Search results for: Dichotomous logistic regression
691 Burning Rate Response of Solid Fuels in Laminar Boundary Layer
Authors: A. M. Tahsini
Abstract:
Solid fuel transient burning behavior under oxidizer gas flow is numerically investigated. It is done using analysis of the regression rate responses to the imposed sudden and oscillatory variation at inflow properties. The conjugate problem is considered by simultaneous solution of flow and solid phase governing equations to compute the fuel regression rate. The advection upstream splitting method is used as flow computational scheme in finite volume method. The ignition phase is completely simulated to obtain the exact initial condition for response analysis. The results show that the transient burning effects which lead to the combustion instabilities and intermittent extinctions could be observed in solid fuels as the solid propellants.Keywords: Extinction, Oscillation, Regression rate, Response, Transient burning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2364690 A Model for Test Case Selection in the Software-Development Life Cycle
Authors: Adtha Lawanna
Abstract:
Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.
Keywords: Software maintenance, regression test selection, test case.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697689 A Model for Test Case Selection in the Software-Development Life Cycle
Authors: Adtha Lawanna
Abstract:
Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.
Keywords: Software maintenance, regression test selection, test case.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599688 Mathematical Modeling to Predict Surface Roughness in CNC Milling
Authors: Ab. Rashid M.F.F., Gan S.Y., Muhammad N.Y.
Abstract:
Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.
Keywords: Surface roughness, regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131687 Stature Prediction Model Based On Hand Anthropometry
Authors: Arunesh Chandra, Pankaj Chandna, Surinder Deswal, Rajesh Kumar Mishra, Rajender Kumar
Abstract:
The arm length, hand length, hand breadth and middle finger length of 1540 right-handed industrial workers of Haryana state was used to assess the relationship between the upper limb dimensions and stature. Initially, the data were analyzed using basic univariate analysis and independent t-tests; then simple and multiple linear regression models were used to estimate stature using SPSS (version 17). There was a positive correlation between upper limb measurements (hand length, hand breadth, arm length and middle finger length) and stature (p < 0.01), which was highest for hand length. The accuracy of stature prediction ranged from ± 54.897 mm to ± 58.307 mm. The use of multiple regression equations gave better results than simple regression equations. This study provides new forensic standards for stature estimation from the upper limb measurements of male industrial workers of Haryana (India). The results of this research indicate that stature can be determined using hand dimensions with accuracy, when only upper limb is available due to any reasons likewise explosions, train/plane crashes, mutilated bodies, etc. The regression formula derived in this study will be useful for anatomists, archaeologists, anthropologists, design engineers and forensic scientists for fairly prediction of stature using regression equations.
Keywords: Anthropometric dimensions, Forensic identification, Industrial workers, Stature prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2961686 Positive Analysis on Vulnerability, Information Security Incidents, and the Countermeasures of Japanese Internet Service Providers
Authors: Toshihiko Takemura, Makoto Osajima, Masatoshi Kawano
Abstract:
This paper includes a positive analysis to quantitatively grasp the relationship among vulnerability, information security incidents, and the countermeasures by using data based on a 2007 questionnaire survey for Japanese ISPs (Internet Service Providers). To grasp the relationships, logistic regression analysis is used. The results clarify that there are relationships between information security incidents and the countermeasures. Concretely, there is a positive relationship between information security incidents and the number of information security systems introduced as well as a negative relationship between information security incidents and information security education. It is also pointed out that (especially, local) ISPs do not execute efficient information security countermeasures/ investment concerned with systems, and it is suggested that they should positively execute information security education. In addition, to further heighten the information security level of Japanese telecommunication infrastructure, the necessity and importance of the government to implement policy to support the countermeasures of ISPs is insisted.
Keywords: Information security countermeasures, information security incidents, internet service providers, positive analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665685 Use of Regression Analysis in Determining the Length of Plastic Hinge in Reinforced Concrete Columns
Authors: Mehmet Alpaslan Köroğlu, Musa Hakan Arslan, Muslu Kazım Körez
Abstract:
Basic objective of this study is to create a regression analysis method that can estimate the length of a plastic hinge which is an important design parameter, by making use of the outcomes of (lateral load-lateral displacement hysteretic curves) the experimental studies conducted for the reinforced square concrete columns. For this aim, 170 different square reinforced concrete column tests results have been collected from the existing literature. The parameters which are thought affecting the plastic hinge length such as crosssection properties, features of material used, axial loading level, confinement of the column, longitudinal reinforcement bars in the columns etc. have been obtained from these 170 different square reinforced concrete column tests. In the study, when determining the length of plastic hinge, using the experimental test results, a regression analysis have been separately tested and compared with each other. In addition, the outcome of mentioned methods on determination of plastic hinge length of the reinforced concrete columns has been compared to other methods available in the literature.
Keywords: Columns, plastic hinge length, regression analysis, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4271684 Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines
Authors: Arun Goel
Abstract:
The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free overfall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, Support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, Support vector machine (Polynomial and rbf) models and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free overfall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency.Keywords: Air entrainment rate, dissolved oxygen, regression, SVM, weir.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956683 A Research on Inference from Multiple Distance Variables in Hedonic Regression – Focus on Three Variables
Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro
Abstract:
In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.
Keywords: Hedonic regression, urban node, distance variables, multicollinerity, collinearity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993682 Data Mining Applied to the Predictive Model of Triage System in Emergency Department
Authors: Wen-Tsann Lin, Yung-Tsan Jou, Yih-Chuan Wu, Yuan-Du Hsiao
Abstract:
The Emergency Department of a medical center in Taiwan cooperated to conduct the research. A predictive model of triage system is contracted from the contract procedure, selection of parameters to sample screening. 2,000 pieces of data needed for the patients is chosen randomly by the computer. After three categorizations of data mining (Multi-group Discriminant Analysis, Multinomial Logistic Regression, Back-propagation Neural Networks), it is found that Back-propagation Neural Networks can best distinguish the patients- extent of emergency, and the accuracy rate can reach to as high as 95.1%. The Back-propagation Neural Networks that has the highest accuracy rate is simulated into the triage acuity expert system in this research. Data mining applied to the predictive model of the triage acuity expert system can be updated regularly for both the improvement of the system and for education training, and will not be affected by subjective factors.Keywords: Back-propagation Neural Networks, Data Mining, Emergency Department, Triage System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308681 The Effect of Gender and Resources on Entrepreneurial Activity
Authors: Frederick Wedzerai Nyakudya
Abstract:
In this paper, we examine the relationship between human capital, personal wealth and social capital to explain the differences in start-up rates between female and male entrepreneurs. Since our dependent variable is dichotomous, we examine the determinants of these using a maximum likelihood logit estimator. We used the Global Entrepreneurship Monitor database covering the period 2006 to 2009 with 421 usable cases drawn from the Lower Layer Super Output Areas in East Midlands in the United Kingdom. We found evidence indicating that a female positively moderates the positive relationships between indicators of human capital and personal wealth with start-up activity. The findings have implications for programs, policies, and practices to encourage more females to engage in start-up activity.
Keywords: Entrepreneurship, Global Entrepreneurship Monitor, gender gap, women's entrepreneurship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 457680 The Effect of the Hourly Compensation on the Unemployment Rate: Comparative Analysis of United States, Canada and the United Kingdom Using Panel Data Regression Analysis
Authors: Ashiquer Rahman, Hares Mohammad, Ummey Salma
Abstract:
A country’s hourly compensation and unemployment rates are two of its most crucial components. They are not merely statistics but they have profound effects on individual, families, country, and the economy. They are inversely related to one another. The increased hourly compensation in the manufacturing sector can have a favorable effect on job changing issues. Moreover, the relationship between hourly compensation and unemployment is complex and influenced by broader economic factors. In this paper, in order to determine the effect of hourly compensation on unemployment rate, we use the panel data regression models and evaluate the expected link between hourly compensation and unemployment rate. We estimate the fixed effects model (FEM), evaluate the error components model (ECM), and determine which model (the FEM or ECM) is better through pooling all 60 observations. We then analyze and review the data by comparing countries (United States, Canada and the United Kingdom) using panel data regression models. Finally, we provide result, analysis and a summary of this extensive research on how the hourly compensation affects unemployment rate. Additionally, this paper offers relevant and useful guideline for the government and academic community to use an econometrics and social approach for the hourly compensation on unemployment rate to eliminate the problem.
Keywords: Hourly compensation, unemployment rate, panel data regression models, dummy variables, random effects model, fixed effects model, the linear regression model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67679 Implementation of Response Surface Methodology using in Small Brown Rice Peeling Machine: Part I
Authors: S. Bangphan, P. Bangphan, T.Boonkang
Abstract:
Implementation of response surface methodology (RSM) was employed to study the effects of two factor (rubber clearance and round per minute) in brown rice peeling machine of The optimal BROKENS yield (19.02, average of three repeats),.The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α = 0.05, the values of Regression coefficient, R 2 (adj)were 97.35 % and standard deviation were 1.09513. The independent variables are initial rubber clearance, and round per minute parameters namely. The investigating responses are final rubber clearance, and round per minute (RPM). The restriction of the optimization is the designated.
Keywords: Brown rice, Response surface methodology(RSM), Rubber clearance, Round per minute (RPM), Peeling machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969678 Climate Change in Albania and Its Effect on Cereal Yield
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine learning methods, such as Random Forest (RF), are used to predict cereal yield responses to climacteric and other variables. RF showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the RF method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods: multiple linear regression and lasso regression method.
Keywords: Cereal yield, climate change, machine learning, multiple regression model, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248677 Does the Adoption of IFRS Influence Earnings Management towards Small Positive Profits? Evidence from Emerging Markets
Authors: Sawcen Chebaane, Hakim Ben Othman
Abstract:
This paper investigates the effect of International Financial Reporting Standards (IFRS) adoption on the frequency of earnings managements towards small positive profits. We focus on two emerging markets IFRS adopters: South Africa and Turkey. We tested our logistic regression using appropriate panelestimation techniques over a sample of 330 South African and 210 Turkish firm-year observations over the period 2002-2008. Our results document that mandatory adoption of IFRS is not associated with a reduction in earnings management towards small positive profits in emerging markets. These results contradict most of the previous findings of the studies conducted in developed countries. Based on the legal system factor, we compare the intensity of earnings management between a code law country (Turkey) and a common law country (South Africa) over the pre and post-adoption periods. Our findings show that the frequency of such earnings management practice increases significantly for the code law country.Keywords: Civil law, common law, emerging markets, Mandatory IFRS adoption, small positive profits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3202676 Corporate Governance Practices and Audit Quality: An Empirical Study of the Listed Companies in Egypt
Authors: Mohamed Moustafa Soliman, Mohamed Abd Elsalam
Abstract:
Recent financial international scandals around the world have led to a number of investigations into the effectiveness of corporate governance practices and audit quality. Although evidence of corporate governance practices and audit quality exists from developed economies, very scanty studies have been conducted in Egypt where corporate governance is just evolving. Therefore, this study provides evidence on the effectiveness of corporate governance practices and audit quality from a developing country. The data for analysis are gathered from the top 50 most active companies in the Egyptian Stock Exchange, covering the three year period 2007-2009. Logistic regression was used in investigating the questions that were raised in the study. Findings from the study show that board independence; CEO duality and audit committees significantly have relationship with audit quality. The results also, indicate that institutional investor and managerial ownership have no significantly relationship with audit quality. Evidence also exist that size of the company; complexity and business leverage are important factors in audit quality for companies quoted on the Egypt Stock Exchange.
Keywords: Corporate governance, Boards of directors, corporate ownership, Audit Committees, Audit quality, and Egypt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3924675 Logistic and Its Importance in Turkish Food Sector and an Analysis of the Logistics Sector in Turkey
Authors: Şule Turhan, Özlem Turan
Abstract:
Permanence in the international markets for many global companies is about being known as having effective logistics which targets customer satisfaction management and lower costs. Under competitive conditions, the necessity of providing the products to customers quickly and on time for the companies which constantly aim to improve their profitability increased the strategic importance of the logistics concept. Food logistic is one of the most difficult areas in logistics. In the process from manufacturer to final consumer, quality and hygiene standards must be provided constantly. In food logistics, reliable and extensive service network has great importance and on time delivery is the target. Developing logistics industry provide the supply of foods in the country and the development of export markets more quickly and has an important role in providing added value to the country's economy. Turkey that creates a bridge between the east and the west is an attractive market for logistics companies. In this study, by examining both the place and the importance of logistics in Turkish food sector, recommendations will be made for the food industry.Keywords: Logistics, Turkish food industry, competition, food industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334674 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia
Authors: Yenni Anggrayni
Abstract:
The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.
Keywords: Bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131673 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring
Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek
Abstract:
In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780672 Transient Population Dynamics of Phase Singularities in 2D Beeler-Reuter Model
Authors: Hidetoshi Konno, Akio Suzuki
Abstract:
The paper presented a transient population dynamics of phase singularities in 2D Beeler-Reuter model. Two stochastic modelings are examined: (i) the Master equation approach with the transition rate (i.e., λ(n, t) = λ(t)n and μ(n, t) = μ(t)n) and (ii) the nonlinear Langevin equation approach with a multiplicative noise. The exact general solution of the Master equation with arbitrary time-dependent transition rate is given. Then, the exact solution of the mean field equation for the nonlinear Langevin equation is also given. It is demonstrated that transient population dynamics is successfully identified by the generalized Logistic equation with fractional higher order nonlinear term. It is also demonstrated the necessity of introducing time-dependent transition rate in the master equation approach to incorporate the effect of nonlinearity.
Keywords: Transient population dynamics, Phase singularity, Birth-death process, Non-stationary Master equation, nonlinear Langevin equation, generalized Logistic equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593671 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: Adaptive sampling, batch bulk methyl methacrylate polymerization, large margin nearest neighbor regression, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400670 Phosphine Mortality Estimation for Simulation of Controlling Pest of Stored Grain: Lesser Grain Borer (Rhyzopertha dominica)
Authors: Mingren Shi, Michael Renton
Abstract:
There is a world-wide need for the development of sustainable management strategies to control pest infestation and the development of phosphine (PH3) resistance in lesser grain borer (Rhyzopertha dominica). Computer simulation models can provide a relatively fast, safe and inexpensive way to weigh the merits of various management options. However, the usefulness of simulation models relies on the accurate estimation of important model parameters, such as mortality. Concentration and time of exposure are both important in determining mortality in response to a toxic agent. Recent research indicated the existence of two resistance phenotypes in R. dominica in Australia, weak and strong, and revealed that the presence of resistance alleles at two loci confers strong resistance, thus motivating the construction of a two-locus model of resistance. Experimental data sets on purified pest strains, each corresponding to a single genotype of our two-locus model, were also available. Hence it became possible to explicitly include mortalities of the different genotypes in the model. In this paper we described how we used two generalized linear models (GLM), probit and logistic models, to fit the available experimental data sets. We used a direct algebraic approach generalized inverse matrix technique, rather than the traditional maximum likelihood estimation, to estimate the model parameters. The results show that both probit and logistic models fit the data sets well but the former is much better in terms of small least squares (numerical) errors. Meanwhile, the generalized inverse matrix technique achieved similar accuracy results to those from the maximum likelihood estimation, but is less time consuming and computationally demanding.
Keywords: mortality estimation, probit models, logistic model, generalized inverse matrix approach, pest control simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584669 Comparative Study in Dentinal Tubuli Occlusion Using Bioglass and Copper-Bromide Laser
Authors: Sun Woo Lee, Tae Bum Lee, Yoon Hwa Park, Yoo Jeong Kim
Abstract:
Cervical dentinal hypersensitivity (CDH) affects 8-30% of adults and nearly 85% of perio-treated patients. Various treatment schemes have been applied for treating CDH, among them being fluoride application, laser irradiation, and, recently, bioglass. The purpose of this study was to investigate the influence of bioglass, copper-bromide (Cu-Br) laser irradiation and their combination on dentinal tubule occlusion as a potential dentinal hypersensitivity treatment for CDH. 45 human dentin surfaces were organized into three equal groups: group A received Cu-Br laser only; group B received bioglass only; group C received bioglass followed by Cu-Br laser irradiation. Specimens were evaluated with regard to dentinal tubule occlusion under environmental scanning electron microscope. Treatment modality significantly affected dentinal tubule occlusion (p<0.001). Groups B and C scored higher dentinal tubule occlusion than group A. Binary logistic regression showed that bioglass application significantly (p<0.001) contributed to dentinal tubule occlusion, compared with other variables. Under the conditions used herein and within the limitations of this study, bioglass application, alone or combined with Cu-Br laser irradiation, is a superior method for producing dentinal tubule occlusion, and may lead to an effective treatment modality for CDH.
Keywords: Bioglass, Cu-Br laser, cervical dentinal hypersensitivity, dentinal tubule occlusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333668 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: M. A. S. Fahim, J. Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realization often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.
Keywords: Air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117667 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications
Authors: S. Sowmyayani
Abstract:
The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.
Keywords: Supervised learning, unsupervised learning, regression, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346666 A Resource Survey of Lateritic Soils and Impact Evaluation toward Community Members Living Nearby the Excavation Pits
Authors: Ratchasak Suvannatsiri
Abstract:
The objectives of the research are to find the basic engineering properties of lateritic soil and to predict the impact on community members who live nearby the excavation pits in the area of Amphur Pak Thor, Ratchaburi Province in the western area of Thailand. The research was conducted by collecting soil samples from four excavation pits for basic engineering properties, testing and collecting questionnaire data from 120 community members who live nearby the excavation pits, and applying statistical analysis. The results found that the basic engineering properties of lateritic soil can be classified into silt soil type which is cohesionless as the loess or collapsible soil which is not suitable to be used for a pavement structure for commuting highway because it could lead to structural and functional failure in the long run. In terms of opinion from community members toward the impact, the highest impact was on the dust from excavation activities. The prediction from the logistic regression in terms of impact on community members was at 84.32 which can be adapted and applied onto other areas with the same context as a guideline for risk prevention and risk communication since it could impact the infrastructures and also impact the health of community members.
Keywords: Lateritic soil, excavation pits, engineering properties, impact on community members
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767665 Modeling Oxygen-transfer by Multiple Plunging Jets using Support Vector Machines and Gaussian Process Regression Techniques
Authors: Surinder Deswal
Abstract:
The paper investigates the potential of support vector machines and Gaussian process based regression approaches to model the oxygen–transfer capacity from experimental data of multiple plunging jets oxygenation systems. The results suggest the utility of both the modeling techniques in the prediction of the overall volumetric oxygen transfer coefficient (KLa) from operational parameters of multiple plunging jets oxygenation system. The correlation coefficient root mean square error and coefficient of determination values of 0.971, 0.002 and 0.945 respectively were achieved by support vector machine in comparison to values of 0.960, 0.002 and 0.920 respectively achieved by Gaussian process regression. Further, the performances of both these regression approaches in predicting the overall volumetric oxygen transfer coefficient was compared with the empirical relationship for multiple plunging jets. A comparison of results suggests that support vector machines approach works well in comparison to both empirical relationship and Gaussian process approaches, and could successfully be employed in modeling oxygen-transfer.Keywords: Oxygen-transfer, multiple plunging jets, support vector machines, Gaussian process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639664 Health Monitoring of Power Transformers by Dissolved Gas Analysis using Regression Method and Study the Effect of Filtration on Oil
Authors: Anjali Chatterjee, Nirmal Kumar Roy
Abstract:
Economically transformers constitute one of the largest investments in a Power system. For this reason, transformer condition assessment and management is a high priority task. If a transformer fails, it would have a significant negative impact on revenue and service reliability. Monitoring the state of health of power transformers has traditionally been carried out using laboratory Dissolved Gas Analysis (DGA) tests performed at periodic intervals on the oil sample, collected from the transformers. DGA of transformer oil is the single best indicator of a transformer-s overall condition and is a universal practice today, which started somewhere in the 1960s. Failure can occur in a transformer due to different reasons. Some failures can be limited or prevented by maintenance. Oil filtration is one of the methods to remove the dissolve gases and prevent the deterioration of the oil. In this paper we analysis the DGA data by regression method and predict the gas concentration in the oil in the future. We bring about a comparative study of different traditional methods of regression and the errors generated out of their predictions. With the help of these data we can deduce the health of the transformer by finding the type of fault if it has occurred or will occur in future. Additional in this paper effect of filtration on the transformer health is highlight by calculating the probability of failure of a transformer with and without oil filtrating.
Keywords: Power Transformers, Dissolve gas Analysis, Regression method, Filtration, oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2943663 Regression Analysis of Travel Indicators and Public Transport Usage in Urban Areas
Authors: M. Moeinaddini, Z. Asadi-Shekari, M. Zaly Shah, A. Hamzah
Abstract:
Currently, planners try to have more green travel options to decrease economic, social and environmental problems. Therefore, this study tries to find significant urban travel factors to be used to increase the usage of alternative urban travel modes. This paper attempts to identify the relationship between prominent urban mobility indicators and daily trips by public transport in 30 cities from various parts of the world. Different travel modes, infrastructures and cost indicators were evaluated in this research as mobility indicators. The results of multi-linear regression analysis indicate that there is a significant relationship between mobility indicators and the daily usage of public transport.Keywords: Green travel modes, urban travel indicators, daily trips by public transport, multi-linear regression analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552662 Drivers of Land Degradation in Trays Ecosystem as Modulated under a Changing Climate: Case Study of Côte d'Ivoire
Authors: Kadio Valere R. Angaman, Birahim Bouna Niang
Abstract:
Land degradation is a serious problem in developing countries including Cote d’Ivoire, which has its economy focused on agriculture. It occurs in all kinds of ecosystems over the world. However, the drivers of land degradation vary from one region to another, and from one ecosystem to another. Thus, identifying these drivers is an essential prerequisite to develop and implement appropriate policies to reverse the trend of land degradation in the country, especially in the trays ecosystem. Using the binary logistic model with primary data obtained through 780 farmers surveyed, we analyze and identify the drivers of land degradation in the trays ecosystem. The descriptive statistics show that 52% of farmers interviewed have stated facing land degradation in their farmland. This high rate shows the extent of land degradation in this ecosystem. Also, the results obtained from the binary logit regression reveal that land degradation is significantly influenced by a set of variables such as sex, education, slope, erosion, pesticide, agricultural activity, deforestation, and temperature. The drivers identified are mostly local, as a result, the government must implement some policies and strategies that facilitate and incentive the adoption of sustainable land management practices by farmers to reverse the negative trend of land degradation.
Keywords: Drivers, land degradation, trays ecosystem, sustainable land management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419