools such as neural networks in order to recognize the endometrial cancer type. The current research shall compare the findings from EEG and hysteroscopy performed on women of a wide age range. Moreover, this practice could be expanded to other types of cancer. The implementation of this methodology will be completed with the creation of an ontology. This ontology shall define the concepts existing in this research-s domain and the relationships between them. It will represent the types of relationships between hysteroscopy and EEG findings.

Keywords: Bioinformatics, Protein 14-3-3, EEG, Endometrial cancer, Ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
73 Comparison of the Parameter using ECG with Bisepctrum Parameter using EEG during General Anesthesia

Authors: Seong-wan Baik, Soo-young Ye, Byeong-cheol Choi, Gye-rok Jeon

Abstract:

The measurement of anesthetic depth is necessary in anesthesiology. NN10 is very simple method among the RR intervals analysis methods. NN10 parameter means the numbers of above the 10 ms intervals of the normal to normal RR intervals. Bispectrum analysis is defined as 2D FFT. EEG signal reflected the non-linear peristalsis phenomena according to the change brain function. After analyzing the bispectrum of the 2 dimension, the most significant power spectrum density peaks appeared abundantly at the specific area in awakening and anesthesia state. These points are utilized to create the new index since many peaks appeared at the specific area in the frequency coordinate. The measured range of an index was 0-100. An index is 20-50 at an anesthesia, while the index is 90-60 at the awake. In this paper, the relation between NN10 parameter using ECG and bisepctrum index using EEG is observed to estimate the depth of anesthesia during anesthesia and then we estimated the utility of the anesthetic.

Keywords: Anesthesia, Bispectrum index, ECG, EEG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
72 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
71 Big Brain: A Single Database System for a Federated Data Warehouse Architecture

Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf

Abstract:

Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.

Keywords: Data integration, data warehousing, federated architecture, online analytical processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 711