Search results for: Medical Resonance (MR) images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1806

Search results for: Medical Resonance (MR) images

426 Image Indexing Using a Color Similarity Metric based on the Human Visual System

Authors: Angelo Nodari, Ignazio Gallo

Abstract:

The novelty proposed in this study is twofold and consists in the developing of a new color similarity metric based on the human visual system and a new color indexing based on a textual approach. The new color similarity metric proposed is based on the color perception of the human visual system. Consequently the results returned by the indexing system can fulfill as much as possibile the user expectations. We developed a web application to collect the users judgments about the similarities between colors, whose results are used to estimate the metric proposed in this study. In order to index the image's colors, we used a text indexing engine to facilitate the integration of visual features in a database of text documents. The textual signature is build by weighting the image's colors in according to their occurrence in the image. The use of a textual indexing engine, provide us a simple, fast and robust solution to index images. A typical usage of the system proposed in this study, is the development of applications whose data type is both visual and textual. In order to evaluate the proposed method we chose a price comparison engine as a case of study, collecting a series of commercial offers containing the textual description and the image representing a specific commercial offer.

Keywords: Color Extraction, Content-Based Image Retrieval, Indexing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3027
425 A New Image Psychovisual Coding Quality Measurement based Region of Interest

Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf

Abstract:

To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.

Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
424 Statistical Relation between Vegetation Cover and Land Surface Temperature in Phnom Penh City

Authors: Gulam Mohiuddin, Jan-Peter Mund

Abstract:

This study assessed the correlation between Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) in Phnom Penh City (Cambodia) from 2016 to 2020. Understanding the LST and NDVI can be helpful to understand the Urban Heat Island (UHI) scenario, and it can contribute to planning urban greening and combating the effects of UHI. The study used Landsat-8 images as the data for analysis. They have 100 m spatial resolution (per pixel) in the thermal band. The current study used an approach for the statistical analysis that considers every pixel from the study area instead of taking few sample points or analyzing descriptive statistics. Also, this study is examining the correlation between NDVI and LST with a spatially explicit approach. The study found a strong negative correlation between NDVI and LST (coefficient range -0.56 to -0.59), and this relationship is linear. This study showed a way to avoid the probable error from the sample-based approach in examining two spatial variables. The method is reproducible for a similar type of analysis on the correlation between spatial phenomena. The findings of this study will be used further to understand the causation behind LST change in that area triangulating LST, NDVI and land-use changes.

Keywords: Land Surface Temperature, NDVI, Normalized Difference Vegetation Index, remote sensing, methodological development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 470
423 National Identity in Connecting the Community through Mural Art for Petronas Dagangangan Berhad

Authors: N. Mohamad, W. Samiati Andriana Wan Mohd Daud, M. Suhaimi Tohid, M. Fazli Othman, M. Rizal Salleh

Abstract:

This is a collaborative project of the mural art between The Department of Fine Art from Universiti Teknologi MARA (UiTM) and Petronas Dagangan Berhad (PDB), the most leading retailer and marketer of downstream oil and gas products in Malaysia. Five different states have been identified in showcasing the National Identity of Malaysia at each Petronas gas station; the Air Keroh in Melaka, Pasir Pekan in Kelantan, Pontian in Johor, Simpang Pulai in Perak and also Wakaf Bharu in Terengganu. This project is to analyze the element of national identity that has been demonstrated at the Petronas's Mural. The ultimate aim of the mural is to let the community and local people to be aware about what Malaysians are consists and proud of and how everyone is able to connect with the idea through art. The method that is being explained in this research is by using visual data through research and also self-experience in collecting the visual data in identifying what images are considered as the national identity and idea development and visual analysis is being transferred based upon the visual data collection. In this stage elements and principle of design will be the key in highlighting what is necessary in a work of art. In conclusion, image of the National Identity of Malaysia is able to connect to the audience from local and also to the people from outside the country to learn and understand the beauty and diversity of Malaysia as a unique country with art, through the wall of five Petronas gas stations.

Keywords: Mural art, fine art, national identity, community.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
422 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden

Abstract:

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
421 The Experiences of Coronary Heart Disease Patients: Biopsychosocial Perspective

Authors: Christopher C. Anyadubalu

Abstract:

Biological, psychological and social experiences and perceptions of healthcare services in patients medically diagnosed of coronary heart disease were investigated using a sample of 10 participants whose responses to the in-depth interview questions were analyzed based on inter-and-intra-case analyses. The results obtained revealed that advancing age, single status, divorce and/or death of spouse and the issue of single parenting negatively impacted patients- biopsychosocial experiences. The patients- experiences of physical signs and symptoms, anxiety and depression, past serious medical conditions, use of self-prescribed medications, family history of poor mental/medical or physical health, nutritional problems and insufficient physical activities heightened their risk of coronary attack. Collectivist culture served as a big source of relieve to the patients. Patients- temperament, experience of different chronic life stresses/challenges, mood alteration, regular drinking, smoking/gambling, and family/social impairments compounded their health situation. Patients were satisfied with the biomedical services rendered by the healthcare personnel, whereas their psychological and social needs were not attended to. Effective procedural treatment model, a holistic and multidimensional approach to the treatment of heart disease patients was proposed.

Keywords: Biopsychosocial, Coronary Heart Disease, Experience, Patients, Perception, Perspective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619
420 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm

Authors: Ali Ridho Barakbah, Yasushi Kiyoki

Abstract:

This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.

Keywords: Image segmentation, K-means clustering, Pillaralgorithm, color spaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
419 A Two-Stage Expert System for Diagnosis of Leukemia Based on Type-2 Fuzzy Logic

Authors: Ali Akbar Sadat Asl

Abstract:

Diagnosis and deciding about diseases in medical fields is facing innate uncertainty which can affect the whole process of treatment. This decision is made based on expert knowledge and the way in which an expert interprets the patient's condition, and the interpretation of the various experts from the patient's condition may be different. Fuzzy logic can provide mathematical modeling for many concepts, variables, and systems that are unclear and ambiguous and also it can provide a framework for reasoning, inference, control, and decision making in conditions of uncertainty. In systems with high uncertainty and high complexity, fuzzy logic is a suitable method for modeling. In this paper, we use type-2 fuzzy logic for uncertainty modeling that is in diagnosis of leukemia. The proposed system uses an indirect-direct approach and consists of two stages: In the first stage, the inference of blood test state is determined. In this step, we use an indirect approach where the rules are extracted automatically by implementing a clustering approach. In the second stage, signs of leukemia, duration of disease until its progress and the output of the first stage are combined and the final diagnosis of the system is obtained. In this stage, the system uses a direct approach and final diagnosis is determined by the expert. The obtained results show that the type-2 fuzzy expert system can diagnose leukemia with the average accuracy about 97%.

Keywords: Expert system, leukemia, medical diagnosis, type-2 fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
418 Idealization of Licca-chan and Barbie: Comparison of Two Dolls across the Pacific

Authors: Miho Tsukamoto

Abstract:

Since the initial creation of the Barbie doll in 1959, it became a symbol of US society. Likewise, the Licca-chan, a Japanese doll created in 1967, also became a Japanese symbolic doll of Japanese society. Prior to the introduction of Licca-chan, Barbie was already marketed in Japan but their sales were dismal. Licca-chan (an actual name: Kayama Licca) is a plastic doll with a variety of sizes ranging from 21.0 cm to 29.0 cm which many Japanese girls dream of having. For over 35 years, the manufacturer, Takara Co., Ltd. has sold over 48 million dolls and has produced doll houses, accessories, clothes, and Licca-chan video games for the Nintendo DS. Many First-generation Licca-chan consumers still are enamored with Licca-chan, and go to Licca-chan House, in an amusement park with their daughters. These people are called Licca-chan maniacs, as they enjoy touring the Licca-chan’s factory in Tohoku or purchase various Licca-chan accessories. After the successful launch of Licca-chan into the Japanese market, a mixed-like doll from the US and Japan, a doll, JeNny, was later sold in the same Japanese market by Takara Co., Ltd. in 1982. Comparison of these cultural iconic dolls, Barbie and Licca-chan, are analyzed in this paper. In fact, these dolls have concepts of girls’ dreams. By using concepts of mythology of Jean Baudrillard, these dolls can be represented idealized images of figures in the products for consumers, but at the same time, consumers can see products with different perspectives, which can cause controversy.

Keywords: Barbie, Dolls, JeNny, Idealization, Licca-chan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577
417 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection

Authors: Hussin K. Ragb, Vijayan K. Asari

Abstract:

In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.

Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
416 Antibiotic Prescribing in the Acute Care in Iraq

Authors: Ola A. Nassr, Ali M. Abd Alridha, Rua A. Naser, Rasha S. Abbas

Abstract:

Background: Excessive and inappropriate use of antimicrobial agents among hospitalized patients remains an important patient safety and public health issue worldwide. Not only does this behavior incur unnecessary cost but it is also associated with increased morbidity and mortality. The objective of this study is to obtain an insight into the prescribing patterns of antibiotics in surgical and medical wards, to help identify a scope for improvement in service delivery. Method: A simple point prevalence survey included a convenience sample of 200 patients admitted to medical and surgical wards in a government teaching hospital in Baghdad between October 2017 and April 2018. Data were collected by a trained pharmacy intern using a standardized form. Patient’s demographics and details of the prescribed antibiotics, including dose, frequency of dosing and route of administration, were reported. Patients were included if they had been admitted at least 24 hours before the survey. Patients under 18 years of age, having a diagnosis of cancer or shock, or being admitted to the intensive care unit, were excluded. Data were checked and entered by the authors into Excel and were subjected to frequency analysis, which was carried out on anonymized data to protect patient confidentiality. Results: Overall, 88.5% of patients (n=177) received 293 antibiotics during their hospital admission, with a small variation between wards (80%-97%). The average number of antibiotics prescribed per patient was 1.65, ranging from 1.3 for medical patients to 1.95 for surgical patients. Parenteral third-generation cephalosporins were the most commonly prescribed at a rate of 54.3% (n=159) followed by nitroimidazole 29.4% (n=86), quinolones 7.5% (n=22) and macrolides 4.4% (n=13), while carbapenems and aminoglycosides were the least prescribed together accounting for only 4.4% (n=13). The intravenous route was the most common route of administration, used for 96.6% of patients (n=171). Indications were reported in only 63.8% of cases. Culture to identify pathogenic organisms was employed in only 0.5% of cases. Conclusion: Broad-spectrum antibiotics are prescribed at an alarming rate. This practice may provoke antibiotic resistance and adversely affect the patient outcome. Implementation of an antibiotic stewardship program is warranted to enhance the efficacy, safety and cost-effectiveness of antimicrobial agents.

Keywords: Acute care, antibiotic misuse, Iraq, prescribing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
415 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
414 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: Autonomous vehicle, data recording, remote monitoring, controller area network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352
413 Discrete and Stationary Adaptive Sub-Band Threshold Method for Improving Image Resolution

Authors: P. Joyce Beryl Princess, Y. Harold Robinson

Abstract:

Image Processing is a structure of Signal Processing for which the input is the image and the output is also an image or parameter of the image. Image Resolution has been frequently referred as an important aspect of an image. In Image Resolution Enhancement, images are being processed in order to obtain more enhanced resolution. To generate highly resoluted image for a low resoluted input image with high PSNR value. Stationary Wavelet Transform is used for Edge Detection and minimize the loss occurs during Downsampling. Inverse Discrete Wavelet Transform is to get highly resoluted image. Highly resoluted output is generated from the Low resolution input with high quality. Noisy input will generate output with low PSNR value. So Noisy resolution enhancement technique has been used for adaptive sub-band thresholding is used. Downsampling in each of the DWT subbands causes information loss in the respective subbands. SWT is employed to minimize this loss. Inverse Discrete wavelet transform (IDWT) is to convert the object which is downsampled using DWT into a highly resoluted object. Used Image denoising and resolution enhancement techniques will generate image with high PSNR value. Our Proposed method will improve Image Resolution and reached the optimized threshold.

Keywords: Image Processing, Inverse Discrete wavelet transform, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
412 SVM-based Multiview Face Recognition by Generalization of Discriminant Analysis

Authors: Dakshina Ranjan Kisku, Hunny Mehrotra, Jamuna Kanta Sing, Phalguni Gupta

Abstract:

Identity verification of authentic persons by their multiview faces is a real valued problem in machine vision. Multiview faces are having difficulties due to non-linear representation in the feature space. This paper illustrates the usability of the generalization of LDA in the form of canonical covariate for face recognition to multiview faces. In the proposed work, the Gabor filter bank is used to extract facial features that characterized by spatial frequency, spatial locality and orientation. Gabor face representation captures substantial amount of variations of the face instances that often occurs due to illumination, pose and facial expression changes. Convolution of Gabor filter bank to face images of rotated profile views produce Gabor faces with high dimensional features vectors. Canonical covariate is then used to Gabor faces to reduce the high dimensional feature spaces into low dimensional subspaces. Finally, support vector machines are trained with canonical sub-spaces that contain reduced set of features and perform recognition task. The proposed system is evaluated with UMIST face database. The experiment results demonstrate the efficiency and robustness of the proposed system with high recognition rates.

Keywords: Biometrics, Multiview face Recognition, Gaborwavelets, LDA, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
411 Pectoral Muscles Suppression in Digital Mammograms Using Hybridization of Soft Computing Methods

Authors: I. Laurence Aroquiaraj, K. Thangavel

Abstract:

Breast region segmentation is an essential prerequisite in computerized analysis of mammograms. It aims at separating the breast tissue from the background of the mammogram and it includes two independent segmentations. The first segments the background region which usually contains annotations, labels and frames from the whole breast region, while the second removes the pectoral muscle portion (present in Medio Lateral Oblique (MLO) views) from the rest of the breast tissue. In this paper we propose hybridization of Connected Component Labeling (CCL), Fuzzy, and Straight line methods. Our proposed methods worked good for separating pectoral region. After removal pectoral muscle from the mammogram, further processing is confined to the breast region alone. To demonstrate the validity of our segmentation algorithm, it is extensively tested using over 322 mammographic images from the Mammographic Image Analysis Society (MIAS) database. The segmentation results were evaluated using a Mean Absolute Error (MAE), Hausdroff Distance (HD), Probabilistic Rand Index (PRI), Local Consistency Error (LCE) and Tanimoto Coefficient (TC). The hybridization of fuzzy with straight line method is given more than 96% of the curve segmentations to be adequate or better. In addition a comparison with similar approaches from the state of the art has been given, obtaining slightly improved results. Experimental results demonstrate the effectiveness of the proposed approach.

Keywords: X-ray Mammography, CCL, Fuzzy, Straight line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
410 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: Detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
409 Health Hazards Related to Computer Use: Experience of the National Institute for Medical Research in Tanzania

Authors: V. P. Mvungi, J. Mcharo, M. E. Mmbuji, L. E. Mgonja, A. Y. Kitua

Abstract:

This paper is based on a study conducted in 2006 to assess the impact of computer usage on health of National Institute for Medical Research (NIMR) staff. NIMR being a research Institute, most of its staff spend substantial part of their working time on computers. There was notion among NIMR staff on possible prolonged computer usage health hazards. Hence, a study was conducted to establish facts and possible mitigation measures. A total of 144 NIMR staff were involved in the study of whom 63.2% were males and 36.8% females aged between 20 and 59 years. All staff cadres were included in the sample. The functions performed by Institute staff using computers includes; data management, proposal development and report writing, research activities, secretarial duties, accounting and administrative duties, on-line information retrieval and online communication through e-mail services. The interviewed staff had been using computers for 1-8 hours a day and for a period ranging from 1 to 20 years. The study has indicated ergonomic hazards for a significant proportion of interviewees (63%) of various kinds ranging from backache to eyesight related problems. The authors highlighted major issues which are substantially applicable in preventing occurrences of computer related problems and they urged NIMR Management and/or the government of Tanzania opts to adapt their practicability.

Keywords: Computers ergonomic hazards, computer usagehealth hazards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847
408 Delineation of Oil – Polluted Sites in Ibeno LGA, Nigeria, Using Geophysical Techniques

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil & condensate producer in Nigeria. Besides MPNU, other oil companies operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria. This study was designed to delineate oil polluted sites in Ibeno, Nigeria using geophysical methods of electrical resistivity (ER) and ground penetrating radar (GPR). Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from high resistivity values and GPR profiles which clearly show the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas and the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively confirmed significant recent pollution of the study area with crude oil.

Keywords: Electrical resistivity, geophysical investigations, ground penetrating radar, oil-polluted sites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3086
407 A Web Oriented Spread Spectrum Watermarking Procedure for MPEG-2 Videos

Authors: Franco Frattolillo

Abstract:

In the last decade digital watermarking procedures have become increasingly applied to implement the copyright protection of multimedia digital contents distributed on the Internet. To this end, it is worth noting that a lot of watermarking procedures for images and videos proposed in literature are based on spread spectrum techniques. However, some scepticism about the robustness and security of such watermarking procedures has arisen because of some documented attacks which claim to render the inserted watermarks undetectable. On the other hand, web content providers wish to exploit watermarking procedures characterized by flexible and efficient implementations and which can be easily integrated in their existing web services frameworks or platforms. This paper presents how a simple spread spectrum watermarking procedure for MPEG-2 videos can be modified to be exploited in web contexts. To this end, the proposed procedure has been made secure and robust against some well-known and dangerous attacks. Furthermore, its basic scheme has been optimized by making the insertion procedure adaptive with respect to the terminals used to open the videos and the network transactions carried out to deliver them to buyers. Finally, two different implementations of the procedure have been developed: the former is a high performance parallel implementation, whereas the latter is a portable Java and XML based implementation. Thus, the paper demonstrates that a simple spread spectrum watermarking procedure, with limited and appropriate modifications to the embedding scheme, can still represent a valid alternative to many other well-known and more recent watermarking procedures proposed in literature.

Keywords: Copyright protection, digital watermarking, intellectual property protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
406 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Authors: S. Mezghani, E. Perrin, J. L Bodnar, J. Marthe, B. Cauwe, V. Vrabie

Abstract:

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows obtaining a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 μm and 130 μm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for nonconductive substrates.

Keywords: Nondestructive, paint coating, thickness, infrared thermography, laser, heterogeneity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
405 Developing of Knowledge-Based System for the Medical Treatment with Herbs

Authors: Rujijan Vichivanives

Abstract:

This research aims to create a knowledge-based system as a database for self-healthcare analysis, diagnosis of simple illnesses, and the use of Thai herbs instead of modern medicine by using principles of Thai traditional medication theory. These were disseminated by website network programs within Suan Sunandha Rajabhat University. The population used in this study was divided into two groups: the first group consisted of four experts of Thai traditional medication and the second group was 300 website users. The methods used for collecting data were paper questionnaires and poll questionnaires on the website. The statistics used for analyzing data was at an average level. The results were divided into three parts: the first part was the development of a knowledge-based system and the second part was applied programs on website. Both parts could be fulfilled and achieved according to the set goal. The third part was the evaluation of the study: The evaluation of the viewpoints of the experts towards website designs were evaluated at a good level of 4.20. The satisfaction evaluation of the users was found at a good level of average satisfactory level at 4.24. It was found that the young population of those under the age of 16 had less cares about their health than the population of other teenagers, working age adults and those of older age. The research findings should be extended in order to encourage the lifestyle modifications to people of all ages by using the self-healthcare principles.

Keywords: Developing, Herbs, Knowledge-based system, Medical treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
404 Image Classification and Accuracy Assessment Using the Confusion Matrix, Contingency Matrix, and Kappa Coefficient

Authors: F. F. Howard, C. B. Boye, I. Yakubu, J. S. Y. Kuma

Abstract:

One of the ways that could be used for the production of land use and land cover maps by a procedure known as image classification is the use of the remote sensing technique. Numerous elements ought to be taken into consideration, including the availability of highly satisfactory Landsat imagery, secondary data and a precise classification process. The goal of this study was to classify and map the land use and land cover of the study area using remote sensing and Geospatial Information System (GIS) analysis. The classification was done using Landsat 8 satellite images acquired in December 2020 covering the study area. The Landsat image was downloaded from the USGS. The Landsat image with 30 m resolution was geo-referenced to the WGS_84 datum and Universal Transverse Mercator (UTM) Zone 30N coordinate projection system. A radiometric correction was applied to the image to reduce the noise in the image. This study consists of two sections: the Land Use/Land Cover (LULC) and Accuracy Assessments using the confusion and contingency matrix and the Kappa coefficient. The LULC classifications were vegetation (agriculture) (67.87%), water bodies (0.01%), mining areas (5.24%), forest (26.02%), and settlement (0.88%). The overall accuracy of 97.87% and the kappa coefficient (K) of 97.3% were obtained for the confusion matrix. While an overall accuracy of 95.7% and a Kappa coefficient of 0.947 were obtained for the contingency matrix, the kappa coefficients were rated as substantial; hence, the classified image is fit for further research.

Keywords: Confusion Matrix, contingency matrix, kappa coefficient, land used/ land cover, accuracy assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 253
403 Embedded Semi-Fragile Signature Based Scheme for Ownership Identification and Color Image Authentication with Recovery

Authors: M. Hamad Hassan, S.A.M. Gilani

Abstract:

In this paper, a novel scheme is proposed for Ownership Identification and Color Image Authentication by deploying Cryptography & Digital Watermarking. The color image is first transformed from RGB to YST color space exclusively designed for watermarking. Followed by color space transformation, each channel is divided into 4×4 non-overlapping blocks with selection of central 2×2 sub-blocks. Depending upon the channel selected two to three LSBs of each central 2×2 sub-block are set to zero to hold the ownership, authentication and recovery information. The size & position of sub-block is important for correct localization, enhanced security & fast computation. As YS ÔèÑ T so it is suitable to embed the recovery information apart from the ownership and authentication information, therefore 4×4 block of T channel along with ownership information is then deployed by SHA160 to compute the content based hash that is unique and invulnerable to birthday attack or hash collision instead of using MD5 that may raise the condition i.e. H(m)=H(m'). For recovery, intensity mean of 4x4 block of each channel is computed and encoded upto eight bits. For watermark embedding, key based mapping of blocks is performed using 2DTorus Automorphism. Our scheme is oblivious, generates highly imperceptible images with correct localization of tampering within reasonable time and has the ability to recover the original work with probability of near one.

Keywords: Hash Collision, LSB, MD5, PSNR, SHA160

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
402 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG

Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil

Abstract:

A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.

Keywords: Brain activity, dense EEG, evoked responses, spatiotemporal analysis, SVM, perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
401 Prospects for Sustainable Chemistry in South Africa: A Plural Healthcare System

Authors: Ntokozo C. Mthembu

Abstract:

The notion of sustainable chemistry has become significant in the discourse for a global post-colonial era, including South Africa, especially when it comes to access to the general health system and related policies in relation to disease or ease of human life. In view of the stubborn vestiges of coloniality in the daily lives of indigenous African people in general, the fundamentals of present Western medical and traditional medicine systems and related policies in the democratic era were examined in this study. The situation of traditional healers in relation to current policy was also reviewed. The advent of democracy in South Africa brought about a variety of development opportunities and limitations, particularly with respect to indigenous African knowledge systems such as traditional medicine. There were high hopes that the limitations of previous narrow cultural perspectives would be rectified in the democratic era through development interventions, but some sections of society, such as traditional healers, remain marginalised. The Afrocentric perspective was explored in dissecting government interventions related to traditional medicine. This article highlights that multiple medical systems should be adopted and that health policies should be aligned in order to guarantee mutual respect and to address the remnants of colonialism in South Africa, Africa and the broader global community.

Keywords: Traditional healing system, healers, pluralist healthcare system, post-colonial era.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
400 A Robust Salient Region Extraction Based on Color and Texture Features

Authors: Mingxin Zhang, Zhaogan Lu, Junyi Shen

Abstract:

In current common research reports, salient regions are usually defined as those regions that could present the main meaningful or semantic contents. However, there are no uniform saliency metrics that could describe the saliency of implicit image regions. Most common metrics take those regions as salient regions, which have many abrupt changes or some unpredictable characteristics. But, this metric will fail to detect those salient useful regions with flat textures. In fact, according to human semantic perceptions, color and texture distinctions are the main characteristics that could distinct different regions. Thus, we present a novel saliency metric coupled with color and texture features, and its corresponding salient region extraction methods. In order to evaluate the corresponding saliency values of implicit regions in one image, three main colors and multi-resolution Gabor features are respectively used for color and texture features. For each region, its saliency value is actually to evaluate the total sum of its Euclidean distances for other regions in the color and texture spaces. A special synthesized image and several practical images with main salient regions are used to evaluate the performance of the proposed saliency metric and other several common metrics, i.e., scale saliency, wavelet transform modulus maxima point density, and important index based metrics. Experiment results verified that the proposed saliency metric could achieve more robust performance than those common saliency metrics.

Keywords: salient regions, color and texture features, image segmentation, saliency metric

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
399 Dynamic Features Selection for Heart Disease Classification

Authors: Walid MOUDANI

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2532
398 Using Scanning Electron Microscope and Computed Tomography for Concrete Diagnostics of Airfield Pavements

Authors: M. Linek

Abstract:

This article presents the comparison of selected evaluation methods regarding microstructure modification of hardened cement concrete intended for airfield pavements. Basic test results were presented for two pavement quality concrete lots. Analysis included standard concrete used for airfield pavements and modern material solutions based on concrete composite modification. In case of basic grain size distribution of concrete cement CEM I 42,5HSR NA, fine aggregate and coarse aggregate fractions in the form of granite chippings, water and admixtures were considered. In case of grain size distribution of modified concrete, the use of modern modifier as substitute of fine aggregate was suggested. Modification influence on internal concrete structure parameters using scanning electron microscope was defined. Obtained images were compared to the results obtained using computed tomography. Opportunity to use this type of equipment for internal concrete structure diagnostics and an attempt of its parameters evaluation was presented. Obtained test results enabled to reach a conclusion that both methods can be applied for pavement quality concrete diagnostics, with particular purpose of airfield pavements.

Keywords: Scanning electron microscope, computed tomography, cement concrete, airfield pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1114
397 Material Density Mapping on Deformable 3D Models of Human Organs

Authors: Petru Manescu, Joseph Azencot, Michael Beuve, Hamid Ladjal, Jacques Saade, Jean-Michel Morreau, Philippe Giraud, Behzad Shariat

Abstract:

Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach.

Keywords: Biomechanical simulation, dose distribution, image guided radiation therapy, organ motion, tetrahedral mesh, 4D-CT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008