Search results for: upper tail dependence coefficient.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1538

Search results for: upper tail dependence coefficient.

158 Effects of Sea Water Level Fluctuations on Seismic Response of Jacket Type Offshore Platforms

Authors: M. Rad, M. Dolatshahi Pirooz, M. Esmayili

Abstract:

To understand the seismic behavior of the offshore structures, the dynamic interaction of the water-structure-soil should be assessed. In this regard the role of the water dynamic properties in magnifying or reducing of the effects of earthquake induced motions on offshore structures haven't been investigated in precise manner in available literature. In this paper the sea water level fluctuations effects on the seismic behavior of a sample of offshore structures has been investigated by emphasizing on the water-structure interaction phenomenon. For this purpose a two dimensional finite element model of offshore structures as well as surrounded water has been developed using ANSYS software. The effect of soil interaction with embedded pile foundation has been imposed by using a series of nonlinear springs in horizontal and vertical directions in soil-piles contact points. In the model, the earthquake induced motions have been applied on springs and consequently the motions propagated upward to the structure and surrounded water. As a result of numerical study, the horizontal deformations of the offshore deck as well as internal force and buckling coefficient in structural elements have been recorded and controlled with and without water presence. In part of study a parametric study has been accomplished on sea water level fluctuations and effect of this parameter has been studied on the aforementioned numerical results.

Keywords: Fluid-Structure Interaction, Jacket, Sea Water Level, Seismic Loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2059
157 Development and Initial Validation of the Social Competency Inventory for Tertiary Level Faculty Members

Authors: Glenn M. Calaguas, Carmela S. Dizon

Abstract:

This study aimed to develop and initially validate an instrument that measures social competency among tertiary level faculty members. A review of extant literature on social competence was done. The review of extant literature led to the writing of the items in the initial instrument which was evaluated by 11 Subject Matter Experts (SMEs). The SMEs were either educators or psychologists. The results of the evaluations done by the SMEs served as bases for the creation of the pre-try-out instrument used in the first trial-run. Insights from the first trial-run participants led to the development of the main try-out instrument used in the final test administration. One Hundred Forty-one participants from five private Higher Education Institutions (HEIs) in the National Capital Region (NCR) and five private HEIs in Central Luzon in the Philippines participated in the final test administration. The reliability of the instrument was evaluated using Cronbach-s Coefficient Alpha formula and had a Cronbach-s Alpha of 0.92. On the other hand, Factor Analysis was used to evaluate the validity of the instrument and six factors were identified. The development of the final instrument was based on the results of the evaluation of the instrument-s reliability and validity. For purposes of recognition, the instrument was named “Social Competency Inventory for Tertiary Level Faculty Members (SCI-TLFM)."

Keywords: development, initial validation, social competency, tertiary level faculty members

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
156 Numerical Simulation of Flow Past an Infinite Row of Equispaced Square Cylinders Using the Multi- Relaxation-Time Lattice Boltzmann Method

Authors: S. Ul. Islam, H. Rahman, W. S. Abbasi, N. Rathore

Abstract:

In this research numerical simulations are performed, using the multi-relaxation-time lattice Boltzmann method, in the range 3 ≤ β = w[d] ≤ 30 at Re = 100, 200 and 300, where β the blockage ratio, w is the equispaced distance between centers of cylinders, d is the diameter of the cylinder and Re is the Reynolds number, respectively. Special attention is paid to the effect of the equispaced distance between centers of cylinders. Visualization of the vorticity contour visualization are presented for some simulation showing the flow dynamics and patterns for blockage effect. Results show that the drag and mean drag coefficients, and Strouhal number, in general, decrease with the increase of β for fixed Re. It is found that the decreasing rate of drag and mean drag coefficients and Strouhal number is more distinct in the range 3 ≤ β ≤ 15. We found that when β > 15, the blockage effect almost diminishes. Our results further indicate that the drag and mean drag coefficients, peak value of the lift coefficient, root-mean-square value of the lift and drag coefficients and the ratio between lift and drag coefficients decrease with the increase of Re. The results indicate that symmetry boundary condition have more blockage effect as compared to periodic boundary condition.

Keywords: Blockage ratio, Multi-relaxation-time lattice Boltzmann method, Square cylinder, Vortex formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
155 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto hydrodynamic boundary layer flow of a nanofluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nanothermal layer formed around the nanoparticle and Brownian motion of nanoparticles etc., appropriate models are used for the effective thermal and physical properties of nanofluids. To model the rotation of nanoparticles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that, the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: Heat transfer, Heat pipe, numerical modeling, nanofluid applications, particle swarm optimization, wedge shaped wick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2283
154 Numerical Investigation of Dynamic Stall over a Wind Turbine Pitching Airfoil by Using OpenFOAM

Authors: Mahbod Seyednia, Shidvash Vakilipour, Mehran Masdari

Abstract:

Computations for two-dimensional flow past a stationary and harmonically pitching wind turbine airfoil at a moderate value of Reynolds number (400000) are carried out by progressively increasing the angle of attack for stationary airfoil and at fixed pitching frequencies for rotary one. The incompressible Navier-Stokes equations in conjunction with Unsteady Reynolds Average Navier-Stokes (URANS) equations for turbulence modeling are solved by OpenFOAM package to investigate the aerodynamic phenomena occurred at stationary and pitching conditions on a NACA 6-series wind turbine airfoil. The aim of this study is to enhance the accuracy of numerical simulation in predicting the aerodynamic behavior of an oscillating airfoil in OpenFOAM. Hence, for turbulence modelling, k-ω-SST with low-Reynolds correction is employed to capture the unsteady phenomena occurred in stationary and oscillating motion of the airfoil. Using aerodynamic and pressure coefficients along with flow patterns, the unsteady aerodynamics at pre-, near-, and post-static stall regions are analyzed in harmonically pitching airfoil, and the results are validated with the corresponding experimental data possessed by the authors. The results indicate that implementing the mentioned turbulence model leads to accurate prediction of the angle of static stall for stationary airfoil and flow separation, dynamic stall phenomenon, and reattachment of the flow on the surface of airfoil for pitching one. Due to the geometry of the studied 6-series airfoil, the vortex on the upper surface of the airfoil during upstrokes is formed at the trailing edge. Therefore, the pattern flow obtained by our numerical simulations represents the formation and change of the trailing-edge vortex at near- and post-stall regions where this process determines the dynamic stall phenomenon.

Keywords: CFD, Moderate Reynolds number, OpenFOAM, pitching oscillation, unsteady aerodynamics, wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
153 Strong Adhesion and High Wettability at Polyetheretherketone-Resin/Titanium-Dioxide Interface Obtained with Crystal-Orientation Control

Authors: Tomio Iwasaki, Yosuke Kawahito

Abstract:

The adhesion strength and wettability at the interfaces between a polyetheretherketone (PEEK) resin and titanium dioxide (TiO2) have become more important because direct joining of PEEK resin and titanium (Ti), whose surface has usually the oxide (TiO2), is needed not only in vehicles such as airplanes, automobiles, and space vehicles, but also in medical devices such as implants. To realize strong joint between the PEEK resin and TiO2, the dependence of the adhesion strength and wettability on crystal orientations of rutile TiO2 were investigated by using molecular simulations. Molecular dynamics simulations were conducted by combining quantum-mechanics equation of electrons with Newton’s equation of motion of nuclear coordinates (atomic coordinates). By putting a PEEK-resin sphere on a rutile TiO2 surface and by heating the system to 650 K, the contact angles at the interfaces were calculated to evaluate the wettability. After the system is cooled to 300 K from 650 K, to evaluate the adhesin strength, the adhesive fracture energy is calculated as the difference between the energy of the PEEK-TiO2 attached state and that of the PEEK-TiO2 detached state. The results of the contact angles showed that PEEK resin on the TiO2(100) and that on the TiO2(001) surface has low wettability with large contact angles. On the other hand, PEEK resin on the TiO2(110) surface has high wettability with a small contact angle. The results of the adhesive fracture energies showed that the adhesion at the PEEK-resin/TiO2(100) and PEEK-resin/TiO2(001) interfaces are weak. On the other hand, the adhesion at the PEEK-resin/TiO2(110) interface is strong. To clarify the reason that the higher wettability and stronger adhesion are obtained at the PEEK/TiO2(110) interface than at the at the PEEK/TiO2(100) and PEEK/TiO2(001) interfaces, atomic configurations at the interfaces were visualized. The atomic configuration at the PEEK/TiO2(110) interface showed that the lattice-matched coherent interface is realized, and the atomic density is high. On the other hand, the atomic configuration at the PEEK/TiO2(001) interface showed the lattice-unmatched incoherent interface. The atomic configuration at the PEEK/TiO2(100) interface showed that the atomic density is very low although the lattice-matched interface is realized. Therefore, the lattice matching and the high atomic density at the PEEK/TiO2(001) interface are considered to be dominant factors in the high wettability and strong adhesion.

Keywords: Adhesion, direct joining, PEEK, TiO2, wettability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389
152 Unsteady Flow of an Incompressible Elastico-Viscous Fluid of Second order Type in Tube of Ellipsoidal Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous fluid through a porous media in a tube of ellipsoidal cross section under the influence of constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of ellipsoidal cross section by taking into account of the porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K) and elastico-viscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Ellipsoidal cross-section, Porous media, Second order fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
151 The Development of a Teachers- Self-Efficacy Instrument for High School Physical Education Teacher

Authors: Yi-Hsiang Pan

Abstract:

The purpose of this study was to develop a “teachers’ self-efficacy scale for high school physical education teachers (TSES-HSPET)” in Taiwan. This scale is based on the self-efficacy theory of Bandura [1], [2]. This study used exploratory and confirmatory factor analyses to test the reliability and validity. The participants were high school physical education teachers in Taiwan. Both stratified random sampling and cluster sampling were used to sample participants for the study. 350 teachers were sampled in the first stage and 234 valid scales (male 133, female 101) returned. During the second stage, 350 teachers were sampled and 257 valid scales (male 143, female 110, 4 did not indicate gender) returned. The exploratory factor analysis was used in the first stage, and it got 60.77% of total variance for construct validity. The Cronbach’s alpha coefficient of internal consistency was 0.91 for sumscale, and subscales were 0.84 and 0.90. In the second stage, confirmatory factor analysis was used to test construct validity. The result showed that the fit index could be accepted (χ2 (75) =167.94, p <.05, RMSEA =0.07, SRMR=0.05, GFI=0.92, NNFI=0.97, CFI=0.98, PNFI=0.79). Average variance extracted of latent variables were 0.43 and 0.53, which composite reliability are 0.78 and 0.90. It is concluded that the TSES-HSPET is a well-considered measurement instrument with acceptable validity and reliability. It may be used to estimate teachers’ self-efficacy for high school physical education teachers.

Keywords: teaching in physical education, teacher's self-efficacy, teacher's belief

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3159
150 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: Butterfly valve, fluid-structure interaction, automatic CFD analysis, flow coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
149 Numerical Investigation of Non Fourier Heat Conduction in a Semi-infinite Body due to a Moving Concentrated Heat Source Composed with Radiational Boundary Condition

Authors: M. Akbari, S. Sadodin

Abstract:

In this paper, the melting of a semi-infinite body as a result of a moving laser beam has been studied. Because the Fourier heat transfer equation at short times and large dimensions does not have sufficient accuracy; a non-Fourier form of heat transfer equation has been used. Due to the fact that the beam is moving in x direction, the temperature distribution and the melting pool shape are not asymmetric. As a result, the problem is a transient threedimensional problem. Therefore, thermophysical properties such as heat conductivity coefficient, density and heat capacity are functions of temperature and material states. The enthalpy technique, used for the solution of phase change problems, has been used in an explicit finite volume form for the hyperbolic heat transfer equation. This technique has been used to calculate the transient temperature distribution in the semi-infinite body and the growth rate of the melt pool. In order to validate the numerical results, comparisons were made with experimental data. Finally, the results of this paper were compared with similar problem that has used the Fourier theory. The comparison shows the influence of infinite speed of heat propagation in Fourier theory on the temperature distribution and the melt pool size.

Keywords: Non-Fourier, Enthalpy technique, Melt pool, Radiational boundary condition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
148 Simulation and Statistical Analysis of Motion Behavior of a Single Rockfall

Authors: Iau-Teh Wang, Chin-Yu Lee

Abstract:

The impact force of a rockfall is mainly determined by its moving behavior and velocity, which are contingent on the rock shape, slope gradient, height, and surface roughness of the moving path. It is essential to precisely calculate the moving path of the rockfall in order to effectively minimize and prevent damages caused by the rockfall. By applying the Colorado Rockfall Simulation Program (CRSP) program as the analysis tool, this research studies the influence of three shapes of rock (spherical, cylindrical and discoidal) and surface roughness on the moving path of a single rockfall. As revealed in the analysis, in addition to the slope gradient, the geometry of the falling rock and joint roughness coefficient ( JRC ) of the slope are the main factors affecting the moving behavior of a rockfall. On a single flat slope, both the rock-s bounce height and moving velocity increase as the surface gradient increases, with a critical gradient value of 1:m = 1 . Bouncing behavior and faster moving velocity occur more easily when the rock geometry is more oval. A flat piece tends to cause sliding behavior and is easily influenced by the change of surface undulation. When JRC <1.4 the moving velocity decreases and the bounce height increases as JRC increases. If the gradient is fixed, when JRC is greater, the bounce height will be higher, while the moving velocity will experience a downward trend. Therefore, the best protecting point and facilities can be chosen if the moving paths of rockfalls are precisely estimated.

Keywords: rock shape, surface roughness, moving path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
147 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
146 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Controlled Release of Doxorubicin

Authors: Parisa Shirzadeh

Abstract:

Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, natural and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer method. graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of CS, the amino reaction was performed to form amide transplantation, and the DOX was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX were characterized by FT-IR and TGA to recognize new functional groups which show the new bonding of CS to GO, RAMA and SEM to recognize size of layers that show changing in size and number of layers. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.

Keywords: Graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182
145 A Novel Machining Signal Filtering Technique: Z-notch Filter

Authors: Nuawi M. Z., Lamin F., Ismail A. R., Abdullah S., Wahid Z.

Abstract:

A filter is used to remove undesirable frequency information from a dynamic signal. This paper shows that the Znotch filter filtering technique can be applied to remove the noise nuisance from a machining signal. In machining, the noise components were identified from the sound produced by the operation of machine components itself such as hydraulic system, motor, machine environment and etc. By correlating the noise components with the measured machining signal, the interested components of the measured machining signal which was less interfered by the noise, can be extracted. Thus, the filtered signal is more reliable to be analysed in terms of noise content compared to the unfiltered signal. Significantly, the I-kaz method i.e. comprises of three dimensional graphical representation and I-kaz coefficient, Z∞ could differentiate between the filtered and the unfiltered signal. The bigger space of scattering and the higher value of Z∞ demonstrated that the signal was highly interrupted by noise. This method can be utilised as a proactive tool in evaluating the noise content in a signal. The evaluation of noise content is very important as well as the elimination especially for machining operation fault diagnosis purpose. The Z-notch filtering technique was reliable in extracting noise component from the measured machining signal with high efficiency. Even though the measured signal was exposed to high noise disruption, the signal generated from the interaction between cutting tool and work piece still can be acquired. Therefore, the interruption of noise that could change the original signal feature and consequently can deteriorate the useful sensory information can be eliminated.

Keywords: Digital signal filtering, I-kaz method, Machiningmonitoring, Noise Cancelling, Sound

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
144 Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach

Authors: Manish K. Khandelwal, P. Bera, A. Chakrabarti

Abstract:

This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions.

Keywords: buoyancy ratio, mixed convection, non-Darcy model, thermal non-equilibrium

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
143 Modelling Phytoremediation Rates of Aquatic Macrophytes in Aquaculture Effluent

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

Pollutants from aquacultural practices constitute environmental problems and phytoremediation could offer cheaper environmentally sustainable alternative since equipment using advanced treatment for fish tank effluent is expensive to import, install, operate and maintain, especially in developing countries. The main objective of this research was, therefore, to develop a mathematical model for phytoremediation by aquatic plants in aquaculture wastewater. Other objectives were to evaluate the retention times on phytoremediation rates using the model and to measure the nutrient level of the aquaculture effluent and phytoremediation rates of three aquatic macrophytes, namely; water hyacinth (Eichornia crassippes), water lettuce (Pistial stratoites) and morning glory (Ipomea asarifolia). A completely randomized experimental design was used in the study. Approximately 100 g of each macrophyte were introduced into the hydroponic units and phytoremediation indices monitored at 8 different intervals from the first to the 28th day. The water quality parameters measured were pH and electrical conductivity (EC). Others were concentration of ammonium–nitrogen (NH4+ -N), nitrite- nitrogen (NO2- -N), nitrate- nitrogen (NO3- -N), phosphate –phosphorus (PO43- -P), and biomass value. The biomass produced by water hyacinth was 438.2 g, 600.7 g, 688.2 g and 725.7 g at four 7–day intervals. The corresponding values for water lettuce were 361.2 g, 498.7 g, 561.2 g and 623.7 g and for morning glory were 417.0 g, 567.0 g, 642.0 g and 679.5g. Coefficient of determination was greater than 80% for EC, TDS, NO2- -N, NO3- -N and 70% for NH4+ -N using any of the macrophytes and the predicted values were within the 95% confidence interval of measured values. Therefore, the model is valuable in the design and operation of phytoremediation systems for aquaculture effluent.

Keywords: Phytoremediation, macrophytes, hydroponic unit, aquaculture effluent, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
142 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: Cascade control, dynamic braking system, DC traction motors, slip control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
141 An Approximate Lateral-Torsional Buckling Mode Function for Cantilever I-Beams

Authors: H. Ozbasaran

Abstract:

Lateral torsional buckling is a global buckling mode which should be considered in design of slender structural members under flexure about their strong axis. It is possible to compute the load which causes lateral torsional buckling of a beam by finite element analysis, however, closed form equations are needed in engineering practice for calculation ease which can be obtained by using energy method. In lateral torsional buckling applications of energy method, a proper function for the critical lateral torsional buckling mode should be chosen which can be thought as the variation of twisting angle along the buckled beam. Accuracy of the results depends on how close is the chosen function to the exact mode. Since critical lateral torsional buckling mode of the cantilever I-beams varies due to material properties, section properties and loading case, the hardest step is to determine a proper mode function in application of energy method. This paper presents an approximate function for critical lateral torsional buckling mode of doubly symmetric cantilever I-beams. Coefficient matrices are calculated for concentrated load at free end, uniformly distributed load and constant moment along the beam cases. Critical lateral torsional buckling modes obtained by presented function and exact solutions are compared. It is found that the modes obtained by presented function coincide with differential equation solutions for considered loading cases.

Keywords: Buckling mode, cantilever, lateral-torsional buckling, I-beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2533
140 Removal of Volatile Organic Compounds from Contaminated Surfactant Solution using Co-Curren Vacuum Stripping

Authors: Pornchai Suriya-Amrit, Suratsawadee Kungsanant, Boonyarach Kitiyanan

Abstract:

There has been a growing interest in utilizing surfactants in remediation processes to separate the hydrophobic volatile organic compounds (HVOCs) from aqueous solution. One attractive process is cloud point extraction (CPE), which utilizes nonionic surfactants as a separating agent. Since the surfactant cost is a key determination of the economic viability of the process, it is important that the surfactants are recycled and reused. This work aims to study the performance of the co-current vacuum stripping using a packed column for HVOCs removal from contaminated surfactant solution. Six types HVOCs are selected as contaminants. The studied surfactant is the branched secondary alcohol ethoxylates (AEs), Tergitol TMN-6 (C14H30O2). The volatility and the solubility of HVOCs in surfactant system are determined in terms of an apparent Henry’s law constant and a solubilization constant, respectively. Moreover, the HVOCs removal efficiency of vacuum stripping column is assessed in terms of percentage of HVOCs removal and the overall liquid phase volumetric mass transfer coefficient. The apparent Henry’s law constant of benzenz , toluene, and ethyl benzene were 7.00×10-5, 5.38×10-5, 3.35× 10-5 respectively. The solubilization constant of benzene, toluene, and ethyl benzene were 1.71, 2.68, 7.54 respectively. The HVOCs removal for all solute were around 90 percent.

Keywords: Apparent Henry’s law constant, Branched secondary alcohol ethoxylates, Vacuum Stripping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
139 The Impact of Supply Chain Strategy and Integration on Supply Chain Performance: Supply Chain Vulnerability as a Moderator

Authors: Yi-Chun Kuo, Jo-Chieh Lin

Abstract:

The objective of a supply chain strategy is to reduce waste and increase efficiency to attain cost benefits, and to guarantee supply chain flexibility when facing the ever-changing market environment in order to meet customer requirements. Strategy implementation aims to fulfill common goals and attain benefits by integrating upstream and downstream enterprises, sharing information, conducting common planning, and taking part in decision making, so as to enhance the overall performance of the supply chain. With the rise of outsourcing and globalization, the increasing dependence on suppliers and customers and the rapid development of information technology, the complexity and uncertainty of the supply chain have intensified, and supply chain vulnerability has surged, resulting in adverse effects on supply chain performance. Thus, this study aims to use supply chain vulnerability as a moderating variable and apply structural equation modeling (SEM) to determine the relationships among supply chain strategy, supply chain integration, and supply chain performance, as well as the moderating effect of supply chain vulnerability on supply chain performance. The data investigation of this study was questionnaires which were collected from the management level of enterprises in Taiwan and China, 149 questionnaires were received. The result of confirmatory factor analysis shows that the path coefficients of supply chain strategy on supply chain integration and supply chain performance are positive (0.497, t= 4.914; 0.748, t= 5.919), having a significantly positive effect. Supply chain integration is also significantly positively correlated to supply chain performance (0.192, t = 2.273). The moderating effects of supply chain vulnerability on supply chain strategy and supply chain integration to supply chain performance are significant (7.407; 4.687). In Taiwan, 97.73% of enterprises are small- and medium-sized enterprises (SMEs) focusing on receiving original equipment manufacturer (OEM) and original design manufacturer (ODM) orders. In order to meet the needs of customers and to respond to market changes, these enterprises especially focus on supply chain flexibility and their integration with the upstream and downstream enterprises. According to the observation of this research, the effect of supply chain vulnerability on supply chain performance is significant, and so enterprises need to attach great importance to the management of supply chain risk and conduct risk analysis on their suppliers in order to formulate response strategies when facing emergency situations. At the same time, risk management is incorporated into the supply chain so as to reduce the effect of supply chain vulnerability on the overall supply chain performance.

Keywords: Supply chain integration, supply chain performance, supply chain vulnerability, structural equation modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 865
138 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using Matlab computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: Thermal energy storage, phase change material, melting, solidification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
137 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

Authors: Mouna Hamed, Ammar B. Brahim

Abstract:

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Keywords: Thermal energy storage, phase change material, melting, solidification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1229
136 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: Binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 980
135 Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws

Authors: Supanun Kangrang, Kraipat Cheenkachorn, Kittiphong Rattanaporn, Malinee Sriariyanun

Abstract:

Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment methods that modify such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively.

Keywords: Lignocellulolytic biomass, microbial consortium, cellulase, biogas, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3273
134 Unsteady MHD Flow of an Incompressible Elastico-Viscous Fluid in a Tube of Spherical Cross Section on a Porous Boundary

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of spherical cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of spherical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter (K), magnetic parameter (m) and elasticoviscosity parameter (β), which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Second order fluids, Spherical cross-section, Magnetic parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
133 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632
132 Statistical Screening of Medium Components on Ethanol Production from Cashew Apple Juice using Saccharomyces diasticus

Authors: Karuppaiya Maruthai, Viruthagiri Thangavelu, Manikandan Kanagasabai

Abstract:

In the present study, effect of critical medium components (a total of fifteen components) on ethanol production from waste cashew apple juice (CAJ) using yeast Saccharomyces diasticus was studied. A statistical response surface methodology (RSM) based Plackett-Burman Design (PBD) was used for the design of experiments. The design contains a total of 32 experimental trails. The effect of medium components on ethanol was studied at two different levels such as low concentration level (-) and high concentration levels (+). The dependent variables selected in this study were ethanol concentration (g/L) and cellmass concentration (g/L). Data obtained from RSM on ethanol production were subjected to analysis of variance (ANOVA). In general, initial substrate concentration significantly influenced the microbial growth and product formation. Of the medium components evaluated, CAJ concentration, yeast extract, (NH4)2SO4, and malt extract showed significant effect on ethanol fermentation. A second-order polynomial model was used to predict the experimental data and the model fitted the data with a high correlation coefficient (R2 > 0.98). Maximum ethanol (15.3 g/L) and biomass (6.4 g/L) concentrations were obtained at the optimum medium composition and at optimum condition (temperature-30°C; initial pH-6.8) after 72 h fermentation using S.diasticus.

Keywords: cashew apple juice, ethanol, fermentation, yeast, response surface methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2678
131 Thermal and Visual Performance of Solar Control Film

Authors: Norzita Jaafar, Nor Zaini Zakaria, Azni Zain Ahmed, Razidah Ismail

Abstract:

The use of solar control film on windows as one of solar passive strategies for building have becoming important and is gaining recognition. Malaysia located close to equator is having warm humid climate with long sunshine hours and abundant solar radiation throughout the year. Hence, befitting solar control on windows is absolutely necessary to capture the daylight whilst moderating thermal impact and eliminating glare problems. This is one of the energy efficient strategies to achieve thermal and visual comfort in buildings. Therefore, this study was carried out to investigate the effect of window solar controls on thermal and visual performance of naturally ventilated buildings. This was conducted via field data monitoring using a test building facility. Four types of window glazing systems were used with three types of solar control films. Data were analysed for thermal and visual impact with reference to thermal and optical characteristics of the films. Results show that for each glazing system, the surface temperature of windows are influenced by the Solar Energy Absorption property, the indoor air temperature are influenced by the Solar Energy Transmittance and Solar Energy Reflectance, and the daylighting by Visible Light Transmission and Shading Coefficient. Further investigations are underway to determine the mathematical relation between thermal energy and visual performance with the thermal and optical characteristics of solar control films.

Keywords: window, solar control film, natural ventilation, thermal performance, visual performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
130 Microbial Oil Production by Monoculture and Mixed Cultures of Microalgae and Oleaginous Yeasts using Sugarcane Juice as Substrate

Authors: Thidarat Papone, Supaporn Kookkhunthod, Ratanaporn Leesing

Abstract:

Monoculture and mixed cultures of microalgae and the oleaginous yeast for microbial oil productions were investigated using sugarcane juice as carbon substrate. The monoculture of yeast Torulaspora maleeae Y30, Torulaspora globosa YU5/2 grew faster than that of microalgae Chlorella sp. KKU-S2. In monoculture of T. maleeae Y30, a biomass of 8.267g/L with lipid yield of 0.920g/L were obtained, while 8.333g/L of biomass with lipid yield of 1.141g/L were obtained for monoculture of T. globosa YU5/2. A biomass of 1.933g/L with lipid yield of 0.052g/L was found for monoculture of Chlorella sp. KKU-S2. The biomass concentration in the mixed culture of the oleaginous yeast with microalgae increased faster and was higher compared with that in the monocultures. A biomass of 8.733g/L with lipid yield of 1.564g/L was obtained for a mixed culture of T. maleeae Y30 with Chlorella sp. KKU-S2, while 8.010g/L of biomass with lipid yield of 2.424g/L was found for mixed culture of T. globosa YU5/2 with Chlorella sp. KKU-S2. Maximum cell yield coefficient (YX/S, g/L) was found of 0.323 in monoculture of Chlorella sp. KKU-S2 but low level of both specific yield of lipid (YP/X, g lipid/g cells) of 0.027 and volumetric lipid production rate (QP, g/L/d) of 0.003 were observed. While, maximum YP/X (0.303), QP (0.105) and maximum process product yield (YP/S, 0.061) were obtained in mixed culture of T. globosa YU5/2 with Chlorella sp. KKU-S2. The results obtained from the study shows that mixed culture of yeast with microalgae is a desirable cultivation process for microbial oil production.

Keywords: Microbial oil, Chlorella sp. KKU-S2, Torulaspora maleeae Y30, Torulaspora globosa YU5/2, mixed culture, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
129 Perception of Secondary Schools’ Students on Computer Education in Federal Capital Territory (FCT-Abuja), Nigeria

Authors: Salako Emmanuel Adekunle

Abstract:

Computer education is referred to as the knowledge and ability to use computers and related technology efficiently, with a range of skills covering levels from basic use to advance. Computer continues to make an ever-increasing impact on all aspect of human endeavours such as education. With numerous benefits of computer education, what are the insights of students on computer education? This study investigated the perception of senior secondary school students on computer education in Federal Capital Territory (FCT), Abuja, Nigeria. A sample of 7500 senior secondary schools students was involved in the study, one hundred (100) private and fifty (50) public schools within FCT. They were selected by using simple random sampling technique. A questionnaire [PSSSCEQ] was developed and validated through expert judgement and reliability coefficient of 0.84 was obtained. It was used to gather relevant data on computer education. Findings confirmed that the students in the FCT had positive perception on computer education. Some factors were identified that affect students’ perception on computer education. The null hypotheses were tested using t-test and ANOVA statistical analyses at 0.05 level of significance. Based on these findings, some recommendations were made which include competent teachers should be employed into all secondary schools. This will help students to acquire relevant knowledge in computer education, technological supports should be provided to all secondary schools; this will help the users (students) to solve specific problems in computer education and financial supports should be provided to procure computer facilities that will enhance the teaching and the learning of computer education.

Keywords: Computer education, perception, secondary school, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4030