Search results for: trial and error.
185 Load Discontinuity in Shock Response and Its Remedies
Authors: Shuenn-Yih Chang, Chiu-Li Huang
Abstract:
It has been shown that a load discontinuity at the end of an impulse will result in an extra impulse and hence an extra amplitude distortion if a step-by-step integration method is employed to yield the shock response. In order to overcome this difficulty, three remedies are proposed to reduce the extra amplitude distortion. The first remedy is to solve the momentum equation of motion instead of the force equation of motion in the step-by-step solution of the shock response, where an external momentum is used in the solution of the momentum equation of motion. Since the external momentum is a resultant of the time integration of external force, the problem of load discontinuity will automatically disappear. The second remedy is to perform a single small time step immediately upon termination of the applied impulse while the other time steps can still be conducted by using the time step determined from general considerations. This is because that the extra impulse caused by a load discontinuity at the end of an impulse is almost linearly proportional to the step size. Finally, the third remedy is to use the average value of the two different values at the integration point of the load discontinuity to replace the use of one of them for loading input. The basic motivation of this remedy originates from the concept of no loading input error associated with the integration point of load discontinuity. The feasibility of the three remedies are analytically explained and numerically illustrated.Keywords: Dynamic analysis, load discontinuity, shock response, step-by-step integration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332184 Design, Simulation, and Implementation of a Digital Pulse Oxygen Saturation Measurement System Using the Arduino Microcontroller
Authors: Muhibul Haque Bhuyan, Md. Refat Sarder
Abstract:
If a person can monitor his/her oxygen saturation level intermittently then he/she can identify his/her condition early and thus he/she can seek a doctor’s help. This paper reports the design, simulation, and implementation of a low-cost pulse oxygen saturation measurement device based on a reflective photoplethysmography (PPG) system using an integrated circuit sensor as the fundamental component of this health status checking device. The measurement of the physiological parameter is the blood oxygen saturation level (SpO2) in the peripheral capillary. This work has been implemented using an Arduino Uno R3 microcontroller along with this sensor integrated circuit (IC). The system is designed in the Proteus environment and then simulated to check its performance. After that, the hardware implementation is performed. We used a clipping type optical sensor to sense the arterial oxygen saturation level of blood signal from the fingertips of an individual and then transformed it into the digital data in the microcontroller through its programming its instruction. The designed system was tested by measuring the SpO2 level for several people of different ages, from 12 to 57 years of age. Besides, the same people were tested using a standard machine purchased from the market. Test results were found very satisfactory as the average percentage of error was very low, 1.59% only.
Keywords: Digital pulse oxygen saturation level, oximeter, measurement, design, simulation, implementation, proteus, Arduino Uno microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860183 An Efficient Backward Semi-Lagrangian Scheme for Nonlinear Advection-Diffusion Equation
Authors: Soyoon Bak, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, a backward semi-Lagrangian scheme combined with the second-order backward difference formula is designed to calculate the numerical solutions of nonlinear advection-diffusion equations. The primary aims of this paper are to remove any iteration process and to get an efficient algorithm with the convergence order of accuracy 2 in time. In order to achieve these objects, we use the second-order central finite difference and the B-spline approximations of degree 2 and 3 in order to approximate the diffusion term and the spatial discretization, respectively. For the temporal discretization, the second order backward difference formula is applied. To calculate the numerical solution of the starting point of the characteristic curves, we use the error correction methodology developed by the authors recently. The proposed algorithm turns out to be completely iteration free, which resolves the main weakness of the conventional backward semi-Lagrangian method. Also, the adaptability of the proposed method is indicated by numerical simulations for Burgers’ equations. Throughout these numerical simulations, it is shown that the numerical results is in good agreement with the analytic solution and the present scheme offer better accuracy in comparison with other existing numerical schemes.
Keywords: Semi-Lagrangian method, Iteration free method, Nonlinear advection-diffusion equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493182 Early Warning System of Financial Distress Based On Credit Cycle Index
Authors: Bi-Huei Tsai
Abstract:
Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightlydistressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the one-stage model has the lower misclassification error rate than the two-stage model. The one-stage model is more accurate than the two-stage model.
Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680181 Continuous Feature Adaptation for Non-Native Speech Recognition
Authors: Y. Deng, X. Li, C. Kwan, B. Raj, R. Stern
Abstract:
The current speech interfaces in many military applications may be adequate for native speakers. However, the recognition rate drops quite a lot for non-native speakers (people with foreign accents). This is mainly because the nonnative speakers have large temporal and intra-phoneme variations when they pronounce the same words. This problem is also complicated by the presence of large environmental noise such as tank noise, helicopter noise, etc. In this paper, we proposed a novel continuous acoustic feature adaptation algorithm for on-line accent and environmental adaptation. Implemented by incremental singular value decomposition (SVD), the algorithm captures local acoustic variation and runs in real-time. This feature-based adaptation method is then integrated with conventional model-based maximum likelihood linear regression (MLLR) algorithm. Extensive experiments have been performed on the NATO non-native speech corpus with baseline acoustic model trained on native American English. The proposed feature-based adaptation algorithm improved the average recognition accuracy by 15%, while the MLLR model based adaptation achieved 11% improvement. The corresponding word error rate (WER) reduction was 25.8% and 2.73%, as compared to that without adaptation. The combined adaptation achieved overall recognition accuracy improvement of 29.5%, and WER reduction of 31.8%, as compared to that without adaptation. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217180 Medical Image Watermark and Tamper Detection Using Constant Correlation Spread Spectrum Watermarking
Authors: Peter U. Eze, P. Udaya, Robin J. Evans
Abstract:
Data hiding can be achieved by Steganography or invisible digital watermarking. For digital watermarking, both accurate retrieval of the embedded watermark and the integrity of the cover image are important. Medical image security in Teleradiology is one of the applications where the embedded patient record needs to be extracted with accuracy as well as the medical image integrity verified. In this research paper, the Constant Correlation Spread Spectrum digital watermarking for medical image tamper detection and accurate embedded watermark retrieval is introduced. In the proposed method, a watermark bit from a patient record is spread in a medical image sub-block such that the correlation of all watermarked sub-blocks with a spreading code, W, would have a constant value, p. The constant correlation p, spreading code, W and the size of the sub-blocks constitute the secret key. Tamper detection is achieved by flagging any sub-block whose correlation value deviates by more than a small value, ℇ, from p. The major features of our new scheme include: (1) Improving watermark detection accuracy for high-pixel depth medical images by reducing the Bit Error Rate (BER) to Zero and (2) block-level tamper detection in a single computational process with simultaneous watermark detection, thereby increasing utility with the same computational cost.
Keywords: Constant correlation, medical image, spread spectrum, tamper detection, watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974179 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763178 Phelipanche ramosa (L. - Pomel) Control in Field Tomato Crop
Authors: Disciglio G., Lops F., Carlucci A., Gatta G., Tarantino A., Frabboni L., Carriero F., Cibelli F., Raimondo M. L., Tarantino E.
Abstract:
The tomato is a very important crop, whose cultivation in the Mediterranean basin is severely affected by the phytoparasitic weed Phelipanche ramosa. The semiarid regions of the world are considered the main areas where this parasitic weed is established causing heavy infestation as it is able to produce high numbers of seeds (up to 500,000 per plant), which remain viable for extended period (more than 20 years). In this paper the results obtained from eleven treatments in order to control this parasitic weed including chemical, agronomic, biological and biotechnological methods compared with the untreated test under two plowing depths (30 and 50 cm) are reported. The split-plot design with 3 replicates was adopted. In 2014 a trial was performed in Foggia province (southern Italy) on processing tomato (cv Docet) grown in the field infested by Phelipanche ramosa. Tomato seedlings were transplant on May 5, on a clay-loam soil. During the growing cycle of the tomato crop, at 56-78 and 92 days after transplantation, the number of parasitic shoots emerged in each plot was detected. At tomato harvesting, on August 18, the major quantity-quality yield parameters were determined (marketable yield, mean weight, dry matter, pH, soluble solids and color of fruits). All data were subjected to analysis of variance (ANOVA) and the means were compared by Tukey's test. Each treatment studied did not provide complete control against Phelipanche ramosa. However, among the different methods tested, some of them which Fusarium, gliphosate, radicon biostimulant and Red Setter tomato cv (improved genotypes obtained by Tilling technology) under deeper plowing (50 cm depth) proved to mitigate the virulence of the Phelipanche ramose attacks. It is assumed that these effects can be improved combining some of these treatments each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.
Keywords: Control methods, Phelipanche ramosa, tomato crop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545177 Meteorological Risk Assessment for Ships with Fuzzy Logic Designer
Authors: Ismail Karaca, Ridvan Saracoglu, Omer Soner
Abstract:
Fuzzy Logic, an advanced method to support decision-making, is used by various scientists in many disciplines. Fuzzy programming is a product of fuzzy logic, fuzzy rules, and implication. In marine science, fuzzy programming for ships is dramatically increasing together with autonomous ship studies. In this paper, a program to support the decision-making process for ship navigation has been designed. The program is produced in fuzzy logic and rules, by taking the marine accidents and expert opinions into account. After the program was designed, the program was tested by 46 ship accidents reported by the Transportation Safety Investigation Center of Turkey. Wind speed, sea condition, visibility, day/night ratio have been used as input data. They have been converted into a risk factor within the Fuzzy Logic Designer application and fuzzy rules set by marine experts. Finally, the expert's meteorological risk factor for each accident is compared with the program's risk factor, and the error rate was calculated. The main objective of this study is to improve the navigational safety of ships, by using the advance decision support model. According to the study result, fuzzy programming is a robust model that supports safe navigation.
Keywords: Calculation of risk factor, fuzzy logic, fuzzy programming for ship, safe navigation of ships.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826176 FPGA Implementation of Generalized Maximal Ratio Combining Receiver Diversity
Authors: Rafic Ayoubi, Jean-Pierre Dubois, Rania Minkara
Abstract:
In this paper, we study FPGA implementation of a novel supra-optimal receiver diversity combining technique, generalized maximal ratio combining (GMRC), for wireless transmission over fading channels in SIMO systems. Prior published results using ML-detected GMRC diversity signal driven by BPSK showed superior bit error rate performance to the widely used MRC combining scheme in an imperfect channel estimation (ICE) environment. Under perfect channel estimation conditions, the performance of GMRC and MRC were identical. The main drawback of the GMRC study was that it was theoretical, thus successful FPGA implementation of it using pipeline techniques is needed as a wireless communication test-bed for practical real-life situations. Simulation results showed that the hardware implementation was efficient both in terms of speed and area. Since diversity combining is especially effective in small femto- and picocells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to the hardware of IP-based 4th generation networks.Keywords: Femto-internet cells, field-programmable gate array, generalized maximal-ratio combining, Lyapunov fractal dimension, pipelining technique, wireless SIMO channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601175 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: Optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433174 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.
Keywords: Anomaly detection, autoencoder, data centers, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744173 Introduce Applicability of Multi-Layer Perceptron to Predict the Behaviour of Semi-Interlocking Masonry Panel
Authors: O. Zarrin, M. Ramezanshirazi
Abstract:
The Semi Interlocking Masonry (SIM) system has been developed in Masonry Research Group at the University of Newcastle, Australia. The main purpose of this system is to enhance the seismic resistance of framed structures with masonry panels. In this system, SIM panels dissipate energy through the sliding friction between rows of SIM units during earthquake excitation. This paper aimed to find the applicability of artificial neural network (ANN) to predict the displacement behaviour of the SIM panel under out-of-plane loading. The general concept of ANN needs to be trained by related force-displacement data of SIM panel. The overall data to train and test the network are 70 increments of force-displacement from three tests, which comprise of none input nodes. The input data contain height and length of panels, height, length and width of the brick and friction and geometry angle of brick along the compressive strength of the brick with the lateral load applied to the panel. The aim of designed network is prediction displacement of the SIM panel by Multi-Layer Perceptron (MLP). The mean square error (MSE) of network was 0.00042 and the coefficient of determination (R2) values showed the 0.91. The result revealed that the ANN has significant agreement to predict the SIM panel behaviour.Keywords: Semi interlocking masonry, artificial neural network, ANN, multi-layer perceptron, MLP, displacement, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816172 High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation
Authors: Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang
Abstract:
This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in 'x' by discontinuous approximations. This method combines mainly two key ideas which are based on the finite volume and finite element methods. The physics of wave propagation being accounted for by means of Riemann problems and accuracy is obtained by means of high-order polynomial approximations within the elements. High order accurate Low Storage Explicit Runge Kutta (LSERK) method is used for temporal discretization in 't' that allows the method to be nonlinearly stable regardless of its accuracy. The resulting RKDG methods are stable and high-order accurate. The L1 ,L2 and L∞ error norm analysis shows that the scheme is highly accurate and effective. Hence, the method is well suited to achieve high order accurate solution for the scalar wave equation and other hyperbolic equations.Keywords: Nodal Discontinuous Galerkin Method, RKDG, Scalar Wave Equation, LSERK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467171 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation
Authors: A. El-S. Makled, M. K. Al-Tamimi
Abstract:
A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770170 A Comparison of Experimental Data with Monte Carlo Calculations for Optimisation of the Sourceto- Detector Distance in Determining the Efficiency of a LaBr3:Ce (5%) Detector
Authors: H. Aldousari, T. Buchacher, N. M. Spyrou
Abstract:
Cerium-doped lanthanum bromide LaBr3:Ce(5%) crystals are considered to be one of the most advanced scintillator materials used in PET scanning, combining a high light yield, fast decay time and excellent energy resolution. Apart from the correct choice of scintillator, it is also important to optimise the detector geometry, not least in terms of source-to-detector distance in order to obtain reliable measurements and efficiency. In this study a commercially available 25 mm x 25 mm BrilLanCeTM 380 LaBr3: Ce (5%) detector was characterised in terms of its efficiency at varying source-to-detector distances. Gamma-ray spectra of 22Na, 60Co, and 137Cs were separately acquired at distances of 5, 10, 15, and 20cm. As a result of the change in solid angle subtended by the detector, the geometric efficiency reduced in efficiency with increasing distance. High efficiencies at low distances can cause pulse pile-up when subsequent photons are detected before previously detected events have decayed. To reduce this systematic error the source-to-detector distance should be balanced between efficiency and pulse pile-up suppression as otherwise pile-up corrections would need to be necessary at short distances. In addition to the experimental measurements Monte Carlo simulations have been carried out for the same setup, allowing a comparison of results. The advantages and disadvantages of each approach have been highlighted.
Keywords: BrilLanCeTM380 LaBr3:Ce(5%), Coincidence summing, GATE simulation, Geometric efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891169 Enhancement of Accountability within the South African Public Sector: Knowledge Gained from the Case of a National Commissioner of the South African Police Service
Authors: Yasmin Nanabhay
Abstract:
The paper scrutinizes the literature on accountability and non-accountability, and then presents an analysis of a South African case which demonstrated consequences of a lack of accountability. Ethical conduct displayed by members of the public sector is integral to creating a sustainable democratic government, which upholds the constitutional tenets of accountability, transparency and professional ethicality. Furthermore, a true constitutional democracy emphasises and advocates the notion of service leadership that nurtures public participation and engages with citizens in a positive manner. Ethical conduct and accountability in the public sector earns public trust; hence these are key principles in good governance. Yet, in the years since the advent of democracy in South Africa, the government has been plagued by rampant corruption and mal-administration by public officials and politicians in leadership positions. The control measures passed by government in an attempt to ensure ethicality and accountability within the public sector include codes of ethics, rules of conduct and the enactment of legislation. These are intended to shape the mindset of members of the public sector, with the ultimate aim of an efficient, effective, ethical, responsive and accountable public service. The purpose of the paper is to analyse control systems and accountability within the public sector and to present reasons for non-accountability by means of a selected case study. The selected case study is the corruption trial of Jackie Selebi, who served as National Commissioner of the South African Police Service but was dismissed from the post. The reasons for non-accountability in the public sector as well as recommendations based on the findings to enhance accountability will be undertaken. The case study demonstrates the experience and impact of corruption and/or mal-administration, as a result of a lack of accountability, which has contributed to the increasing loss of confidence in political leadership in the country as elsewhere in the world. The literature is applied to the erstwhile National Commissioner of the South African Police Service and President of Interpol, as a case study of non-accountability.
Keywords: Public sector, public accountability, internal control, oversight mechanisms, non-compliance, corruption, mal-administration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824168 Robust Iterative PID Controller Based on Linear Matrix Inequality for a Sample Power System
Authors: Ahmed Bensenouci
Abstract:
This paper provides the design steps of a robust Linear Matrix Inequality (LMI) based iterative multivariable PID controller whose duty is to drive a sample power system that comprises a synchronous generator connected to a large network via a step-up transformer and a transmission line. The generator is equipped with two control-loops, namely, the speed/power (governor) and voltage (exciter). Both loops are lumped in one where the error in the terminal voltage and output active power represent the controller inputs and the generator-exciter voltage and governor-valve position represent its outputs. Multivariable PID is considered here because of its wide use in the industry, simple structure and easy implementation. It is also preferred in plants of higher order that cannot be reduced to lower ones. To improve its robustness to variation in the controlled variables, H∞-norm of the system transfer function is used. To show the effectiveness of the controller, divers tests, namely, step/tracking in the controlled variables, and variation in plant parameters, are applied. A comparative study between the proposed controller and a robust H∞ LMI-based output feedback is given by its robustness to disturbance rejection. From the simulation results, the iterative multivariable PID shows superiority.Keywords: Linear matrix inequality, power system, robust iterative PID, robust output feedback control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055167 Geopotential Models Evaluation in Algeria Using Stochastic Method, GPS/Leveling and Topographic Data
Authors: M. A. Meslem
Abstract:
For precise geoid determination, we use a reference field to subtract long and medium wavelength of the gravity field from observations data when we use the remove-compute-restore technique. Therefore, a comparison study between considered models should be made in order to select the optimal reference gravity field to be used. In this context, two recent global geopotential models have been selected to perform this comparison study over Northern Algeria. The Earth Gravitational Model (EGM2008) and the Global Gravity Model (GECO) conceived with a combination of the first model with anomalous potential derived from a GOCE satellite-only global model. Free air gravity anomalies in the area under study have been used to compute residual data using both gravity field models and a Digital Terrain Model (DTM) to subtract the residual terrain effect from the gravity observations. Residual data were used to generate local empirical covariance functions and their fitting to the closed form in order to compare their statistical behaviors according to both cases. Finally, height anomalies were computed from both geopotential models and compared to a set of GPS levelled points on benchmarks using least squares adjustment. The result described in details in this paper regarding these two models has pointed out a slight advantage of GECO global model globally through error degree variances comparison and ground-truth evaluation.
Keywords: Quasigeoid, gravity anomalies, covariance, GGM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898166 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.
Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512165 Artificial Intelligent Approach for Machining Titanium Alloy in a Nonconventional Process
Authors: Md. Ashikur Rahman Khan, M. M. Rahman, K. Kadirgama
Abstract:
Artificial neural networks (ANN) are used in distinct researching fields and professions, and are prepared by cooperation of scientists in different fields such as computer engineering, electronic, structure, biology and so many different branches of science. Many models are built correlating the parameters and the outputs in electrical discharge machining (EDM) concern for different types of materials. Up till now model for Ti-5Al-2.5Sn alloy in the case of electrical discharge machining performance characteristics has not been developed. Therefore, in the present work, it is attempted to generate a model of material removal rate (MRR) for Ti-5Al-2.5Sn material by means of Artificial Neural Network. The experimentation is performed according to the design of experiment (DOE) of response surface methodology (RSM). To generate the DOE four parameters such as peak current, pulse on time, pulse off time and servo voltage and one output as MRR are considered. Ti-5Al-2.5Sn alloy is machined with positive polarity of copper electrode. Finally the developed model is tested with confirmation test. The confirmation test yields an error as within the agreeable limit. To investigate the effect of the parameters on performance sensitivity analysis is also carried out which reveals that the peak current having more effect on EDM performance.
Keywords: Ti-5Al-2.5Sn, material removal rate, copper tungsten, positive polarity, artificial neural network, multi-layer perceptron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399164 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children
Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman
Abstract:
Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.
Keywords: Automatic speech recognition system, children speech, adaptation, Malay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752163 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results
Authors: C. Villegas-Quezada, J. Climent
Abstract:
Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.
Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497162 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique
Authors: Karchung, S. Ruangsinchaiwanich
Abstract:
This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.
Keywords: Electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965161 Surface Flattening Assisted with 3D Mannequin Based On Minimum Energy
Authors: Shih-Wen Hsiao, Rong-Qi Chen, Chien-Yu Lin
Abstract:
The topic of surface flattening plays a vital role in the field of computer aided design and manufacture. Surface flattening enables the production of 2D patterns and it can be used in design and manufacturing for developing a 3D surface to a 2D platform, especially in fashion design. This study describes surface flattening based on minimum energy methods according to the property of different fabrics. Firstly, through the geometric feature of a 3D surface, the less transformed area can be flattened on a 2D platform by geodesic. Then, strain energy that has accumulated in mesh can be stably released by an approximate implicit method and revised error function. In some cases, cutting mesh to further release the energy is a common way to fix the situation and enhance the accuracy of the surface flattening, and this makes the obtained 2D pattern naturally generate significant cracks. When this methodology is applied to a 3D mannequin constructed with feature lines, it enhances the level of computer-aided fashion design. Besides, when different fabrics are applied to fashion design, it is necessary to revise the shape of a 2D pattern according to the properties of the fabric. With this model, the outline of 2D patterns can be revised by distributing the strain energy with different results according to different fabric properties. Finally, this research uses some common design cases to illustrate and verify the feasibility of this methodology.
Keywords: Surface flattening, Strain energy, Minimum energy, approximate implicit method, Fashion design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599160 Analysis of Codebook Based Channel Feedback Techniques for MIMO-OFDM Systems
Authors: Muhammad Rehan Khalid, Ahmed Farhan Hanif, Adnan Ahmed Khan
Abstract:
This paper investigates the performance of Multiple- Input Multiple-Output (MIMO) feedback system combined with Orthogonal Frequency Division Multiplexing (OFDM). Two types of codebook based channel feedback techniques are used in this work. The first feedback technique uses a combination of both the long-term and short-term channel state information (CSI) at the transmitter, whereas the second technique uses only the short term CSI. The long-term and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The effectiveness of these techniques has been demonstrated through the simulation of a MIMO-OFDM feedback system. The results have been evaluated for 4x4 MIMO channels. Simulation results indicate the benefits of the MIMO-OFDM channel feedback system over the one without incorporating OFDM. Performance gain of about 3 dB is observed for MIMO-OFDM feedback system as compared to the one without employing OFDM. Hence MIMO-OFDM becomes an attractive approach for future high speed wireless communication systems.
Keywords: MIMO systems, OFDM, Codebooks, Channel Feedback
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674159 Detecting Earnings Management via Statistical and Neural Network Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: Earnings management, generalized regression neural networks, linear regression, multi-layer perceptron, Tehran stock exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105158 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals
Authors: Fahad Alhussein, Huaping Liu
Abstract:
This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.Keywords: Correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483157 A Review on Medical Image Registration Techniques
Authors: Shadrack Mambo, Karim Djouani, Yskandar Hamam, Barend van Wyk, Patrick Siarry
Abstract:
This paper discusses the current trends in medical image registration techniques and addresses the need to provide a solid theoretical foundation for research endeavours. Methodological analysis and synthesis of quality literature was done, providing a platform for developing a good foundation for research study in this field which is crucial in understanding the existing levels of knowledge. Research on medical image registration techniques assists clinical and medical practitioners in diagnosis of tumours and lesion in anatomical organs, thereby enhancing fast and accurate curative treatment of patients. Literature review aims to provide a solid theoretical foundation for research endeavours in image registration techniques. Developing a solid foundation for a research study is possible through a methodological analysis and synthesis of existing contributions. Out of these considerations, the aim of this paper is to enhance the scientific community’s understanding of the current status of research in medical image registration techniques and also communicate to them, the contribution of this research in the field of image processing. The gaps identified in current techniques can be closed by use of artificial neural networks that form learning systems designed to minimise error function. The paper also suggests several areas of future research in the image registration.Keywords: Image registration techniques, medical images, neural networks, optimisation, transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813156 Material Density Mapping on Deformable 3D Models of Human Organs
Authors: Petru Manescu, Joseph Azencot, Michael Beuve, Hamid Ladjal, Jacques Saade, Jean-Michel Morreau, Philippe Giraud, Behzad Shariat
Abstract:
Organ motion, especially respiratory motion, is a technical challenge to radiation therapy planning and dosimetry. This motion induces displacements and deformation of the organ tissues within the irradiated region which need to be taken into account when simulating dose distribution during treatment. Finite element modeling (FEM) can provide a great insight into the mechanical behavior of the organs, since they are based on the biomechanical material properties, complex geometry of organs, and anatomical boundary conditions. In this paper we present an original approach that offers the possibility to combine image-based biomechanical models with particle transport simulations. We propose a new method to map material density information issued from CT images to deformable tetrahedral meshes. Based on the principle of mass conservation our method can correlate density variation of organ tissues with geometrical deformations during the different phases of the respiratory cycle. The first results are particularly encouraging, as local error quantification of density mapping on organ geometry and density variation with organ motion are performed to evaluate and validate our approach.
Keywords: Biomechanical simulation, dose distribution, image guided radiation therapy, organ motion, tetrahedral mesh, 4D-CT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008