Search results for: Delayed BAM neural networks
449 Chemical Species Concentration Measurement via Wireless Sensors
Authors: Jer Hayes, Stephen Beirne, Breda M. Kiernan, Conor Slater, King-Tong Lau, Dermot Diamond
Abstract:
This paper describes studies carried out to investigate the viability of using wireless cameras as a tool in monitoring changes in air quality. A camera is used to monitor the change in colour of a chemically responsive polymer within view of the camera as it is exposed to varying chemical species concentration levels. The camera captures this image and the colour change is analyzed by averaging the RGB values present. This novel chemical sensing approach is compared with an established chemical sensing method using the same chemically responsive polymer coated onto LEDs. In this way, the concentration levels of acetic acid in the air can be tracked using both approaches. These approaches to chemical plume tracking have many applications for air quality monitoring.Keywords: Environmental sensing, chemical sensors, wirelesssensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479448 Identification of Industrial Health Using ANN
Authors: Deepak Goswami, Padma Lochan Hazarika, Kandarpa Kumar Sarma
Abstract:
The customary practice of identifying industrial sickness is a set traditional techniques which rely upon a range of manual monitoring and compilation of financial records. It makes the process tedious, time consuming and often are susceptible to manipulation. Therefore, certain readily available tools are required which can deal with such uncertain situations arising out of industrial sickness. It is more significant for a country like India where the fruits of development are rarely equally distributed. In this paper, we propose an approach based on Artificial Neural Network (ANN) to deal with industrial sickness with specific focus on a few such units taken from a less developed north-east (NE) Indian state like Assam. The proposed system provides decision regarding industrial sickness using eight different parameters which are directly related to the stages of sickness of such units. The mechanism primarily uses certain signals and symptoms of industrial health to decide upon the state of a unit. Specifically, we formulate an ANN based block with data obtained from a few selected units of Assam so that required decisions related to industrial health could be taken. The system thus formulated could become an important part of planning and development. It can also contribute towards computerization of decision support systems related to industrial health and help in better management.
Keywords: Industrial, Health, Classification, ANN, MLP, MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693447 Software Effort Estimation Models Using Radial Basis Function Network
Authors: E. Praynlin, P. Latha
Abstract:
Software Effort Estimation is the process of estimating the effort required to develop software. By estimating the effort, the cost and schedule required to estimate the software can be determined. Accurate Estimate helps the developer to allocate the resource accordingly in order to avoid cost overrun and schedule overrun. Several methods are available in order to estimate the effort among which soft computing based method plays a prominent role. Software cost estimation deals with lot of uncertainty among all soft computing methods neural network is good in handling uncertainty. In this paper Radial Basis Function Network is compared with the back propagation network and the results are validated using six data sets and it is found that RBFN is best suitable to estimate the effort. The Results are validated using two tests the error test and the statistical test.
Keywords: Software cost estimation, Radial Basis Function Network (RBFN), Back propagation function network, Mean Magnitude of Relative Error (MMRE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387446 Analysis of Delays during Initial Phase of Construction Projects and Mitigation Measures
Authors: Sunaitan Al Mutairi
Abstract:
A perfect start is a key factor for project completion on time. The study examined the effects of delayed mobilization of resources during the initial phases of the project. This paper mainly highlights the identification and categorization of all delays during the initial construction phase and their root cause analysis with corrective/control measures for the Kuwait Oil Company oil and gas projects. A relatively good percentage of the delays identified during the project execution (Contract award to end of defects liability period) attributed to mobilization/preliminary activity delays. Data analysis demonstrated significant increase in average project delay during the last five years compared to the previous period. Contractors had delays/issues during the initial phase, which resulted in slippages and progressively increased, resulting in time and cost overrun. Delays/issues not mitigated on time during the initial phase had very high impact on project completion. Data analysis of the delays for the past five years was carried out using trend chart, scatter plot, process map, box plot, relative importance index and Pareto chart. Construction of any project inside the Gathering Centers involves complex management skills related to work force, materials, plant, machineries, new technologies etc. Delay affects completion of projects and compromises quality, schedule and budget of project deliverables. Works executed as per plan during the initial phase and start-up duration of the project construction activities resulted in minor slippages/delays in project completion. In addition, there was a good working environment between client and contractor resulting in better project execution and management. Mainly, the contractor was on the front foot in the execution of projects, which had minimum/no delays during the initial and construction period. Hence, having a perfect start during the initial construction phase shall have a positive influence on the project success. Our research paper studies each type of delay with some real example supported by statistic results and suggests mitigation measures. Detailed analysis carried out with all stakeholders based on impact and occurrence of delays to have a practical and effective outcome to mitigate the delays. The key to improvement is to have proper control measures and periodic evaluation/audit to ensure implementation of the mitigation measures. The focus of this research is to reduce the delays encountered during the initial construction phase of the project life cycle.
Keywords: Construction activities delays, delay analysis for construction projects, mobilization delays, oil and gas projects delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850445 Comparative Performance Analysis of Fiber Delay Line Based Buffer Architectures for Contention Resolution in Optical WDM Networks
Authors: Manoj Kumar Dutta
Abstract:
Wavelength Division Multiplexing (WDM) technology is the most promising technology for the proper utilization of huge raw bandwidth provided by an optical fiber. One of the key problems in implementing the all-optical WDM network is the packet contention. This problem can be solved by several different techniques. In time domain approach the packet contention can be reduced by incorporating Fiber Delay Lines (FDLs) as optical buffer in the switch architecture. Different types of buffering architectures are reported in literatures. In the present paper a comparative performance analysis of three most popular FDL architectures are presented in order to obtain the best contention resolution performance. The analysis is further extended to consider the effect of different fiber non-linearities on the network performance.Keywords: WDM network, contention resolution, optical buffering, non-linearity, throughput.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788444 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology
Authors: Peristera Baziana
Abstract:
In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.Keywords: Access algorithm, channels division, collisions avoidance, wavelength division multiplexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014443 Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network
Authors: Insung Jung, Gi-Nam Wang
Abstract:
The objective of this paper is to a design of pattern classification model based on the back-propagation (BP) algorithm for decision support system. Standard BP model has done full connection of each node in the layers from input to output layers. Therefore, it takes a lot of computing time and iteration computing for good performance and less accepted error rate when we are doing some pattern generation or training the network. However, this model is using exclusive connection in between hidden layer nodes and output nodes. The advantage of this model is less number of iteration and better performance compare with standard back-propagation model. We simulated some cases of classification data and different setting of network factors (e.g. hidden layer number and nodes, number of classification and iteration). During our simulation, we found that most of simulations cases were satisfied by BP based using exclusive connection network model compared to standard BP. We expect that this algorithm can be available to identification of user face, analysis of data, mapping data in between environment data and information.Keywords: Neural network, Back-propagation, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656442 A Structural Support Vector Machine Approach for Biometric Recognition
Authors: Vishal Awasthi, Atul Kumar Agnihotri
Abstract:
Face is a non-intrusive strong biometrics for identification of original and dummy facial by different artificial means. Face recognition is extremely important in the contexts of computer vision, psychology, surveillance, pattern recognition, neural network, content based video processing. The availability of a widespread face database is crucial to test the performance of these face recognition algorithms. The openly available face databases include face images with a wide range of poses, illumination, gestures and face occlusions but there is no dummy face database accessible in public domain. This paper presents a face detection algorithm based on the image segmentation in terms of distance from a fixed point and template matching methods. This proposed work is having the most appropriate number of nodal points resulting in most appropriate outcomes in terms of face recognition and detection. The time taken to identify and extract distinctive facial features is improved in the range of 90 to 110 sec. with the increment of efficiency by 3%.Keywords: Face recognition, Principal Component Analysis, PCA, Linear Discriminant Analysis, LDA, Improved Support Vector Machine, iSVM, elastic bunch mapping technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493441 A Sociocybernetics Data Analysis Using Causality in Tourism Networks
Authors: M. Lloret-Climent, J. Nescolarde-Selva
Abstract:
The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future.
Keywords: Attractor, invariant set, orbits, tourist variables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745440 Towards Design of Context-Aware Sensor Grid Framework for Agriculture
Authors: Aqeel-ur-Rehman, Zubair A. Shaikh
Abstract:
This paper is to present context-aware sensor grid framework for agriculture and its design challenges. Use of sensor networks in the domain of agriculture is not new. However, due to the unavailability of any common framework, solutions that are developed in this domain are location, environment and problem dependent. Keeping the need of common framework for agriculture, Context-Aware Sensor Grid Framework is proposed. It will be helpful in developing solutions for majority of the problems related to irrigation, pesticides spray, use of fertilizers, regular monitoring of plot and yield etc. due to the capability of adjusting according to location and environment. The proposed framework is composed of three layer architecture including context-aware application layer, grid middleware layer and sensor network layer.Keywords: Agriculture, Context-Awareness, Grid Computing, and Sensor Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575439 Enhanced Ant Colony Based Algorithm for Routing in Mobile Ad Hoc Network
Authors: Cauvery N. K., K. V. Viswanatha
Abstract:
Mobile Ad hoc network consists of a set of mobile nodes. It is a dynamic network which does not have fixed topology. This network does not have any infrastructure or central administration, hence it is called infrastructure-less network. The change in topology makes the route from source to destination as dynamic fixed and changes with respect to time. The nature of network requires the algorithm to perform route discovery, maintain route and detect failure along the path between two nodes [1]. This paper presents the enhancements of ARA [2] to improve the performance of routing algorithm. ARA [2] finds route between nodes in mobile ad-hoc network. The algorithm is on-demand source initiated routing algorithm. This is based on the principles of swarm intelligence. The algorithm is adaptive, scalable and favors load balancing. The improvements suggested in this paper are handling of loss ants and resource reservation.Keywords: Ad hoc networks, On-demand routing, Swarmintelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834438 Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.Keywords: Wind energy conversion systems, reinforcementlearning; Actor-Critic learning; adaptive PID control; RBF network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4936437 Hybrid Neuro Fuzzy Approach for Automatic Generation Control of Two -Area Interconnected Power System
Authors: Gayadhar Panda, Sidhartha Panda, C. Ardil
Abstract:
The main objective of Automatic Generation Control (AGC) is to balance the total system generation against system load losses so that the desired frequency and power interchange with neighboring systems is maintained. Any mismatch between generation and demand causes the system frequency to deviate from its nominal value. Thus high frequency deviation may lead to system collapse. This necessitates a very fast and accurate controller to maintain the nominal system frequency. This paper deals with a novel approach of artificial intelligence (AI) technique called Hybrid Neuro-Fuzzy (HNF) approach for an (AGC). The advantage of this controller is that it can handle the non-linearities at the same time it is faster than other conventional controllers. The effectiveness of the proposed controller in increasing the damping of local and inter area modes of oscillation is demonstrated in a two area interconnected power system. The result shows that intelligent controller is having improved dynamic response and at the same time faster than conventional controller.
Keywords: Automatic Generation Control (AGC), Dynamic Model, Two-area Power System, Fuzzy Logic Controller, Neural Network, Hybrid Neuro-Fuzzy(HNF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461436 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia
Authors: Erika Ruíz, Luis Amaya, Diego Carreño
Abstract:
The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).
Keywords: Location routing problem, logistic, mining collection, model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789435 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids
Authors: Markus Rütten, Olaf Wünsch
Abstract:
Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.Keywords: Heat transfer, thermo-viscous fluids, shear thinning, vortex shedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 838434 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens
Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma
Abstract:
Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.
Keywords: Cancer, Gene Signature, SAM, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076433 Diffusion Analysis of a Scalable Feistel Network
Authors: Subariah Ibrahim, Mohd Aizaini Maarof
Abstract:
A generalization of the concepts of Feistel Networks (FN), known as Extended Feistel Network (EFN) is examined. EFN splits the input blocks into n > 2 sub-blocks. Like conventional FN, EFN consists of a series of rounds whereby at least one sub-block is subjected to an F function. The function plays a key role in the diffusion process due to its completeness property. It is also important to note that in EFN the F-function is the most computationally expensive operation in a round. The aim of this paper is to determine a suitable type of EFN for a scalable cipher. This is done by analyzing the threshold number of rounds for different types of EFN to achieve the completeness property as well as the number of F-function required in the network. The work focuses on EFN-Type I, Type II and Type III only. In the analysis it is found that EFN-Type II and Type III diffuses at the same rate and both are faster than Type-I EFN. Since EFN-Type-II uses less F functions as compared to EFN-Type III, therefore Type II is the most suitable EFN for use in a scalable cipher.
Keywords: Cryptography, Extended Feistel Network, Diffusion Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713432 Soft-Sensor for Estimation of Gasoline Octane Number in Platforming Processes with Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Authors: Hamed.Vezvaei, Sepideh.Ordibeheshti, Mehdi.Ardjmand
Abstract:
Gasoline Octane Number is the standard measure of the anti-knock properties of a motor in platforming processes, that is one of the important unit operations for oil refineries and can be determined with online measurement or use CFR (Cooperative Fuel Research) engines. Online measurements of the Octane number can be done using direct octane number analyzers, that it is too expensive, so we have to find feasible analyzer, like ANFIS estimators. ANFIS is the systems that neural network incorporated in fuzzy systems, using data automatically by learning algorithms of NNs. ANFIS constructs an input-output mapping based both on human knowledge and on generated input-output data pairs. In this research, 31 industrial data sets are used (21 data for training and the rest of the data used for generalization). Results show that, according to this simulation, hybrid method training algorithm in ANFIS has good agreements between industrial data and simulated results.Keywords: Adaptive Neuro-Fuzzy Inference Systems, GasolineOctane Number, Soft-sensor, Catalytic Naphtha Reforming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194431 Back Bone Node Based Black Hole Detection Mechanism in Mobile Ad Hoc Networks
Authors: Nidhi Gupta, Sanjoy Das, Khushal Singh
Abstract:
Mobile Ad hoc Network is a set of self-governing nodes which communicate through wireless links. Dynamic topology MANETs makes routing a challenging task. Various routing protocols are there, but due to various fundamental characteristic open medium, changing topology, distributed collaboration and constrained capability, these protocols are tend to various types of security attacks. Black hole is one among them. In this attack, malicious node represents itself as having the shortest path to the destination but that path not even exists. In this paper, we aim to develop a routing protocol for detection and prevention of black hole attack by modifying AODV routing protocol. This protocol is able to detect and prevent the black hole attack. Simulation is done using NS-2, which shows the improvement in network performance.Keywords: Ad hoc, AODV, Back Bone, routing, Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160430 Improving Multi-storey Building Sensor Network with an External Hub
Authors: Malka N. Halgamuge, Toong-Khuan Chan, Priyan Mendis
Abstract:
Monitoring and automatic control of building environment is a crucial application of Wireless Sensor Network (WSN) in which maximizing network lifetime is a key challenge. Previous research into the performance of a network in a building environment has been concerned with radio propagation within a single floor. We investigate the link quality distribution to obtain full coverage of signal strength in a four-storey building environment, experimentally. Our results indicate that the transitional region is of particular concern in wireless sensor network since it accommodates high variance unreliable links. The transitional region in a multi-storey building is mainly due to the presence of reinforced concrete slabs at each storey and the fac┬©ade which obstructs the radio signal and introduces an additional absorption term to the path loss.Keywords: Wireless sensor networks, radio propagation, building monitoring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551429 Measuring Innovative and Entrepreneurial Networks Performance
Authors: Luís Farinha, João J. Ferreira
Abstract:
Nowadays innovation represents a challenge crucial to remaining globally competitive. This study seeks to develop a conceptual model aimed at measuring the dynamic interactions of the triple/quadruple helix, balancing innovation and entrepreneurship initiatives as pillars of regional competitiveness – the Regional Helix Scoreboard (RHS). To this aim, different strands of literature are identified according to their focus on specific regional competitiveness governance mechanisms. We put forward an overview of the state-of-the-art of research and is duly assessed in order to develop and propose a framework of analysis that enables an integrated approach in the context of collaborative dynamics. We conclude by presenting the RHS for the study of regional competitiveness dynamics, which integrates and associates different backgrounds and identifies a number of key performance indicators for research challenges.
Keywords: Entrepreneurship, KPIs, innovation, performance measurement, regional competitiveness, regional helix scoreboard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627428 Computer Aided Diagnosis of Polycystic Kidney Disease Using ANN
Authors: Anjan Babu G, Sumana G, Rajasekhar M
Abstract:
Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multilayered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Further, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.
Keywords: Dialysis, Hereditary, Transplantation, Polycystic, Pathogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003427 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment
Authors: Ibrahim Ozkan
Abstract:
In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.Keywords: Cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589426 The Effect of Correlated Service and Inter-arrival Times on System Performance
Authors: Gang Uk Hwang
Abstract:
In communication networks where communication nodes are connected with finite capacity transmission links, the packet inter-arrival times are strongly correlated with the packet length and the link capacity (or the packet service time). Such correlation affects the system performance significantly, but little attention has been paid to this issue. In this paper, we propose a mathematical framework to study the impact of the correlation between the packet service times and the packet inter-arrival times on system performance. With our mathematical model, we analyze the system performance, e.g., the unfinished work of the system, and show that the correlation affects the system performance significantly. Some numerical examples are also provided.
Keywords: Performance analysis, Correlated queueing system, Unfinished work, PH-type distribution, Communicationsystem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382425 Improved Automated Classification of Alcoholics and Non-alcoholics
Authors: Ramaswamy Palaniappan
Abstract:
In this paper, several improvements are proposed to previous work of automated classification of alcoholics and nonalcoholics. In the previous paper, multiplayer-perceptron neural network classifying energy of gamma band Visual Evoked Potential (VEP) signals gave the best classification performance using 800 VEP signals from 10 alcoholics and 10 non-alcoholics. Here, the dataset is extended to include 3560 VEP signals from 102 subjects: 62 alcoholics and 40 non-alcoholics. Three modifications are introduced to improve the classification performance: i) increasing the gamma band spectral range by increasing the pass-band width of the used filter ii) the use of Multiple Signal Classification algorithm to obtain the power of the dominant frequency in gamma band VEP signals as features and iii) the use of the simple but effective knearest neighbour classifier. To validate that these two modifications do give improved performance, a 10-fold cross validation classification (CVC) scheme is used. Repeat experiments of the previously used methodology for the extended dataset are performed here and improvement from 94.49% to 98.71% in maximum averaged CVC accuracy is obtained using the modifications. This latest results show that VEP based classification of alcoholics is worth exploring further for system development.Keywords: Alcoholic, Multilayer-perceptron, Nearest neighbour, Gamma band, MUSIC, Visual evoked potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378424 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization
Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif
Abstract:
Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.Keywords: Routing protocols, energy optimization, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 902423 Widening Students Perspective: Empowering Them with Systems Methodologies
Authors: Albertus G. Joubert, Roelien Goede
Abstract:
Benefits to the organisation are just as important as technical ability when it comes to software success. The challenge is to provide industry with professionals who understand this. In other words: How to teach computer engineering students to look beyond technology, and at the benefits of software to organizations? This paper reports on the conceptual design of a section of the computer networks module aimed to sensitize the students to the organisational context. Checkland focuses on different worldviews represented by various role players in the organisation. He developed the Soft Systems Methodology that guides purposeful action in organisations, while incorporating different worldviews in the modeling process. If we can sensitize students to these methods, they are likely to appreciate the wider context of application of system software. This paper will provide literature on these concepts as well as detail on how the students will be guided to adopt these concepts.Keywords: Checkland, Soft Systems Methodology, Systems Approach, System Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440422 Model of Multi-Criteria Evaluation for Railway Lines
Authors: Juraj Camaj, Martin Kendra, Jaroslav Masek
Abstract:
The paper is focused to the evaluation railway tracks in the Slovakia by using Multi-Criteria method. Evaluation of railway tracks has important impacts for the assessment of investment in technical equipment. Evaluation of railway tracks also has an important impact for the allocation of marshalling yards. Marshalling yards are in transport model as centers for the operation assigned catchment area. This model is one of the effective ways to meet the development strategy of the European Community's railways. By applying this model in practice, a transport company can guarantee a higher quality of service and then expect an increase in performance. The model is also applicable to other rail networks. This model supplements a theoretical problem of train formation problem of new ways of looking at evaluation of factors affecting the organization of wagon flows.Keywords: Railway track, multi-criteria methods, evaluation, transportation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212421 Neutral to Earth Voltage Analysis in Harmonic Polluted Distribution Networks with Multi- Grounded Neutrals
Authors: G. Ahmadi, S.M. Shahrtash
Abstract:
A multiphase harmonic load flow algorithm is developed based on backward/forward sweep to examine the effects of various factors on the neutral to earth voltage (NEV), including unsymmetrical system configuration, load unbalance and harmonic injection. The proposed algorithm composes fundamental frequency and harmonic frequencies power flows. The algorithm and the associated models are tested on IEEE 13 bus system. The magnitude of NEV is investigated under various conditions of the number of grounding rods per feeder lengths, the grounding rods resistance and the grounding resistance of the in feeding source. Additionally, the harmonic injection of nonlinear loads has been considered and its influences on NEV under different conditions are shown.
Keywords: NEV, Distribution System, Multi-grounded, Backward/Forward Sweep, Harmonic Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057420 Influence Analysis of Macroeconomic Parameters on Real Estate Price Variation in Taipei, Taiwan
Authors: Li Li, Kai-Hsuan Chu
Abstract:
It is well known that the real estate price depends on a lot of factors. Each house current value is dependent on the location, room number, transportation, living convenience, year and surrounding environments. Although, there are different experienced models for housing agent to estimate the price, it is a case by case study without overall dynamic variation investigation. However, many economic parameters may more or less influence the real estate price variation. Here, the influences of most macroeconomic parameters on real estate price are investigated individually based on least-square scheme and grey correlation strategy. Then those parameters are classified into leading indices, simultaneous indices and laggard indices. In addition, the leading time period is evaluated based on least square method. The important leading and simultaneous indices can be used to establish an artificial intelligent neural network model for real estate price variation prediction. The real estate price variation of Taipei, Taiwan during 2005 ~ 2017 are chosen for this research data analysis and validation. The results show that the proposed method has reasonable prediction function for real estate business reference.Keywords: Real estate price, least-square, grey correlation, macroeconomics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988