Search results for: Thai character recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1180

Search results for: Thai character recognition

1060 Traditional Thai Musical Instrument for Tablet Computer– Ranaad EK

Authors: Kasikrit Damkliang, Athiwat Thongnuan, Suppakit Chanlert

Abstract:

This paper proposes an architectural and graphical user interface (GUI) design of a traditional Thai musical instrument application for tablet computers for practicing “Ranaad Ek" which is a trough-resonated keyboard percussion instrument. The application provides percussion methods for a player as real as a physical instrument. The application consists of two playing modes. The first mode is free playing, a player can freely multi touches on wooden bar to produce instrument sounds. The second mode is practicing mode that guilds the player to follow percussions and rhythms of practice songs. The application has achieved requirements and specifications.

Keywords: Architectural software design, GUI; traditional Thai musical instrument, percussion instrument

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
1059 Recognizing an Individual, Their Topic of Conversation, and Cultural Background from 3D Body Movement

Authors: Gheida J. Shahrour, Martin J. Russell

Abstract:

The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that intersubject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.

Keywords: Person Recognition, Topic Recognition, Culture Recognition, 3D Body Movement Signals, Variability Compensation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
1058 The Study of Idiom Translation in Fiction from English into Thai

Authors: Chinchira Bunchutrakun

Abstract:

The purposes of the study are to investigate the problems that the translators encountered when translating English idioms into Thai and study the strategies they applied in solving the problems. The original English version and the Thai translated version of each of two works of fiction were purposively selected for the study. The first was Mr. Maybe, written by Jane Green and translated by Montharat Songphao. The second was The Trials of Tiffany Trott, written by Isabel Wolff and translated by Jitraporn Notoda. Thirty idioms of two translated works of fiction were, then, analyzed. Questionnaires and interviews with the translators of each novel were conducted to obtain the best possible information.

The results indicated that the only type of problem that occurred was cultural problems, and these were solved differently by the two translators

Keywords: Translation, idiom translation, fiction translation, problem-solution strategies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3557
1057 Constructing of Classifier for Face Recognition on the Basis of the Conjugation Indexes

Authors: Vladimir A. Fursov, Nikita E. Kozin

Abstract:

In this work the opportunity of construction of the qualifiers for face-recognition systems based on conjugation criteria is investigated. The linkage between the bipartite conjugation, the conjugation with a subspace and the conjugation with the null-space is shown. The unified solving rule is investigated. It makes the decision on the rating of face to a class considering the linkage between conjugation values. The described recognition method can be successfully applied to the distributed systems of video control and video observation.

Keywords: Conjugation, Eigenfaces, Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1056 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering

Authors: Elizabeth B. Varghese, M. Wilscy

Abstract:

A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.

Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
1055 A Causal Model for Environmental Design of Residential Community for Elderly Well-Being in Thailand

Authors: Porntip Ruengtam

Abstract:

This article is an extension of previous research presenting the relevant factors related to environmental perceptions, residential community, and the design of a healing environment, which have effects on the well-being and requirements of Thai elderly. Research methodology began with observations and interviews in three case studies in terms of the management processes and environment design of similar existing projects in Thailand. The interview results were taken to summarize with related theories and literature. A questionnaire survey was designed for data collection to confirm the factors of requirements in a residential community intended for the Thai elderly. A structural equation model (SEM) was formulated to explain the cause-effect factors for the requirements of a residential community for Thai elderly. The research revealed that the requirements of a residential community for Thai elderly were classified into three groups when utilizing a technique for exploratory factor analysis. The factors were comprised of (1) requirements for general facilities and activities, (2) requirements for facilities related to health and security, and (3) requirements for facilities related to physical exercise in the residential community. The results from the SEM showed the background of elderly people had a direct effect on their requirements for a residential community from various aspects. The results should lead to the formulation of policies for design and management of residential communities for the elderly in order to enhance quality of life as well as both the physical and mental health of the Thai elderly.

Keywords: Elderly, environmental design, residential community, structural equation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
1054 The Management of Media Literacy Development for Thai Students

Authors: Supranee Wattanasin

Abstract:

The purpose of this research was to enhance student’s media literacy. The process was divided into 4 periods: the first phase was to hold the meeting for 100 representatives from various institutions in Thailand; the second phase allowed them to design activities to be used in their institutions; the third implemented activities to reach other target groups; and the last phase was to summarize results. It was found that the participants had clear understanding on media literacy. They knew well about the media. In other words, they knew the difference between creative media and bad ones. Students could use analytical process when searching for information. Thus, the project enabled the students to use analytical thinking skills in designing new activities. Therefore, they could creatively integrate Thai folk song with short movies and cartoons. To increase students’ media literacy, there should be chances for them to gain first-hand experience.

Keywords: Management, development, media literacy, Thai students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
1053 Developing Safety Behavior Practice Suitable for Thai Industrial Operators

Authors: Lertchai Ratana-Arporn, Aphisith Angkhanit

Abstract:

The objective of this study was to develop safety practices which is suitable for Thai industrial operators from Incident and Injury Free, IIF to create safety behavior and reduce the un-safe records in the petroleum industry. A number of 310 technicians i.e., 295 males and 15 females, in service maintenance section participated in this program. The safety attitude level and safety behavior level for pre-attended and post-attended the developed safety practices of the technicians were evaluated using questionnaire procedure and on-site observation. After applied the developed practice program, both of the safety attitudes and safety behavior were increased to be at very good level and good level, respectively. Evaluating the follow-up unsafe records, it was found that the injury was reduced from 0.11 to 0 case/month, the medical treatment case was reduced from 0.22 to 0 case/month and the first aid case was reduced from 1 to 0.33 case/month. The developed safety working practice was successfully implemented to Thai industrial operators.

Keywords: Incident and Injury Free, safety practices, Thai industrial operators, "WeCare".

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
1052 A Recognition Method for Spatio-Temporal Background in Korean Historical Novels

Authors: Seo-Hee Kim, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels.

Keywords: Data mining, Korean historical novels, Korean linguistic feature, spatio-temporal background.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1123
1051 Enhanced Face Recognition with Daisy Descriptors Using 1BT Based Registration

Authors: Sevil Igit, Merve Meric, Sarp Erturk

Abstract:

In this paper, it is proposed to improve Daisy Descriptor based face recognition using a novel One-Bit Transform (1BT) based pre-registration approach. The 1BT based pre-registration procedure is fast and has low computational complexity. It is shown that the face recognition accuracy is improved with the proposed approach. The proposed approach can facilitate highly accurate face recognition using DAISY descriptor with simple matching and thereby facilitate a low-complexity approach.

Keywords: Face Recognition, Daisy Descriptor, One-Bit Transform, Image Registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
1050 Estimating Word Translation Probabilities for Thai – English Machine Translation using EM Algorithm

Authors: Chutchada Nusai, Yoshimi Suzuki, Haruaki Yamazaki

Abstract:

Selecting the word translation from a set of target language words, one that conveys the correct sense of source word and makes more fluent target language output, is one of core problems in machine translation. In this paper we compare the 3 methods of estimating word translation probabilities for selecting the translation word in Thai – English Machine Translation. The 3 methods are (1) Method based on frequency of word translation, (2) Method based on collocation of word translation, and (3) Method based on Expectation Maximization (EM) algorithm. For evaluation we used Thai – English parallel sentences generated by NECTEC. The method based on EM algorithm is the best method in comparison to the other methods and gives the satisfying results.

Keywords: Machine translation, EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
1049 Artificial Intelligence Techniques applied to Biomedical Patterns

Authors: Giovanni Luca Masala

Abstract:

Pattern recognition is the research area of Artificial Intelligence that studies the operation and design of systems that recognize patterns in the data. Important application areas are image analysis, character recognition, fingerprint classification, speech analysis, DNA sequence identification, man and machine diagnostics, person identification and industrial inspection. The interest in improving the classification systems of data analysis is independent from the context of applications. In fact, in many studies it is often the case to have to recognize and to distinguish groups of various objects, which requires the need for valid instruments capable to perform this task. The objective of this article is to show several methodologies of Artificial Intelligence for data classification applied to biomedical patterns. In particular, this work deals with the realization of a Computer-Aided Detection system (CADe) that is able to assist the radiologist in identifying types of mammary tumor lesions. As an additional biomedical application of the classification systems, we present a study conducted on blood samples which shows how these methods may help to distinguish between carriers of Thalassemia (or Mediterranean Anaemia) and healthy subjects.

Keywords: Computer Aided Detection, mammary tumor, pattern recognition, thalassemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
1048 An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits

Authors: Ahmad T. Al-Taani

Abstract:

In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. After reading the digit from the user, the slope is estimated and normalized for adjacent nodes. Based on the changing of signs of the slope values, the primitives are identified and extracted. The names of these primitives are represented by strings, and then a finite state machine, which contains the grammars of the digits, is traced to identify the digit. Finally, if there is any ambiguity, it will be resolved. Experiments showed that this technique is flexible and can achieve high recognition accuracy for the shapes of the digits represented in this work.

Keywords: Digits Recognition, Pattern Recognition, FeatureExtraction, Structural Primitives, Document Processing, Handwritten Recognition, Primitives Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
1047 Improved Weighted Matching for Speaker Recognition

Authors: Ozan Mut, Mehmet Göktürk

Abstract:

Matching algorithms have significant importance in speaker recognition. Feature vectors of the unknown utterance are compared to feature vectors of the modeled speakers as a last step in speaker recognition. A similarity score is found for every model in the speaker database. Depending on the type of speaker recognition, these scores are used to determine the author of unknown speech samples. For speaker verification, similarity score is tested against a predefined threshold and either acceptance or rejection result is obtained. In the case of speaker identification, the result depends on whether the identification is open set or closed set. In closed set identification, the model that yields the best similarity score is accepted. In open set identification, the best score is tested against a threshold, so there is one more possible output satisfying the condition that the speaker is not one of the registered speakers in existing database. This paper focuses on closed set speaker identification using a modified version of a well known matching algorithm. The results of new matching algorithm indicated better performance on YOHO international speaker recognition database.

Keywords: Automatic Speaker Recognition, Voice Recognition, Pattern Recognition, Digital Audio Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
1046 The Yak of Thailand: Folk Icons Transcending Culture, Religion, and Media

Authors: David M. Lucas, Charles W. Jarrett

Abstract:

In the culture of Thailand, the Yak serve as a mediated icon representing strength, power, and mystical protection not only for the Buddha, but for population of worshipers. Originating from the forests of China, the Yak continues to stand guard at the gates of Buddhist temples. The Yak represents Thai culture in the hearts of Thai people. This paper presents a qualitative study regarding the curious mix of media, culture, and religion that projects the Yak of Thailand as a larger than life message throughout the political, cultural, and religious spheres. The gate guardians, or gods as they are sometimes called, appear throughout the religious temples of Asian cultures. However, the Asian cultures demonstrate differences in artistic renditions (or presentations) of such sentinels. Thailand gate guards (the Yak) stand in front of many Buddhist temples, and these iconic figures display unique features with varied symbolic significance. The temple (or wat), plays a vital role in every community; and, for many people, Thailand’s temples are the country’s most endearing sights. The authors applied folknography as a methodology to illustrate the importance of the Thai Yak in serving as meaningful icons that transcend not only time, but the culture, religion, and mass media. The Yak represents mythical, religious, artistic, cultural, and militaristic significance for the Thai people. Data collection included interviews, focus groups, and natural observations. This paper summarizes the perceptions of the Thai people concerning their gate sentries and the relationship, communication, connection, and the enduring respect that Thai people hold for their guardians of the gates.

Keywords: Communication, Culture, Folknography, Icon, Image, Media, Protection, Religion, Yak.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9775
1045 An Investigation of Customers’ Perception and Attitude towards Krung Thai Bank in Thailand

Authors: Phatthanan Chaiyabut

Abstract:

The purposes of this research were to identify the perception of customers towards Krung Thai Bank’s image and to understand the customer attitude towards Krung Thai Bank’s image in Bangkok, Thailand. This research utilized quantitative approach and used questionnaire as data collection tool. A sample size of 420 respondents was selected by simple random sampling. The findings revealed that the majority of respondents received information, news, and feeds concerning the bank through televisions the most. This information channel had significantly influenced on the customers and their decisions to utilize the bank’s products and services.

From the information concerning the attitudes towards overall image of the bank, it was found that the majority respondents rated the bank’s image at the good level. The top three average attitudes included the bank’s images in supports government's monetary policies, being renowned and stable, and contributing in economical amendments and developments, with the mean average of 4.01, 3.96 and 3.81 respectively. The attitudes toward the images included a business leader in banking, marketing, and competitions. Offering prompt services, and provided appropriate servicing time were rated moderate with the attitudes of 3.36 and 3.30 respectively.

Keywords: Attitude, Image, Krung Thai bank, Perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
1044 An Amalgam Approach for DICOM Image Classification and Recognition

Authors: J. Umamaheswari, G. Radhamani

Abstract:

This paper describes about the process of recognition and classification of brain images such as normal and abnormal based on PSO-SVM. Image Classification is becoming more important for medical diagnosis process. In medical area especially for diagnosis the abnormality of the patient is classified, which plays a great role for the doctors to diagnosis the patient according to the severeness of the diseases. In case of DICOM images it is very tough for optimal recognition and early detection of diseases. Our work focuses on recognition and classification of DICOM image based on collective approach of digital image processing. For optimal recognition and classification Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Support Vector Machine (SVM) are used. The collective approach by using PSO-SVM gives high approximation capability and much faster convergence.

Keywords: Recognition, classification, Relaxed Median Filter, Adaptive thresholding, clustering and Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
1043 Advances in Artificial Intelligence Using Speech Recognition

Authors: Khaled M. Alhawiti

Abstract:

This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.

Keywords: Speech recognition, acoustic phonetic, artificial intelligence, Hidden Markov Models (HMM), statistical models of speech recognition, human machine performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7978
1042 Face Recognition Using Double Dimension Reduction

Authors: M. A Anjum, M. Y. Javed, A. Basit

Abstract:

In this paper a new approach to face recognition is presented that achieves double dimension reduction making the system computationally efficient with better recognition results. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results improve with increase in face image resolution and levels off when arriving at a certain resolution level. In the proposed model of face recognition, first image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to better computational speed and feature extraction potential of Discrete Cosine Transform (DCT) it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A trade of between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL database, Yale database and a color database. The proposed technique has performed much better compared to other techniques. The significance of the model is two fold: (1) dimension reduction up to an effective and suitable face image resolution (2) appropriate DCT coefficients are retained to achieve best recognition results with varying image poses, intensity and illumination level.

Keywords: Biometrics, DCT, Face Recognition, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1041 Probabilistic Bayesian Framework for Infrared Face Recognition

Authors: Moulay A. Akhloufi, Abdelhakim Bendada

Abstract:

Face recognition in the infrared spectrum has attracted a lot of interest in recent years. Many of the techniques used in infrared are based on their visible counterpart, especially linear techniques like PCA and LDA. In this work, we introduce a probabilistic Bayesian framework for face recognition in the infrared spectrum. In the infrared spectrum, variations can occur between face images of the same individual due to pose, metabolic, time changes, etc. Bayesian approaches permit to reduce intrapersonal variation, thus making them very interesting for infrared face recognition. This framework is compared with classical linear techniques. Non linear techniques we developed recently for infrared face recognition are also presented and compared to the Bayesian face recognition framework. A new approach for infrared face extraction based on SVM is introduced. Experimental results show that the Bayesian technique is promising and lead to interesting results in the infrared spectrum when a sufficient number of face images is used in an intrapersonal learning process.

Keywords: Face recognition, biometrics, probabilistic imageprocessing, infrared imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
1040 Performance Improvement of Moving Object Recognition and Tracking Algorithm using Parallel Processing of SURF and Optical Flow

Authors: Jungho Choi, Youngwan Cho

Abstract:

The paper proposes a way of parallel processing of SURF and Optical Flow for moving object recognition and tracking. The object recognition and tracking is one of the most important task in computer vision, however disadvantage are many operations cause processing speed slower so that it can-t do real-time object recognition and tracking. The proposed method uses a typical way of feature extraction SURF and moving object Optical Flow for reduce disadvantage and real-time moving object recognition and tracking, and parallel processing techniques for speed improvement. First analyse that an image from DB and acquired through the camera using SURF for compared to the same object recognition then set ROI (Region of Interest) for tracking movement of feature points using Optical Flow. Secondly, using Multi-Thread is for improved processing speed and recognition by parallel processing. Finally, performance is evaluated and verified efficiency of algorithm throughout the experiment.

Keywords: moving object recognition, moving object tracking, SURF, Optical Flow, Multi-Thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
1039 Automatic Recognition of Emotionally Coloured Speech

Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou

Abstract:

Emotion in speech is an issue that has been attracting the interest of the speech community for many years, both in the context of speech synthesis as well as in automatic speech recognition (ASR). In spite of the remarkable recent progress in Large Vocabulary Recognition (LVR), it is still far behind the ultimate goal of recognising free conversational speech uttered by any speaker in any environment. Current experimental tests prove that using state of the art large vocabulary recognition systems the error rate increases substantially when applied to spontaneous/emotional speech. This paper shows that recognition rate for emotionally coloured speech can be improved by using a language model based on increased representation of emotional utterances.

Keywords: Statistical language model, N-grams, emotionallycoloured speech

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
1038 Wood Species Recognition System

Authors: Bremananth R, Nithya B, Saipriya R

Abstract:

The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.

Keywords: Correlation, Grey Level Co-Occurrence Matrix, ProbabilityDensity Function, Wood Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
1037 Firm Performance of Thai Cuisines in Bangkok, Thailand: Contribution to the Tourism Industry

Authors: Prateep Wajeetongratana

Abstract:

This study is a descriptive-normative research. It attempted to investigate the restaurants’ firm performance in terms of the customers and restaurant personnel’s degree of satisfaction. A total of 12 restaurants in Bangkok, Thailand that offer Thai cuisine were included in this study. It involved 24 stockholders/managers, 120 subordinates and 360 customers. General Managers and restaurants’ stockholders, 10 staffs, and 30 costumers for each restaurant were chosen for random sampling. This study found that respondents are slightly satisfied with their work environment but are generally satisfied with the accessibility to transportation, to malls, convenience, safety, recreation, noise-free, and attraction; customers find the Quality of Food in most Thai Cuisines like services, prices of food, sales promotion, and capital and length of service satisfactory. Therefore, both stockholder-related and personnel-related factors which are influenced by restaurant, personnel, and customer-related factors are partially accepted whereas; customer-related factors which are influenced by restaurant, personnel and customer-related factors are rejected.

Keywords: Firm performance, Thai Cuisine, Tourism industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241
1036 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: Extreme learning, LIRA neural classifier, speaker identification, voice recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
1035 Antibacterial Activity of Ethanol Extract from Some Thai Medicinal Plants against Campylobacter Jejuni

Authors: Achara Dholvitayakhun, Nathanon Trachoo

Abstract:

In this study, the forty Thai medicinal plants were used to screen the antibacterial activity against Campylobacter jejuni. Crude 95% ethanolic extracts of each plant were prepared. Antibacterial activity was investigated by the disc diffusion assay, and MICs and MBCs were determined by broth microdilution. The results of antibacterial screening showed that five plants have activity against C.jejuni including Adenanthera pavonina L., Moringa oleifera Lam., Annona squamosa L., Hibiscus sabdariffa L. and Eupotorium odortum L. The extraction of A. pavonina L. and A. squamosa L. produced an outstanding against C. jejuni, inhibiting growth at 62.5-125 and 250-500 μg/mL, respectively. The MBCs of two extracts were just 4-fold higher than MICs against C. jejuni, suggesting the extracts are bactericidal against this species. These results indicate that A. pavonina and A. squamosa could potentially be used in modern applications aimed at treatment or prevention of foodborne disease from C. jejuni.

Keywords: Antibacterial activity, Thai medicinal plants, Campylobacter jejuni

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
1034 Distributional Semantics Approach to Thai Word Sense Disambiguation

Authors: Sunee Pongpinigpinyo, Wanchai Rivepiboon

Abstract:

Word sense disambiguation is one of the most important open problems in natural language processing applications such as information retrieval and machine translation. Many approach strategies can be employed to resolve word ambiguity with a reasonable degree of accuracy. These strategies are: knowledgebased, corpus-based, and hybrid-based. This paper pays attention to the corpus-based strategy that employs an unsupervised learning method for disambiguation. We report our investigation of Latent Semantic Indexing (LSI), an information retrieval technique and unsupervised learning, to the task of Thai noun and verbal word sense disambiguation. The Latent Semantic Indexing has been shown to be efficient and effective for Information Retrieval. For the purposes of this research, we report experiments on two Thai polysemous words, namely  /hua4/ and /kep1/ that are used as a representative of Thai nouns and verbs respectively. The results of these experiments demonstrate the effectiveness and indicate the potential of applying vector-based distributional information measures to semantic disambiguation.

Keywords: Distributional semantics, Latent Semantic Indexing, natural language processing, Polysemous words, unsupervisedlearning, Word Sense Disambiguation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
1033 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: Face recognition, Binary vector quantization (BVQ), Local Binary Patterns (LBP), DCT coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1032 A New Pattern for Handwritten Persian/Arabic Digit Recognition

Authors: A. Harifi, A. Aghagolzadeh

Abstract:

The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.

Keywords: Pattern recognition, Persian digits, NeuralNetwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
1031 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709