Search results for: modified microwave synthesis
14 Investigation of Genetic Epidemiology of Metabolic Compromises in ß Thalassemia Minor Mutation: Phenotypic Pleiotropy
Authors: Surajit Debnath, Soma Addya
Abstract:
Human genome is not only the evolutionary summation of all advantageous events, but also houses lesions of deleterious foot prints. A single gene mutation sometimes may express multiple consequences in numerous tissues and a linear relationship of the genotype and the phenotype may often be obscure. ß Thalassemia minor, a transfusion independent mild anaemia, coupled with environment among other factors may articulate into phenotypic pleotropy with Hypocholesterolemia, Vitamin D deficiency, Tissue hypoxia, Hyper-parathyroidism and Psychological alterations. Occurrence of Pancreatic insufficiency, resultant steatorrhoea, Vitamin-D (25-OH) deficiency (13.86 ngm/ml) with Hypocholesterolemia (85mg/dl) in a 30 years old male ß Thal-minor patient (Hemoglobin 11mg/dl with Fetal Hemoglobin 2.10%, Hb A2 4.60% and Hb Adult 84.80% and altered Hemogram) with increased Para thyroid hormone (62 pg/ml) & moderate Serum Ca+2 (9.5mg/ml) indicate towards a cascade of phenotypic pleotropy where the ß Thalassemia mutation ,be it in the 5’ cap site of the mRNA , differential splicing etc in heterozygous state is effecting several metabolic pathways. Compensatory extramedulary hematopoiesis may not coped up well with the stressful life style of the young individual and increased erythropoietic stress with high demand for cholesterol for RBC membrane synthesis may have resulted in Hypocholesterolemia.Oxidative stress and tissue hypoxia may have caused the pancreatic insufficiency, leading to Vitamin D deficiency. This may in turn have caused the secondary hyperparathyroidism to sustain serum Calcium level. Irritability and stress intolerance of the patient was a cumulative effect of the vicious cycle of metabolic compromises. From these findings we propose that the metabolic deficiencies in the ß Thalassemia mutations may be considered as the phenotypic display of the pleotropy to explain the genetic epidemiology. According to the recommendations from the NIH Workshop on Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model, study design of observations should be informed by gene-environment hypotheses and results of a study (genetic diseases) should be published to inform future hypotheses. Variety of approaches is needed to capture data on all possible aspects, each of which is likely to contribute to the etiology of disease. Speakers also agreed that there is a need for development of new statistical methods and measurement tools to appraise information that may be missed out by conventional method where large sample size is needed to segregate considerable effect. A meta analytic cohort study in future may bring about significant insight on to the title comment.Keywords: Genetic disease, Genetic epidemiology, Heterozygous, Phenotype, Pleotropy, ß Thalassemia minor, Metabolic compromises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 656813 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend
Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang
Abstract:
Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and nontoxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75 and 0:100) and fiber content (i.e. in the range of 1-25 %wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.Keywords: Polylactic acid, Thermoplastic starch, Jute fiber, Composite, Blend.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257212 Self-Sensing Concrete Nanocomposites for Smart Structures
Authors: A. D'Alessandro, F. Ubertini, A. L. Materazzi
Abstract:
In the field of civil engineering, Structural Health Monitoring is a topic of growing interest. Effective monitoring instruments permit the control of the working conditions of structures and infrastructures, through the identification of behavioral anomalies due to incipient damages, especially in areas of high environmental hazards as earthquakes. While traditional sensors can be applied only in a limited number of points, providing a partial information for a structural diagnosis, novel transducers may allow a diffuse sensing. Thanks to the new tools and materials provided by nanotechnology, new types of multifunctional sensors are developing in the scientific panorama. In particular, cement-matrix composite materials capable of diagnosing their own state of strain and tension, could be originated by the addition of specific conductive nanofillers. Because of the nature of the material they are made of, these new cementitious nano-modified transducers can be inserted within the concrete elements, transforming the same structures in sets of widespread sensors. This paper is aimed at presenting the results of a research about a new self-sensing nanocomposite and about the implementation of smart sensors for Structural Health Monitoring. The developed nanocomposite has been obtained by inserting multi walled carbon nanotubes within a cementitious matrix. The insertion of such conductive carbon nanofillers provides the base material with piezoresistive characteristics and peculiar sensitivity to mechanical modifications. The self-sensing ability is achieved by correlating the variation of the external stress or strain with the variation of some electrical properties, such as the electrical resistance or conductivity. Through the measurement of such electrical characteristics, the performance and the working conditions of an element or a structure can be monitored. Among conductive carbon nanofillers, carbon nanotubes seem to be particularly promising for the realization of self-sensing cement-matrix materials. Some issues related to the nanofiller dispersion or to the influence of the nano-inclusions amount in the cement matrix need to be carefully investigated: the strain sensitivity of the resulting sensors is influenced by such factors. This work analyzes the dispersion of the carbon nanofillers, the physical properties of the fresh dough, the electrical properties of the hardened composites and the sensing properties of the realized sensors. The experimental campaign focuses specifically on their dynamic characterization and their applicability to the monitoring of full-scale elements. The results of the electromechanical tests with both slow varying and dynamic loads show that the developed nanocomposite sensors can be effectively used for the health monitoring of structures.
Keywords: Carbon nanotubes, self-sensing nanocomposites, smart cement-matrix sensors, structural health monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346211 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance
Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem
Abstract:
Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.
Keywords: Behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138210 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell
Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman
Abstract:
Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The asprepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.
Keywords: Microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35079 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis
Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński
Abstract:
The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g., phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g., from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.
Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11728 Isolation and Identification of an Acetobacter Strain from Iranian White-Red Cherry with High Acetic Acid Productivity as a Potential Strain for Cherry Vinegar Production in Foodand Agriculture Biotechnology
Authors: K. Beheshti Maal, R. Shafiee
Abstract:
According to FDA (Food and Drug Administration of the United States), vinegar is definedas a sour liquid containing at least 4 grams acetic acid in 100 cubic centimeter (4% solution of acetic acid) of solution that is produced from sugary materials by alcoholic fermentation. In the base of microbial starters, vinegars could be contained of more than 50 types of volatile and aromatic substances that responsible for their sweet taste and smelling. Recently the vinegar industry has a great proportion in agriculture, food and microbial biotechnology. The acetic acid bacteria are from the family Acetobacteraceae. Regarding to the latest version of Bergy-s Mannual of Systematic Bacteriology that has categorized bacteria in the base of their 16s RNA differences, the most important acetic acid genera are included Acetobacter (genus I), Gluconacetobacter (genus VIII) and Gluconobacter (genus IX). The genus Acetobacter that is primarily used in vinegar manufacturing plants is a gram negative, obligate aerobe coccus or rod shaped bacterium with the size 0.6 - 0.8 X 1.0 - 4.0 μm, nonmotile or motile with peritrichous flagella and catalase positive – oxidase negative biochemically. Some strains are overoxidizer that could convert acetic acid to carbon dioxide and water.In this research one Acetobacter native strain with high acetic acid productivity was isolated from Iranian white – red cherry. We used two specific culture media include Carr medium [yeast extract, 3%; ethanol, 2% (v/v); bromocresol green, 0.002%; agar, 2% and distilled water, 1000 ml], Frateur medium [yeast extract, 10 g/l; CaCO3, 20 g/l; ethanol, 20 g/l; agar, 20 g/l and distilled water, 1000 ml] and an industrial culture medium. In addition to high acetic acid production and high growth rate, this strain had a good tolerance against ethanol concentration that was examined using modified Carr media with 5%, 7% and 9% ethanol concentrations. While the industrial strains of acetic acid bacteria grow in the thermal range of 28 – 30 °C, this strain was adapted for growth in 34 – 36 °C after 96 hours incubation period. These dramatic characteristics suggest a potential biotechnological strain in production of cherry vinegar with a sweet smell and different nutritional properties in comparison to recent vinegar types. The lack of growth after 24, 48 and 72 hours incubation at 34 – 36 °C and the growth after 96 hours indicates a good and fast thermal flexibility of this strain as a significant characteristic of biotechnological and industrial strains.
Keywords: Acetobacte, acetic acid bacteria, white – red cherry, food and agriculture biotechnology, industrial fermentation, vinegar
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50257 Hydrodynamic Characterisation of a Hydraulic Flume with Sheared Flow
Authors: Daniel Rowe, Christopher R. Vogel, Richard H. J. Willden
Abstract:
This study documents the hydrodynamic characteristics of a recirculating water flume in preparation for experimental testing of horizontal axis tidal stream turbine models. An Acoustic Doppler Velocimeter (ADV) was used to measure the flow at high temporal resolution at various locations throughout the flume, enabling the spatial uniformity and turbulence flow parameters to be investigated. The mean velocity profiles exhibited high levels of spatial uniformity at the design speed of the flume, 0.6 ms−1, with variations in the three-dimensional velocity components on the order of ±1% at the 95% confidence level, along with a modest streamwise acceleration through the measurement domain, a target 5m working section of the flume. A high degree of uniformity was also apparent for the turbulence intensity, with values ranging between 1-2% across the intended swept area of the turbine rotor. The integral scales of turbulence exhibited a far higher degree of variation throughout the water column, particularly in the streamwise and vertical scales. This behaviour is believed to be due to the high signal noise content leading to decorrelation in the sampling records. To achieve more realistic levels of vertical velocity shear in the flume, a simple procedure to practically generate target vertical shear profiles in open-channel flows is described. Here, we arranged a series of non-uniformly spaced parallel bars placed across the width of the flume and normal to the onset flow. By adjusting the resistance grading across the height of the working section, the downstream profiles could be modified accordingly, characterised by changes in the velocity profile power-law exponent, 1/n. Considering the significant temporal variation in a tidal channel, the choice of the exponent denominator, n = 6 and n = 9, effectively provides an achievable range around the much-cited value of n = 7 observed at many tidal sites. The resulting flow profiles, which we intend to use in future turbine tests, have been characterised in detail. The results indicate non-uniform vertical shear across the survey area and reveal substantial corner flows, arising from the differential shear between the target vertical and cross-stream shear profiles throughout the measurement domain. In vertically sheared flow, the rotor-equivalent turbulence intensity ranges between 3.0-3.8% throughout the measurement domain for both bar arrangements, while the streamwise integral length scale grows from a characteristic dimension on the order of the bar width, similar to the flow downstream of a turbulence-generating grid. The experimental tests are well-defined and repeatable and serve as a reference for other researchers who wish to undertake similar investigations.
Keywords: Acoustic Doppler velocimetry, experimental hydrodynamics, open-channel flow, shear profiles, tidal stream turbines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856 Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound
Authors: Miriam I. Lautenschläger, Max H. Scheiwe, Kay A. Weidenmann, Frank Henning, Peter Elsner
Abstract:
Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.Keywords: Filler, flowability, jute fiber, nonwoven, sheet molding compound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15705 Effect of the Polymer Modification on the Cytocompatibility of Human and Rat Cells
Authors: N. Slepickova Kasalkova, P. Slepicka, L. Bacakova, V. Svorcik
Abstract:
Tissue engineering includes combination of materials and techniques used for the improvement, repair or replacement of the tissue. Scaffolds, permanent or temporally material, are used as support for the creation of the "new cell structures". For this important component (scaffold), a variety of materials can be used. The advantage of some polymeric materials is their cytocompatibility and possibility of biodegradation. Poly(L-lactic acid) (PLLA) is a biodegradable, semi-crystalline thermoplastic polymer. PLLA can be fully degraded into H2O and CO2. In this experiment, the effect of the surface modification of biodegradable polymer (performed by plasma treatment) on the various cell types was studied. The surface parameters and changes of the physicochemical properties of modified PLLA substrates were studied by different methods. Surface wettability was determined by goniometry, surface morphology and roughness study were performed with atomic force microscopy and chemical composition was determined using photoelectron spectroscopy. The physicochemical properties were studied in relation to cytocompatibility of human osteoblast (MG 63 cells), rat vascular smooth muscle cells (VSMC), and human stem cells (ASC) of the adipose tissue in vitro. A fluorescence microscopy was chosen to study and compare cell-material interaction. Important parameters of the cytocompatibility like adhesion, proliferation, viability, shape, spreading of the cells were evaluated. It was found that the modification leads to the change of the surface wettability depending on the time of modification. Short time of exposition (10-120 s) can reduce the wettability of the aged samples, exposition longer than 150 s causes to increase of contact angle of the aged PLLA. The surface morphology is significantly influenced by duration of modification, too. The plasma treatment involves the formation of the crystallites, whose number increases with increasing time of modification. On the basis of physicochemical properties evaluation, the cells were cultivated on the selected samples. Cell-material interactions are strongly affected by material chemical structure and surface morphology. It was proved that the plasma treatment of PLLA has a positive effect on the adhesion, spreading, homogeneity of distribution and viability of all cultivated cells. This effect was even more apparent for the VSMCs and ASCs which homogeneously covered almost the whole surface of the substrate after 7 days of cultivation. The viability of these cells was high (more than 98% for VSMCs, 89-96% for ASCs). This experiment is one part of the basic research, which aims to easily create scaffolds for tissue engineering with subsequent use of stem cells and their subsequent "reorientation" towards the bone cells or smooth muscle cells.
Keywords: Poly(L-lactic acid), plasma treatment, surface characterization, cytocompatibility, human osteoblasts, rat vascular smooth muscle cells, human stem cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9864 Developing Digital Competencies in Aboriginal Students through University-College Partnerships
Authors: W. S. Barber, S. L. King
Abstract:
This paper reports on a pilot project to develop a collaborative partnership between a community college in rural northern Ontario, Canada, and an urban university in the greater Toronto area in Oshawa, Canada. Partner institutions will collaborate to address learning needs of university applicants whose goals are to attain an undergraduate university BA in Educational Studies and Digital Technology degree, but who may not live in a geographical location that would facilitate this pathways process. The UOIT BA degree is attained through a 2+2 program, where students with a 2 year college diploma or equivalent can attain a four year undergraduate degree. The goals reported on the project are as: 1. Our aim is to expand the BA program to include an additional stream which includes serious educational games, simulations and virtual environments, 2. Develop fully (using both synchronous and asynchronous technologies) online learning modules for use by university applicants who otherwise are not geographically located close to a physical university site, 3. Assess the digital competencies of all students, including members of local, distance and Indigenous communities using a validated tool developed and tested by UOIT across numerous populations. This tool, the General Technical Competency Use and Scale (GTCU) will provide the collaborating institutions with data that will allow for analyzing how well students are prepared to succeed in fully online learning communities. Philosophically, the UOIT BA program is based on a fully online learning communities model (FOLC) that can be accessed from anywhere in the world through digital learning environments via audio video conferencing tools such as Adobe Connect. It also follows models of adult learning and mobile learning, and makes a university degree accessible to the increasing demographic of adult learners who may use mobile devices to learn anywhere anytime. The program is based on key principles of Problem Based Learning, allowing students to build their own understandings through the co-design of the learning environment in collaboration with the instructors and their peers. In this way, this degree allows students to personalize and individualize the learning based on their own culture, background and professional/personal experiences. Using modified flipped classroom strategies, students are able to interrogate video modules on their own time in preparation for one hour discussions occurring in video conferencing sessions. As a consequence of the program flexibility, students may continue to work full or part time. All of the partner institutions will co-develop four new modules, administer the GTCU and share data, while creating a new stream of the UOIT BA degree. This will increase accessibility for students to bridge from community colleges to university through a fully digital environment. We aim to work collaboratively with Indigenous elders, community members and distance education instructors to increase opportunities for more students to attain a university education.
Keywords: Aboriginal, college, competencies, digital, universities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7863 Generative Syntaxes: Macro-Heterophony and the Form of ‘Synchrony’
Authors: Luminiţa Duţică, Gheorghe Duţică
Abstract:
One of the most powerful language innovation in the twentieth century music was the heterophony–hypostasis of the vertical syntax entered into the sphere of interest of many composers, such as George Enescu, Pierre Boulez, Mauricio Kagel, György Ligeti and others. The heterophonic syntax has a history of its growth, which means a succession of different concepts and writing techniques. The trajectory of settling this phenomenon does not necessarily take into account the chronology: there are highly complex primary stages and advanced stages of returning to the simple forms of writing. In folklore, the plurimelodic simultaneities are free or random and originate from the (unintentional) differences/‘deviations’ from the state of unison, through a variety of ornaments, melismas, imitations, elongations and abbreviations, all in a flexible rhythmic and non-periodic/immeasurable framework, proper to the parlando-rubato rhythmics. Within the general framework of the multivocal organization, the heterophonic syntax in elaborate (academic) version has imposed itself relatively late compared with polyphony and homophony. Of course, the explanation is simple, if we consider the causal relationship between the sound vocabulary elements – in this case, the modalism – and the typologies of vertical organization appropriate for it. Therefore, adding up the ‘classic’ pathway of the writing typologies (monody – polyphony – homophony), heterophony - applied equally to the structures of modal, serial or synthesis vocabulary – reclaims necessarily an own macrotemporal form, in the sense of the analogies enshrined by the evolution of the musical styles and languages: polyphony→fugue, homophony→sonata. Concerned about the prospect of edifying a new musical ontology, the composer Ştefan Niculescu experienced – along with the mathematical organization of heterophony according to his own original methods – the possibility of extrapolation of this phenomenon in macrostructural plan, reaching this way to the unique form of ‘synchrony’. Founded on coincidentia oppositorum principle (involving the ‘one-multiple’ binom), the sound architecture imagined by Ştefan Niculescu consists in one (temporal) model / algorithm of articulation of two sound states: 1. monovocality state (principle of identity) and 2. multivocality state (principle of difference). In this context, the heterophony becomes an (auto)generative mechanism, with macrotemporal amplitude, strategy that will be grown by the composer, practically throughout his creation (see the works: Ison I, Ison II, Unisonos I, Unisonos II, Duplum, Triplum, Psalmus, Héterophonies pour Montreux (Homages to Enescu and Bartók etc.). For the present demonstration, we selected one of the most edifying works of Ştefan Niculescu – Simphony II, Opus dacicum – where the form of (heterophony-)synchrony acquires monumental-symphonic features, representing an emblematic case for the complexity level achieved by this type of vertical syntax in the twentieth century music.
Keywords: Heterophony, modalism, serialism, synchrony, syntax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7322 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing
Authors: S. Aziz, B. Alexander, C. Gengnagel, S. Weinzierl
Abstract:
This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the Building Information Modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.
Keywords: Acoustical design, additive manufacturing, computational design, multimodal optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6051 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines
Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri
Abstract:
This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.Keywords: Wind turbines, aeroelasticity, repetitive control, periodic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301