Search results for: Complexity measurement
401 Influence of Surfactant on Supercooling Degree of Aqueous Titania Nanofluids in Energy Storage Systems
Authors: Hoda Aslani, Mohammad Moghiman, Mohammad Aslani
Abstract:
Considering the demand to reduce global warming potential and importance of solidification in various applications, there is an increasing interest in energy storage systems to find the efficient phase change materials. Therefore, this paper presents an experimental study and comparison on the potential of titania nanofluids with and without surfactant for cooling energy storage systems. A designed cooling generation device based on compression refrigeration cycle is used to explore nanofluids solidification characteristics. In this work, titania nanoparticles of 0.01, 0.02 and 0.04 wt.% are dispersed in deionized water as base fluid. Measurement of phase change parameters of nanofluids illustrates that the addition of polyvinylpyrrolidone (PVP) as surfactant to titania nanofluids advances the onset nucleation time and leads to lower solidification time. Also, the experimental results show that only adding 0.02 wt.% titania nanoparticles, especially in the case of nanofluids with a surfactant, can evidently reduce the supercooling degree by nearly 70%. Hence, it is concluded that there is a great energy saving potential in the energy storage systems using titania nanofluid with PVP.
Keywords: Cooling energy storage, nanofluid, PVP, solidification, titania.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765400 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data
Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin
Abstract:
Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.Keywords: Big data, building-value analysis, machine learning, price prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164399 Influence of the Paint Coating Thickness in Digital Image Correlation Experiments
Authors: Jesús A. Pérez, Sam Coppieters, Dimitri Debruyne
Abstract:
In the past decade, the use of digital image correlation (DIC) techniques has increased significantly in the area of experimental mechanics, especially for materials behavior characterization. This non-contact tool enables full field displacement and strain measurements over a complete region of interest. The DIC algorithm requires a random contrast pattern on the surface of the specimen in order to perform properly. To create this pattern, the specimen is usually first coated using a white matt paint. Next, a black random speckle pattern is applied using any suitable method. If the applied paint coating is too thick, its top surface may not be able to exactly follow the deformation of the specimen, and consequently, the strain measurement might be underestimated. In the present article, a study of the influence of the paint thickness on the strain underestimation is performed for different strain levels. The results are then compared to typical paint coating thicknesses applied by experienced DIC users. A slight strain underestimation was observed for paint coatings thicker than about 30μm. On the other hand, this value was found to be uncommonly high compared to coating thicknesses applied by DIC users.Keywords: Digital Image Correlation, paint coating thickness, strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302398 Improving Production Capacity through Efficient PPC System: Lesson from Leather Manufacturing
Authors: Mengist Hailemariam, Silma Yoseph
Abstract:
A well designed and executed Production Planning and Control (PPC) system is one of the key levers for superior performance in the current manufacturing set-up. Hence, measuring the PPC system performance has become a necessity for long term success. The present study examined PPC related issues which impact the production capacity and productivity of leather companies with special focus on Kombolcha Tannery Share Company (KTSC), Ethiopia. Physical observation, interview, and questionnaire were used to generate necessary information from the respondents and reach valid conclusions. Company annual reports were referred and analyzed to triangulate primary data. Consequently, the study revealed that KTSC runs below its capacity due to its inefficient PPC system being in use for which the root causes were identified. The study thereby conceptualizes a PPC system improvement framework comprising three pillars viz., management culture, internal capability and performance measurement together with key considerations in each case. The study findings enable the company to recognize the importance of efficient PPC system as a source of competitive advantage. It also aid managers in evaluating various PPC execution schemes to enhance productivity.
Keywords: Ethiopia, Leather manufacturing, Production planning and control, PPC improvement framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3734397 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.
Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430396 Design of Liquid Crystal Based Tunable Reflectarray Antenna Using Slot Embedded Patch Element Configurations
Authors: M. Y. Ismail, M. Inam
Abstract:
This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with different design configurations within X-band frequency range. The effect of LC volume used for unit cell element on frequency tunability and reflection loss performance has been investigated. Moreover different slot embedded patch element configurations have been proposed for LC based tunable reflectarray antenna design with enhanced performance. The detailed fabrication and measurement procedure for different LC based unit cells has been presented. The waveguide scattering parameter measured results demonstrated that by using the circular slot embedded patch elements, the frequency tunability and dynamic phase range can be increased from 180MHz to 200MHz and 120° to 124° respectively. Furthermore the circular slot embedded patch element can be designed at 10GHz resonant frequency with a patch volume of 2.71mm3 as compared to 3.47mm3 required for rectangular patch without slot.
Keywords: Liquid crystal, Tunable reflectarray, Frequency tunability, Dynamic phase range.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1218395 Nonlinear Sensitive Control of Centrifugal Compressor
Authors: F. Laaouad, M. Bouguerra, A. Hafaifa, A. Iratni
Abstract:
In this work, we treat the problems related to chemical and petrochemical plants of a certain complex process taking the centrifugal compressor as an example, a system being very complex by its physical structure as well as its behaviour (surge phenomenon). We propose to study the application possibilities of the recent control approaches to the compressor behaviour, and consequently evaluate their contribution in the practical and theoretical fields. Facing the studied industrial process complexity, we choose to make recourse to fuzzy logic for analysis and treatment of its control problem owing to the fact that these techniques constitute the only framework in which the types of imperfect knowledge can jointly be treated (uncertainties, inaccuracies, etc..) offering suitable tools to characterise them. In the particular case of the centrifugal compressor, these imperfections are interpreted by modelling errors, the neglected dynamics, no modelisable dynamics and the parametric variations. The purpose of this paper is to produce a total robust nonlinear controller design method to stabilize the compression process at its optimum steady state by manipulating the gas rate flow. In order to cope with both the parameter uncertainty and the structured non linearity of the plant, the proposed method consists of a linear steady state regulation that ensures robust optimal control and of a nonlinear compensation that achieves the exact input/output linearization.
Keywords: Compressor, Fuzzy logic, Surge control, Bilinearcontroller, Stability analysis, Nonlinear plant.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144394 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
Authors: Ronal Muresano, Andrea Pagano
Abstract:
Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.
Keywords: Algorithm optimization, Bank Failures, OpenMP, Parallel Techniques, Statistical tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902393 Development of Anterior Lumbar Interbody Fusion (ALIF) PEEK Cage Based On the Korean Lumbar Anatomical Information
Authors: Chang Soo Chon, Cheol Woong Ko, Han Sung Kim
Abstract:
The aim of this study is to develop an anterior lumbar interbody fusion (ALIF) PEEK cage suitable for Korean people. In this study, CT images were obtained from Korean male (173cm, 71kg) and 3D Korean lumbar models were reconstructed based on the CT images to investigate anatomical characteristics. Major design parameters of anterior lumbar interbody fusion (ALIF) PEEK Cage were selected using the morphological measurement information of the Korean Lumbar models. Through finite element analysis and mechanical tests, the developed ALIFPEEK Cage prototype was compared with the Fidji Cage (Zimmer. Inc, USA) and it was found that the ALIF prototype showed similar and/or superior mechanical performance compared to the FidJi Cage. Also, clinical validation for the ALIF PEEK Cage prototype was carried out to check predictable troubles in surgical operations. Finally, it is considered that the convenience and stability of the prototype was clinically verified.
Keywords: Interbody fusion, PEEK, implant, finite element analysis, lumbar, spine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871392 Characterization and Evaluation of the Activity of Dipeptidyl Peptidase IV from the Black-Bellied Hornet Vespa basalis
Authors: Feng Chia Hsieh, Sheng Kuo Hsieh, Tzyy Rong Jinn
Abstract:
Characterization and evaluation of the activity of Vespa basalis DPP-IV, which expressed in Spodoptera frugiperda 21 cells. The expression of rDPP-IV was confirmed by SDS–PAGE, Western blot analyses, LC-MS/MS and measurement of its peptidase specificity. One-step purification by Ni-NTA affinity chromatography and the total amount of rDPP-IV recovered was approximately 6.4mg per liter from infected culture medium; an equivalent amount would be produced by 1x109 infected Sf21 insect cells. Through the affinity purification led to highly stable rDPP-IV enzyme was recovered and with significant peptidase activity. The rDPP-IV exhibited classical Michaelis–Menten kinetics, with kcat/Km in the range of 10-500 mM-1×S-1 for the five synthetic substrates and optimum substrate is Ala-Pro-pNA. As expected in inhibition assay, the enzymatic activity of rDPP-IV was significantly reduced by 80 or 60% in the presence of sitagliptin (a DPP-IV inhibitor) or PMSF (a serine protease inhibitor), but was not apparently affected by iodoacetamide (a cysteine protease inhibitor).
Keywords: Dipeptidyl-Peptidase IV, Phenylmethylsulfonyl fluoride; Serine protease, Sitagliptin, Vespa basalis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582391 Wind-tunnel Measurement of the Drag-reducing Effect of Compliant Coating
Authors: Inwon Lee, Victor M. Kulik, Andrey V. Boiko, Ho Hwan Chun
Abstract:
A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Aerospace Department of the Pusan National University. The plate is 2 m long, 0.8 m high and 8 cm thick. The measurements were performed in velocity range from 15 to 60 m/s. A sand paper turbulizer was placed close to the plate nose to provide fully developed turbulent boundary layer over the most part of the plate. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of 0.55×0.25m2 size. A set of the insertions was designed and manufactured: 3mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic® S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% of the rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss tangent were measured accurately for these materials in the frequency range from 40 Hz to 3 KHz using the unique proposed technique.Keywords: boundary layer, compliant coating, drag reduction, hot wire, wind tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686390 Development of Perez-Du Mortier Calibration Algorithm for Ground-Based Aerosol Optical Depth Measurement with Validation using SMARTS Model
Authors: Jedol Dayou, Jackson Hian Wui Chang, Rubena Yusoff, Ag. Sufiyan Abd. Hamid, Fauziah Sulaiman, Justin Sentian
Abstract:
Aerosols are small particles suspended in air that have wide varying spatial and temporal distributions. The concentration of aerosol in total columnar atmosphere is normally measured using aerosol optical depth (AOD). In long-term monitoring stations, accurate AOD retrieval is often difficult due to the lack of frequent calibration. To overcome this problem, a near-sea-level Langley calibration algorithm is developed using the combination of clear-sky detection model and statistical filter. It attempts to produce a dataset that consists of only homogenous and stable atmospheric condition for the Langley calibration purposes. In this paper, a radiance-based validation method is performed to further investigate the feasibility and consistency of the proposed algorithm at different location, day, and time. The algorithm is validated using SMARTS model based n DNI value. The overall results confirmed that the proposed calibration algorithm feasible and consistent for measurements taken at different sites and weather conditions.
Keywords: Aerosol optical depth, direct normal irradiance, Langley calibration, radiance-based validation, SMARTS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808389 Empirical Process Monitoring Via Chemometric Analysis of Partially Unbalanced Data
Authors: Hyun-Woo Cho
Abstract:
Real-time or in-line process monitoring frameworks are designed to give early warnings for a fault along with meaningful identification of its assignable causes. In artificial intelligence and machine learning fields of pattern recognition various promising approaches have been proposed such as kernel-based nonlinear machine learning techniques. This work presents a kernel-based empirical monitoring scheme for batch type production processes with small sample size problem of partially unbalanced data. Measurement data of normal operations are easy to collect whilst special events or faults data are difficult to collect. In such situations, noise filtering techniques can be helpful in enhancing process monitoring performance. Furthermore, preprocessing of raw process data is used to get rid of unwanted variation of data. The performance of the monitoring scheme was demonstrated using three-dimensional batch data. The results showed that the monitoring performance was improved significantly in terms of detection success rate of process fault.
Keywords: Process Monitoring, kernel methods, multivariate filtering, data-driven techniques, quality improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746388 A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis
Authors: Mahdi Mazinani, S. D. Qanadli, Rahil Hosseini, Tim Ellis, Jamshid Dehmeshki
Abstract:
Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.Keywords: 3D coronary artery tree extraction, segmentation, quantification, fuzzy clustering, and Markov random field
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582387 MIMO Antenna Selections using CSI from Reciprocal Channel
Authors: P. Uthansakul, K. Attakitmongkol, N. Promsuvana, M. Uthansakul
Abstract:
It is well known that the channel capacity of Multiple- Input-Multiple-Output (MIMO) system increases as the number of antenna pairs between transmitter and receiver increases but it suffers from multiple expensive RF chains. To reduce the cost of RF chains, Antenna Selection (AS) method can offer a good tradeoff between expense and performance. In a transmitting AS system, Channel State Information (CSI) feedback is necessarily required to choose the best subset of antennas in which the effects of delays and errors occurred in feedback channels are the most dominant factors degrading the performance of the AS method. This paper presents the concept of AS method using CSI from channel reciprocity instead of feedback method. Reciprocity technique can easily archive CSI by utilizing a reverse channel where the forward and reverse channels are symmetrically considered in time, frequency and location. In this work, the capacity performance of MIMO system when using AS method at transmitter with reciprocity channels is investigated by own developing Testbed. The obtained results show that reciprocity technique offers capacity close to a system with a perfect CSI and gains a higher capacity than a system without AS method from 0.9 to 2.2 bps/Hz at SNR 10 dB.Keywords: Antenna Selection, Capacity, Channel, Measurement, MIMO, Reciprocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965386 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise
Authors: J. P. Dubois, Omar M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813385 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine
Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li
Abstract:
Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.
Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948384 An Algorithm Proposed for FIR Filter Coefficients Representation
Authors: Mohamed Al Mahdi Eshtawie, Masuri Bin Othman
Abstract:
Finite impulse response (FIR) filters have the advantage of linear phase, guaranteed stability, fewer finite precision errors, and efficient implementation. In contrast, they have a major disadvantage of high order need (more coefficients) than IIR counterpart with comparable performance. The high order demand imposes more hardware requirements, arithmetic operations, area usage, and power consumption when designing and fabricating the filter. Therefore, minimizing or reducing these parameters, is a major goal or target in digital filter design task. This paper presents an algorithm proposed for modifying values and the number of non-zero coefficients used to represent the FIR digital pulse shaping filter response. With this algorithm, the FIR filter frequency and phase response can be represented with a minimum number of non-zero coefficients. Therefore, reducing the arithmetic complexity needed to get the filter output. Consequently, the system characteristic i.e. power consumption, area usage, and processing time are also reduced. The proposed algorithm is more powerful when integrated with multiplierless algorithms such as distributed arithmetic (DA) in designing high order digital FIR filters. Here the DA usage eliminates the need for multipliers when implementing the multiply and accumulate unit (MAC) and the proposed algorithm will reduce the number of adders and addition operations needed through the minimization of the non-zero values coefficients to get the filter output.
Keywords: Pulse shaping Filter, Distributed Arithmetic, Optimization algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175383 Research on a Forest Fire Spread Simulation Driven by the Wind Field in Complex Terrain
Authors: Ying Shang, Chencheng Wang
Abstract:
The wind field is the main driving factor for the spread of forest fires. For the simulation results of forest fire spread to be more accurate, it is necessary to obtain more detailed wind field data. Therefore, this paper studied the mountainous fine wind field simulation method coupled with WRF (Weather Research and Forecasting Model) and CFD (Computational Fluid Dynamics) to realize the numerical simulation of the wind field in a mountainous area with a scale of 30 m and a small measurement error. Local topographical changes have an important impact on the wind field. Based on the Rothermel fire spread model, a forest fire in Idaho in the western United States was simulated. The historical data proved that the simulation results had a good accuracy. They showed that the fire spread rate will decrease rapidly with time and then reach a steady state. After reaching a steady state, the fire spread growth area will not only be affected by the slope, but will also show a significant quadratic linear positive correlation with the wind speed change.
Keywords: Wind field, numerical simulation, forest fire spread, fire behavior model, complex terrain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 380382 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model
Authors: Nicolae Bold, Daniel Nijloveanu
Abstract:
The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.Keywords: Genetic algorithm, chromosomes, genes, cropping, agriculture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602381 Surface Charge Based Rapid Method for Detection of Microbial Contamination in Drinking Water and Food Products
Authors: Kandpal M. , Gundampati R. K , Debnath M.
Abstract:
Microbial contamination, most of which are fecal born in drinking water and food industry is a serious threat to humans. Escherichia coli is one of the most common and prevalent among them. We have developed a sensor for rapid and an early detection of contaminants, taking E.coli as a threat indicator organism. The sensor is based on co-polymerizations of aniline and formaldehyde in form of thin film over glass surface using the vacuum deposition technique. The particular doping combination of thin film with Fe-Al and Fe-Cu in different concentrations changes its non conducting properties to p- type semi conductor. This property is exploited to detect the different contaminants, believed to have the different surface charge. It was found through experiments that different microbes at same OD (0.600 at 600 nm) have different conductivity in solution. Also the doping concentration is found to be specific for attracting microbes on the basis of surface charge. This is a simple, cost effective and quick detection method which not only decreases the measurement time but also gives early warnings for highly contaminated samples.
Keywords: Sensor, Vacuum deposition technique, thin film, E.coli detection, doping concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592380 Design for Manufacturability and Concurrent Engineering for Product Development
Authors: Alemu Moges Belay
Abstract:
In the 1980s, companies began to feel the effect of three major influences on their product development: newer and innovative technologies, increasing product complexity and larger organizations. And therefore companies were forced to look for new product development methods. This paper tries to focus on the two of new product development methods (DFM and CE). The aim of this paper is to see and analyze different product development methods specifically on Design for Manufacturability and Concurrent Engineering. Companies can achieve and be benefited by minimizing product life cycle, cost and meeting delivery schedule. This paper also presents simplified models that can be modified and used by different companies based on the companies- objective and requirements. Methodologies that are followed to do this research are case studies. Two companies were taken and analysed on the product development process. Historical data, interview were conducted on these companies in addition to that, Survey of literatures and previous research works on similar topics has been done during this research. This paper also tries to show the implementation cost benefit analysis and tries to calculate the implementation time. From this research, it has been found that the two companies did not achieve the delivery time to the customer. Some of most frequently coming products are analyzed and 50% to 80 % of their products are not delivered on time to the customers. The companies are following the traditional way of product development that is sequentially design and production method, which highly affect time to market. In the case study it is found that by implementing these new methods and by forming multi disciplinary team in designing and quality inspection; the company can reduce the workflow steps from 40 to 30.
Keywords: Design for manufacturability, Concurrent Engineering, Time-to-Market, Product development
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5586379 Development of Scratching Monitoring System Based On Mathematical Model of Unconstrained Bed Sensing Method
Authors: Takuya Sumi, Syoko Nukaya, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
We propose an unconstrained measurement system for scratching motion based on mathematical model of unconstrained bed sensing method which could measure the bed vibrations due to the motion of the person on the bed. In this paper, we construct mathematical model of the unconstrained bed monitoring system; and we apply the unconstrained bed sensing method to the system for detecting scratching motion. The proposed sensors are placed under the three bed feet. When the person is lying on the bed, the output signals from the sensors are proportional to the magnitude of the vibration due to the scratching motion. Hence, we could detect the subject’s scratching motion from the output signals from ceramic sensors. We evaluated two scratching motions using the proposed system in the validity experiment as follows: 1st experiment is the subject’s scratching the right side cheek with his right hand, and; 2nd experiment is the subject’s scratching the shin with another foot. As the results of the experiment, we recognized the scratching signals that enable the determination when the scratching occurred. Furthermore, the difference among the amplitudes of the output signals enabled us to estimate where the subject scratched.
Keywords: Unconstrained bed sensing method, scratching, body movement, itchy, piezoceramics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734378 Network Based Intrusion Detection and Prevention Systems in IP-Level Security Protocols
Authors: R. Kabila
Abstract:
IPsec has now become a standard information security technology throughout the Internet society. It provides a well-defined architecture that takes into account confidentiality, authentication, integrity, secure key exchange and protection mechanism against replay attack also. For the connectionless security services on packet basis, IETF IPsec Working Group has standardized two extension headers (AH&ESP), key exchange and authentication protocols. It is also working on lightweight key exchange protocol and MIB's for security management. IPsec technology has been implemented on various platforms in IPv4 and IPv6, gradually replacing old application-specific security mechanisms. IPv4 and IPv6 are not directly compatible, so programs and systems designed to one standard can not communicate with those designed to the other. We propose the design and implementation of controlled Internet security system, which is IPsec-based Internet information security system in IPv4/IPv6 network and also we show the data of performance measurement. With the features like improved scalability and routing, security, ease-of-configuration, and higher performance of IPv6, the controlled Internet security system provides consistent security policy and integrated security management on IPsec-based Internet security system.Keywords: IDS, IPS, IP-Sec, IPv6, IPv4, VPN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4542377 A Modular On-line Profit Sharing Approach in Multiagent Domains
Authors: Pucheng Zhou, Bingrong Hong
Abstract:
How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446376 Soft-Sensor for Estimation of Gasoline Octane Number in Platforming Processes with Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
Authors: Hamed.Vezvaei, Sepideh.Ordibeheshti, Mehdi.Ardjmand
Abstract:
Gasoline Octane Number is the standard measure of the anti-knock properties of a motor in platforming processes, that is one of the important unit operations for oil refineries and can be determined with online measurement or use CFR (Cooperative Fuel Research) engines. Online measurements of the Octane number can be done using direct octane number analyzers, that it is too expensive, so we have to find feasible analyzer, like ANFIS estimators. ANFIS is the systems that neural network incorporated in fuzzy systems, using data automatically by learning algorithms of NNs. ANFIS constructs an input-output mapping based both on human knowledge and on generated input-output data pairs. In this research, 31 industrial data sets are used (21 data for training and the rest of the data used for generalization). Results show that, according to this simulation, hybrid method training algorithm in ANFIS has good agreements between industrial data and simulated results.Keywords: Adaptive Neuro-Fuzzy Inference Systems, GasolineOctane Number, Soft-sensor, Catalytic Naphtha Reforming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194375 Spatial Disparity in Education and Medical Facilities: A Case Study of Barddhaman District, West Bengal, India
Authors: Amit Bhattacharyya
Abstract:
The economic scenario of any region does not show the real picture for the measurement of overall development. Therefore, economic development must be accompanied by social development to be able to make an assessment to measure the level of development. The spatial variation with respect to social development has been discussed taking into account the quality of functioning of a social system in a specific area. In this paper, an attempt has been made to study the spatial distribution of social infrastructural facilities and analyze the magnitude of regional disparities at inter- block level in Barddhman district. It starts with the detailed account of the selection process of social infrastructure indicators and describes the methodology employed in the empirical analysis. Analyzing the block level data, this paper tries to identify the disparity among the blocks in the levels of social development. The results have been subsequently explained using both statistical analysis and geo spatial technique. The paper reveals that the social development is not going on at the same rate in every part of the district. Health facilities and educational facilities are concentrated at some selected point. So overall development activities come to be concentrated in a few centres and the disparity is seen over the blocks.
Keywords: Disparity, inter-block, social development, spatial variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645374 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377373 Visualization and Indexing of Spectral Databases
Authors: Tibor Kulcsar, Gabor Sarossy, Gabor Bereznai, Robert Auer, Janos Abonyi
Abstract:
On-line (near infrared) spectroscopy is widely used to support the operation of complex process systems. Information extracted from spectral database can be used to estimate unmeasured product properties and monitor the operation of the process. These techniques are based on looking for similar spectra by nearest neighborhood algorithms and distance based searching methods. Search for nearest neighbors in the spectral space is an NP-hard problem, the computational complexity increases by the number of points in the discrete spectrum and the number of samples in the database. To reduce the calculation time some kind of indexing could be used. The main idea presented in this paper is to combine indexing and visualization techniques to reduce the computational requirement of estimation algorithms by providing a two dimensional indexing that can also be used to visualize the structure of the spectral database. This 2D visualization of spectral database does not only support application of distance and similarity based techniques but enables the utilization of advanced clustering and prediction algorithms based on the Delaunay tessellation of the mapped spectral space. This means the prediction has not to use the high dimension space but can be based on the mapped space too. The results illustrate that the proposed method is able to segment (cluster) spectral databases and detect outliers that are not suitable for instance based learning algorithms.
Keywords: indexing high dimensional databases, dimensional reduction, clustering, similarity, k-nn algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769372 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.
Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389