Search results for: cooperative knowledge support
2333 Ammonia Adsorption Properties of Composite Ammonia Carriers Obtained by Supporting Metal Chloride on Porous Materials
Authors: Cheng Shen, LaiHong Shen
Abstract:
Ammonia is an important carrier of hydrogen energy, with the characteristics of high hydrogen content density and no carbon dioxide emission. Safe and efficient ammonia capture for ammonia synthesis from biomass is an important way to alleviate the energy crisis and solve the energy problem. Metal chloride has a chemical adsorption effect on ammonia and can be desorbed at high temperatures to obtain high-concentration ammonia after combining with ammonia, which has a good development prospect in ammonia capture and separation technology. In this paper, the ammonia adsorption properties of CuCl2 were measured, and the composite adsorbents were prepared by using silicon and multi-walled carbon nanotubes, respectively to support CuCl2, and the ammonia adsorption properties of the composite adsorbents were studied. The study found that the ammonia adsorption capacity of the three adsorbents decreased with the increase in temperature, so metal chlorides were more suitable for the low-temperature adsorption of ammonia. Silicon and multi-walled carbon nanotubes have an enhanced effect on the ammonia adsorption of CuCl2. The reason is that the porous material itself has a physical adsorption effect on ammonia, and silicon can play the role of skeleton support in cupric chloride particles, which enhances the pore structure of the adsorbent, thereby alleviating sintering.
Keywords: Ammonia, adsorption properties, metal chloride, MWCNTs, silicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702332 Basic Research on Applying Temporary Work Engineering at the Design Phase
Authors: Jin Woong Lee, Kyuman Cho, Taehoon Kim
Abstract:
The application of constructability is increasingly required not only in the construction phase but also in the whole project stage. In particular, the proper application of construction experience and knowledge during the design phase enables the minimization of inefficiencies such as design changes and improvements in constructability during the construction phase. In order to apply knowledge effectively, engineering technology efforts should be implemented with design progress. Among many engineering technologies, engineering for temporary works, including facilities, equipment, and other related construction methods, is important to improve constructability. Therefore, as basic research, this study investigates the applicability of temporary work engineering during the design phase in the building construction industry. As a result, application of temporary work engineering has a greater impact on construction cost reduction and constructability improvement. In contrast to the existing design-bid-build method, the turn-key and CM (construct management) procurement methods currently being implemented in Korea are expected to have a significant impact on the direction of temporary work engineering. To introduce temporary work engineering, expert/professional organization training is first required, and a lack of client awareness should be preferentially improved. The results of this study are expected to be useful as reference material for the development of more effective temporary work engineering tasks and work processes in the future.
Keywords: Temporary work engineering, design phase, constructability, building construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9722331 Beginner Physical Sciences Teacher’s Implementation of Problem-Based Learning in Promoting Creativity as a 21st-Century Skill on Learners: A Case Study
Authors: Motlhale Judicial Sebatana, Washington Takawira Dudu
Abstract:
This study investigated how one beginner Physical Sciences teacher implemented Problem-Based Learning (PBL) strategy in the teaching and learning of Particulate Nature of Matter (PNM) in the Grade 10 classroom. PBL was implemented to explore how it can promote a 21st-century skill of creativity and enhance understanding of PNM. This study was guided by theoretical framework of Social Interdependence Theory (SIT). This exploratory qualitative case study was conveniently conducted in the North West province, South Africa, where one Physical Sciences teacher was purposefully sampled. A self-developed open-ended questionnaire, portfolio and individual semi-structured interview were used as the methods of generating data for this study. The results show that the participant of this study had no prior knowledge of utilising PBL in the teaching and learning of PNM before the Teacher Professional Development (TPD) programme, no knowledge of creativity as a 21st-century skill, and a successful PBL implementation post TPD to promote creativity.
Keywords: Beginner teachers, physical sciences teachers, problem-based learning, 21st-century skills, creativity skill, particulate nature of matter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4312330 Organization Model of Semantic Document Repository and Search Techniques for Studying Information Technology
Authors: Nhon Do, Thuong Huynh, An Pham
Abstract:
Nowadays, organizing a repository of documents and resources for learning on a special field as Information Technology (IT), together with search techniques based on domain knowledge or document-s content is an urgent need in practice of teaching, learning and researching. There have been several works related to methods of organization and search by content. However, the results are still limited and insufficient to meet user-s demand for semantic document retrieval. This paper presents a solution for the organization of a repository that supports semantic representation and processing in search. The proposed solution is a model which integrates components such as an ontology describing domain knowledge, a database of document repository, semantic representation for documents and a file system; with problems, semantic processing techniques and advanced search techniques based on measuring semantic similarity. The solution is applied to build a IT learning materials management system of a university with semantic search function serving students, teachers, and manager as well. The application has been implemented, tested at the University of Information Technology, Ho Chi Minh City, Vietnam and has achieved good results.Keywords: document retrieval system, knowledgerepresentation, document representation, semantic search, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17102329 The Desire to Know: Arnold’s Contribution to a Psychological Conceptualization of Academic Motivation
Authors: F. Ruiz-Fuster
Abstract:
Arnold’s redefinition of human motives can sustain a psychology of education which emphasizes the beauty of knowledge and the exercise of intellectual functions. Thus, education instead of focusing on skills and learning by doing would be centered on ‘the widest reaches of the human spirit’. One way to attain it is by developing children’s inherent interest. Arnold takes into account the fact that the desire to know is the inherent interest which leads students to explore and learn. She also emphasizes the need of exercising human functions as thinking, judging and reasoning. According to Arnold, the influence of psychological theories of motivation in education has derived in considering that all learning and school tasks should derive from children’s needs and impulses. The desire to know and the curiosity have not been considered as basic and active as any instinctive drive or basic need, so there has been an attempt to justify and understand how biological drives guide student’s learning. However, understanding motives and motivation not as a drive, an instinct or an impulse guided by our basic needs, but as a want that leads to action can help to understand, from a psychological perspective, how teachers can motivate students to learn, strengthening their desire and interest to reason and discover the whole new world of knowledge.
Keywords: Academic motivation, interests, desire to know, educational psychology, intellectual functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12022328 The Effect of the Andalus Knowledge Phases and Times Model of Learning on the Development of Students’ Academic Performance and Emotional Quotient
Authors: Sobhy Fathy A. Hashesh
Abstract:
This study aimed at investigating the effect of Andalus Knowledge Phases and Times (ANPT) model of learning and the effect of 'Intel Education Contribution in ANPT' on the development of students’ academic performance and emotional quotient. The society of the study composed of Andalus Private Schools, elementary school students (N=700), while the sample of the study composed of four randomly assigned groups (N=80) with one experimental group and one control group to study "ANPT" effect and the "Intel Contribution in ANPT" effect respectively. The study followed the quantitative and qualitative approaches in collecting and analyzing data to answer the study questions. Results of the study revealed that there were significant statistical differences between students’ academic performances and emotional quotients for the favor of the experimental groups. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.
Keywords: ANPT, Flipped Classroom, 5Es learning Model, Kagan structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12622327 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32302326 Design and Application of NFC-Based Identity and Access Management in Cloud Services
Authors: Shin-Jer Yang, Kai-Tai Yang
Abstract:
In response to a changing world and the fast growth of the Internet, more and more enterprises are replacing web-based services with cloud-based ones. Multi-tenancy technology is becoming more important especially with Software as a Service (SaaS). This in turn leads to a greater focus on the application of Identity and Access Management (IAM). Conventional Near-Field Communication (NFC) based verification relies on a computer browser and a card reader to access an NFC tag. This type of verification does not support mobile device login and user-based access management functions. This study designs an NFC-based third-party cloud identity and access management scheme (NFC-IAM) addressing this shortcoming. Data from simulation tests analyzed with Key Performance Indicators (KPIs) suggest that the NFC-IAM not only takes less time in identity identification but also cuts time by 80% in terms of two-factor authentication and improves verification accuracy to 99.9% or better. In functional performance analyses, NFC-IAM performed better in salability and portability. The NFC-IAM App (Application Software) and back-end system to be developed and deployed in mobile device are to support IAM features and also offers users a more user-friendly experience and stronger security protection. In the future, our NFC-IAM can be employed to different environments including identification for mobile payment systems, permission management for remote equipment monitoring, among other applications.
Keywords: Cloud service, multi-tenancy, NFC, IAM, mobile device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11182325 Linking Sustainable Public Procurement and the Sustainable Development Goals in Zambia: A Preliminary Investigation
Authors: Charles P. Mukumba, Kahilu K. Shakantu
Abstract:
Achieving the Sustainable Development Goals (SDGs) is critical to achieving transformational results that support Zambia's developmental agenda. Public procurement is integral to the government's mission to deliver goods and services in a timely and economical manner beyond the value of money spent. This study explores the link between sustainable public procurement and the SDGs in Zambia. To validate the established links with public sector procurement in Zambia, the study employed qualitative research using semi-structured interviews with 12 public procurement officials. The collected data were analysed using thematic analysis. The findings indicate that public procurement plays a fundamental role in achieving the SDGs by helping deliver core public services that support SDGs and systematizing and co-delivering added value along the way. The study further established the importance of sustainable public procurement within the development context. The interviews were limited to mainstream public sector procurement entities in Lusaka, Zambia. Sustainable public procurement actions have the potential to impact SDGs. Promoting sustainable public procurement will enhance sustainable development and significantly improve the supply chain, benefiting the economy, society and environment. Findings will inform policy-makers how to strategically design sustainable public procurement policy by attuning it to procuring entities' objectives and priorities to contribute to attaining SDGs.
Keywords: Sustainable public procurement, sustainable development goals, SDG targets, Zambia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782324 A New Model for Economic Optimization of Water Diversion System during Dam Construction using PSO Algorithm
Authors: Saeed Sedighizadeh, Abbas Mansoori, Mohammad Reza Pirestani, Davoud Sedighizadeh
Abstract:
The usual method of river flow diversion involves construction of tunnels and cofferdams. Given the fact that the cost of diversion works could be as high as 10-20% of the total dam construction cost, due attention should be paid to optimum design of the diversion works. The cost of diversion works depends, on factors, such as: the tunnel dimensions and the intended tunneling support measures during and after excavation; quality and characterizes of the rock through which the tunnel should be excavated; the dimensions of the upstream (and downstream) cofferdams; and the magnitude of river flood the system is designed to divert. In this paper by use of the cost of unit prices for tunnel excavation, tunnel lining, tunnel support (rock bolt + shotcrete) and cofferdam fill the cost function was determined. The function is then minimized by the aid of PSO Algorithm (particle swarm optimization). It is found that the optimum diameter and the total diversion cost are directly related to the river flood discharge (Q). It has also shown that in addition to optimum diameter design discharge (Q), river length, tunnel length, is mainly a function of the ratios (not the absolute values) of the unit prices and does not depend on the overall price levels in the respective country. The results of optimization use in some of the case study lead us to significant changes in the cost.
Keywords: Diversion Tunnel, Optimization, PSO Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27302323 Performance Analysis of Genetic Algorithm with kNN and SVM for Feature Selection in Tumor Classification
Authors: C. Gunavathi, K. Premalatha
Abstract:
Tumor classification is a key area of research in the field of bioinformatics. Microarray technology is commonly used in the study of disease diagnosis using gene expression levels. The main drawback of gene expression data is that it contains thousands of genes and a very few samples. Feature selection methods are used to select the informative genes from the microarray. These methods considerably improve the classification accuracy. In the proposed method, Genetic Algorithm (GA) is used for effective feature selection. Informative genes are identified based on the T-Statistics, Signal-to-Noise Ratio (SNR) and F-Test values. The initial candidate solutions of GA are obtained from top-m informative genes. The classification accuracy of k-Nearest Neighbor (kNN) method is used as the fitness function for GA. In this work, kNN and Support Vector Machine (SVM) are used as the classifiers. The experimental results show that the proposed work is suitable for effective feature selection. With the help of the selected genes, GA-kNN method achieves 100% accuracy in 4 datasets and GA-SVM method achieves in 5 out of 10 datasets. The GA with kNN and SVM methods are demonstrated to be an accurate method for microarray based tumor classification.
Keywords: F-Test, Gene Expression, Genetic Algorithm, k- Nearest-Neighbor, Microarray, Signal-to-Noise Ratio, Support Vector Machine, T-statistics, Tumor Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45382322 Combined Feature Based Hyperspectral Image Classification Technique Using Support Vector Machines
Authors: Mrs.K.Kavitha, S.Arivazhagan
Abstract:
A spatial classification technique incorporating a State of Art Feature Extraction algorithm is proposed in this paper for classifying a heterogeneous classes present in hyper spectral images. The classification accuracy can be improved if and only if both the feature extraction and classifier selection are proper. As the classes in the hyper spectral images are assumed to have different textures, textural classification is entertained. Run Length feature extraction is entailed along with the Principal Components and Independent Components. A Hyperspectral Image of Indiana Site taken by AVIRIS is inducted for the experiment. Among the original 220 bands, a subset of 120 bands is selected. Gray Level Run Length Matrix (GLRLM) is calculated for the selected forty bands. From GLRLMs the Run Length features for individual pixels are calculated. The Principle Components are calculated for other forty bands. Independent Components are calculated for next forty bands. As Principal & Independent Components have the ability to represent the textural content of pixels, they are treated as features. The summation of Run Length features, Principal Components, and Independent Components forms the Combined Features which are used for classification. SVM with Binary Hierarchical Tree is used to classify the hyper spectral image. Results are validated with ground truth and accuracies are calculated.
Keywords: Multi-class, Run Length features, PCA, ICA, classification and Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15222321 On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture
Authors: A. Tellaeche, X. P. Burgos-Artizzu, G. Pajares, A. Ribeiro
Abstract:
One important objective in Precision Agriculture is to minimize the volume of herbicides that are applied to the fields through the use of site-specific weed management systems. In order to reach this goal, two major factors need to be considered: 1) the similar spectral signature, shape and texture between weeds and crops; 2) the irregular distribution of the weeds within the crop's field. This paper outlines an automatic computer vision system for the detection and differential spraying of Avena sterilis, a noxious weed growing in cereal crops. The proposed system involves two processes: image segmentation and decision making. Image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and the weeds. From these attributes, a hybrid decision making approach determines if a cell must be or not sprayed. The hybrid approach uses the Support Vector Machines and the Fuzzy k-Means methods, combined through the fuzzy aggregation theory. This makes the main finding of this paper. The method performance is compared against other available strategies.Keywords: Fuzzy k-Means, Precision agriculture, SupportVectors Machines, Weed detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17792320 Operational Software Maturity: An Aerospace Industry Analysis
Authors: Raúl González Muñoz, Essam Shehab, Martin Weinitzke, Chris Fowler, Paul Baguley
Abstract:
Software applications have become crucial to the aerospace industry, providing a wide range of functionalities and capabilities used during the design, manufacturing and support of aircraft. However, as this criticality increases, so too does the risk for business operations when facing a software failure. Hence, there is a need for new methodologies to be developed to support aerospace companies in effectively managing their software portfolios, avoiding the hazards of business disruption and additional costs. This paper aims to provide a definition of operational software maturity, and how this can be used to assess software operational behaviour, as well as a view on the different aspects that drive software maturity within the aerospace industry. The key research question addressed is, how can operational software maturity monitoring assist the aerospace industry in effectively managing large software portfolios? This question has been addressed by conducting an in depth review of current literature, by working closely with aerospace professionals and by running an industry case study within a major aircraft manufacturer. The results are a software maturity model composed of a set of drivers and a prototype tool used for the testing and validation of the research findings. By utilising these methodologies to assess the operational maturity of software applications in aerospace, benefits in maintenance activities and operations disruption avoidance have been observed, supporting business cases for system improvement.Keywords: Aerospace, capability maturity model, software maturity, software lifecycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9142319 Res2ValHUM: Creation of Resource Management Tool and Microbial Consortia Isolation and Identification
Authors: A. Ribeiro, N. Valério, C. Vilarinho, J. Araujo, J. Carvalho
Abstract:
Res2ValHUM project involves institutions from the Spanish Autonomous Region of Galicia and the north of Portugal (districts of Porto and Braga) and has as overall objectives of promotion of composting as an process for the correct managing of organic waste, valorization of compost in different fields or applications for the constitution of products with high added value, reducing of raw materials losses, and reduction of the amount of waste throw in landfills. Three main actions were designed to achieve the objectives: development of a management tool to improve collection and residue channeling for composting, sensibilization of the population for composting and characterization of the chemical and biological properties of compost and humic and fulvic substances to envisage high-value applications of compost. Here we present the cooperative activity of Galician and northern Portuguese institutions to valorize organic waste in both regions with common socio-economic characteristics and residue management problems. Results from the creation of the resource manage tool proved the existence of a large number of agricultural wastes that could be valorized. In the North of Portugal, the wastes from maize, oats, potato, apple, grape pomace, rye, and olive pomace can be highlighted. In the Autonomous Region of Galicia the wastes from maize, wheat, potato, apple, and chestnuts can be emphasized. Regarding the isolation and identification of microbial consortia from compost samples, results proved microorganisms belong mainly to the genus Bacillus spp. Among all the species identified in compost samples, Bacillus licheniformis can be highlighted in the production of humic and fulvic acids.
Keywords: Agricultural wastes, Bacillus licheniformis, Bacillus spp., Humic-acids, Fulvic-acids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6972318 Exploring the Narrative Communication: Representing Visual Information from Digital Travel Stories
Authors: Rocío Abascal-Mena, Erick López-Ornelas
Abstract:
We present the results of a case study aiming to assess the reflection of the tourism community in the Web and its usability to propose new ways to communicate visually. The wealth of information contained in the Web and the clear facilities to communicate personals points of view makes of the social web a new space of exploration. In this way, social web allow the sharing of information between communities with similar interests. However, the tourism community remains unexplored as is the case of the information covered in travel stories. Along the Web, we find multiples sites allowing the users to communicate their experiences and personal points of view of a particular place of the world. This cultural heritage is found in multiple documents, usually very little supplemented with photos, so they are difficult to explore due to the lack of visual information. This paper explores the possibility of analyzing travel stories to display them visually on maps and generate new knowledge such as patterns of travel routes. This way, travel narratives published in electronic formats can be very important especially to the tourism community because of the great amount of knowledge that can be extracted. Our approach is based on the use of a Geoparsing Web Service to extract geographic coordinates from travel narratives in order to draw the geo-positions and link the documents into a map image.
Keywords: Social web, tourism community, visual communication, travel stories, geo references.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16452317 An AI-Generated Semantic Communication Platform in Human-Computer Interaction Course
Authors: Yi Yang, Jiasong Sun
Abstract:
Almost every aspect of our daily lives is now intertwined with some degree of Human-Computer Interaction (HCI). HCI courses draw on knowledge from disciplines as diverse as computer science, psychology, design principles, anthropology and more. The HCI courses in the Department of Electronics at Tsinghua University, known as the Media and Cognition course, is constantly updated to reflect the most advanced technological advances, such as virtual reality, augmented reality and artificial intelligence-based interaction. For more than a decade, this course has used an interest-based approach to teaching, in which students proactively propose some research-based questions and collaborate with teachers, using course knowledge to explore potential solutions. Semantic communication plays a key role in facilitating understanding and interaction between users and computer systems, ultimately enhancing system usability and user experience. The advancements in AI-generated technology, which has gained significant attention from both academia and industry in recent years, are exemplified by language models like GPT-3 that generate human-like dialogues from given prompts. The latest version of the HCI course practices a semantic communication platform based on AI-generated techniques. We explored a student-centered model and proposed an interest-based teaching method. Students are no longer just recipients of knowledge, but become active participants in the learning process driven by personal interests, thereby encouraging students to take responsibility for their own education. One of the latest results of this teaching approach in the course "Media and Cognition" is a student proposal to develop a semantic communication platform rooted in artificial intelligence generative technologies. The platform solves a key challenge in communications technology: the ability to preserve visual signals. The interest-based approach emphasizes personal curiosity and active participation, and the proposal of an artificial intelligence-generated semantic communication platform is an example and successful result of how students can exert greater creativity when they have the power to control their own learning.
Keywords: Human-computer interaction, media and cognition course, semantic communication, retain ability, prompts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642316 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13132315 From F2F to Online Sessions: Changing Pattern of Instructions in Open and Distance Learning in India
Authors: Subramaniam Chandran
Abstract:
This paper presents an assessment study conducted among the distance learners in India. Open and distance learning systems have traveled a long way since its inception and its journey has witnessed the evolution and adoption of different generations of technology. This study focuses on the distant learners in India. Sampling for this study has been derived from the mass enrollment from Tamil Nadu area, a southern state of India. Learners were chosen from dual mode universities, private universities, Tamil Nadu Open University and IGNOU. The main focus of the study is to examine the coverage and appropriation of students support services and learning aids. It explores two aspects: the facilities available and the awareness and use of such services. It includes, self-learning materials, face-to-face counseling, multimedia learning materials, website, e-learning, radio and television services etc. While exploring the student-s perspective on these learning aspects, it is important to understand the perspectives of the teachers. Two different interests are visible among the teachers. Majority of the teachers support faceto- face counseling. However, the young teachers are in favour of online learning and multimedia supports in teaching. Through the awareness is somewhat high, the actual participation in online is very low. This is due to the inadequate infrastructure as well as the traditional attitudes of the teachers. Still the face-to-face sessions remain popular than online.Keywords: Face-to-face session, online session, distance learning, multimedia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922314 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.
Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9752313 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill
Authors: S. Khosravi, A. Afshar, F. Barazandeh
Abstract:
In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22062312 Further Investigations on Higher Mathematics Scores for Chinese University Students
Authors: Xun Ge
Abstract:
Recently, X. Ge and J. Qian investigated some relations between higher mathematics scores and calculus scores (resp. linear algebra scores, probability statistics scores) for Chinese university students. Based on rough-set theory, they established an information system S = (U,CuD,V, f). In this information system, higher mathematics score was taken as a decision attribute and calculus score, linear algebra score, probability statistics score were taken as condition attributes. They investigated importance of each condition attribute with respective to decision attribute and strength of each condition attribute supporting decision attribute. In this paper, we give further investigations for this issue. Based on the above information system S = (U, CU D, V, f), we analyze the decision rules between condition and decision granules. For each x E U, we obtain support (resp. strength, certainty factor, coverage factor) of the decision rule C —>x D, where C —>x D is the decision rule induced by x in S = (U, CU D, V, f). Results of this paper gives new analysis of on higher mathematics scores for Chinese university students, which can further lead Chinese university students to raise higher mathematics scores in Chinese graduate student entrance examination.
Keywords: Rough set, support, strength, certainty factor, coverage factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13692311 Analysis on Iranian Wind Catcher and Its Effect on Natural Ventilation as a Solution towards Sustainable Architecture(Case Study: Yazd)
Authors: Mahnaz Mahmoudi Zarandi (Qazvin Islamic Azad University)
Abstract:
wind catchers have been served as a cooling system, used to provide acceptable ventilation by means of renewable energy of wind. In the present study, the city of Yazd in arid climate is selected as case study. From the architecture point of view, learning about wind catchers in this study is done by means of field surveys. Research method for selection of the case is based on random form, and analytical method. Wind catcher typology and knowledge of relationship governing the wind catcher's architecture were those measures that are taken for the first time. 53 wind catchers were analyzed. The typology of the wind-catchers is done by the physical analyzing, patterns and common concepts as incorporated in them. How the architecture of wind catcher can influence their operations by analyzing thermal behavior are the archetypes of selected wind catchers. Calculating fluids dynamics science, fluent software and numerical analysis are used in this study as the most accurate analytical approach. The results obtained from these analyses show the formal specifications of wind catchers with optimum operation in Yazd. The knowledge obtained from the optimum model could be used for design and construction of wind catchers with more improved operation
Keywords: Fluent Software, Iranian architecture, wind catcher
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44932310 Intelligent Temperature Controller for Water-Bath System
Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar
Abstract:
Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.
To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.
It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.
Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55482309 Classifier Based Text Mining for Neural Network
Authors: M. Govindarajan, R. M. Chandrasekaran
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.Keywords: Back propagation, classification accuracy, textmining, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42182308 Correlation and Prediction of Biodiesel Density
Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos
Abstract:
The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.
Keywords: Biodiesel, Correlation, Density, Equation of state, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35112307 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19532306 Concept to Enhance the Project Success and Promote the Implementation of Success Factors in Infrastructure Projects
Abstract:
Infrastructure projects are often subjected to delays and cost overruns and mistakenly described as unsuccessful projects. These projects have many peculiarities such as public attention, impact on the environment, subjected to special regulations, etc. They also deal with several stakeholders with different motivations and face unique risks. With this in mind we need to reconsider our approach to manage them, define their success factors and implement these success factors. Infrastructure projects are not only lacking a unified meaning of project success or a definition of success factors, but also a clear method to implement these factors. This paper investigates this gap and introduces a concept to implement success factors in an efficient way, taking into consideration the specific characteristics of infrastructure projects. This concept consists of six enablers such as project organization, project team, project management workflow, contract management, communication and knowledge transfer and project documentations. These enablers allow other success factors to be efficiently implemented in projects. In conclusion, this paper provides project managers as well as company managers with a tool to define and implement success factors efficiently in their projects, along with upgrading their assets for the coming projects. This tool consists of processes and validated checklists to ensure the best use of company resources and knowledge. Due to the special features of infrastructure projects this tool will be tested in the German infrastructure market. However, it is meant to be adaptable to other markets and industries.
Keywords: Infrastructure projects, enablers, project success, success factors, transportation projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9932305 Application of Java-based Pointcuts in Aspect Oriented Programming (AOP) for Data Race Detection
Authors: Sadaf Khalid, Fahim Arif
Abstract:
Wide applicability of concurrent programming practices in developing various software applications leads to different concurrency errors amongst which data race is the most important. Java provides greatest support for concurrent programming by introducing various concurrency packages. Aspect oriented programming (AOP) is modern programming paradigm facilitating the runtime interception of events of interest and can be effectively used to handle the concurrency problems. AspectJ being an aspect oriented extension to java facilitates the application of concepts of AOP for data race detection. Volatile variables are usually considered thread safe, but they can become the possible candidates of data races if non-atomic operations are performed concurrently upon them. Various data race detection algorithms have been proposed in the past but this issue of volatility and atomicity is still unaddressed. The aim of this research is to propose some suggestions for incorporating certain conditions for data race detection in java programs at the volatile fields by taking into account support for atomicity in java concurrency packages and making use of pointcuts. Two simple test programs will demonstrate the results of research. The results are verified on two different Java Development Kits (JDKs) for the purpose of comparison.Keywords: Aspect Bench Compiler (abc), Aspect OrientedProgramming (AOP), AspectJ, Aspects, Concurrency packages, Concurrent programming, Cross-cutting Concerns, Data race, Eclipse, Java, Java Development Kits (JDKs), Pointcuts
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19302304 Poli4SDG: An Application for Environmental Crises Management and Gender Support
Authors: Angelica S. Valeriani, Lorenzo Biasiolo
Abstract:
In recent years, the scale of the impact of climate change and its related side effects has become ever more massive and devastating. Sustainable Development Goals (SDGs), promoted by United Nations, aim to front issues related to climate change, among others. In particular, the project CROWD4SDG focuses on a bunch of SDGs, since it promotes environmental activities and climate-related issues. In this context, we developed a prototype of an application, under advanced development considering web design, that focuses on SDG 13 (SDG on climate action) by providing users with useful instruments to face environmental crises and climate-related disasters. Our prototype is thought and structured for both web and mobile development. The main goal of the application, POLI4SDG, is to help users to get through emergency services. To this extent, an organized overview and classification prove to be very effective and helpful to people in need. A careful analysis of data related to environmental crises prompted us to integrate the user contribution, i.e. exploiting a core principle of Citizen Science, into the realization of a public catalog, available for consulting and organized according to typology and specific features. In addition, gender equality and opportunity features are considered in the prototype, in order to allow women, often the most vulnerable category, to have direct support. The overall description of the application functionalities is detailed. Moreover, implementation features and properties of the prototype are discussed.
Keywords: Crowdsourcing, social media, SDG, climate change, natural disasters, gender equality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695