Search results for: Random Oracle Model.
7801 A Structural Equation Model of Knowledge Management Based On Organizational Climate in Universities
Authors: F. Nazem, M. Mozaiini, A. Seifi
Abstract:
The purpose of the present study was to provide a structural model of knowledge management in universities based on organizational climate. The population of the research included all employees of Islamic Azad University (IAU). The sample consisted of 1590 employees selected using stratified and cluster random sampling method. The research instruments were two questionnaires which were administered in 78 IAU branches and education centers: Sallis and Jones’s (2002) Knowledge Management Questionnaire (α= 0.97); and Latwin & Stringer’s (1968) Organizational Climate Questionnaire (α= 0.83). The results of path analysis using LISREL software indicated that dimensions of organizational climate had a direct effect on knowledge management with the indices of 0.94. The model also showed that the factor of support in organizational climate had the highest direct effect on the knowledge management.
Keywords: Knowledge management, Organizational climate, Structural model, Universities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22877800 Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients
Authors: Elnaz Saeedi, Jamileh Abolaghasemi, Mohsen Nasiri Tousi, Saeedeh Khosravi
Abstract:
Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients’ survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients’ survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis 'B' with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year’s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients’ death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable.
Keywords: Frailty model, latent variables, liver cirrhosis, parametric distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10587799 Estimating 3D-Position of A Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals
Authors: Katsumi Hirata
Abstract:
To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.
Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14377798 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain
Authors: Bita Payami-Shabestari, Dariush Eslami
Abstract:
The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.Keywords: Economic production quantity, random cost, supply chain management, vendor-managed inventory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6827797 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types
Authors: Chaghoub Soraya, Zhang Xiaoyan
Abstract:
This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.Keywords: Approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5957796 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model
Authors: S. Channgam, A. Sae-Tang, T. Termsaithong
Abstract:
In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.
Keywords: Bak-Tang-Wiesenfeld sandpile model, avalanches, cross-correlation, prediction method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11747795 Solving Process Planning and Scheduling with Number of Operation Plus Processing Time Due-Date Assignment Concurrently Using a Genetic Search
Authors: Halil Ibrahim Demir, Alper Goksu, Onur Canpolat, Caner Erden, Melek Nur
Abstract:
Traditionally process planning, scheduling and due date assignment are performed sequentially and separately. High interrelation between these functions makes integration very useful. Although there are numerous works on integrated process planning and scheduling and many works on scheduling with due date assignment, there are only a few works on the integration of these three functions. Here we tested the different integration levels of these three functions and found a fully integrated version as the best. We applied genetic search and random search and genetic search was found better compared to the random search. We penalized all earliness, tardiness and due date related costs. Since all these three terms are all undesired, it is better to penalize all of them.Keywords: Process planning, scheduling, due-date assignment, genetic algorithm, random search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8397794 On the Central Limit Theorems for Forward and Backward Martingales
Authors: Yilun Shang
Abstract:
Let {Xi}i≥1 be a martingale difference sequence with Xi = Si - Si-1. Under some regularity conditions, we show that (X2 1+· · ·+X2N n)-1/2SNn is asymptotically normal, where {Ni}i≥1 is a sequence of positive integer-valued random variables tending to infinity. In a similar manner, a backward (or reverse) martingale central limit theorem with random indices is provided.Keywords: central limit theorem, martingale difference sequence, backward martingale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27817793 Fast and Robust Long-term Tracking with Effective Searching Model
Authors: Thang V. Kieu, Long P. Nguyen
Abstract:
Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.
Keywords: Correlation filter, long-term tracking, random fern, real-time tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7787792 Passenger Seat Vibration Comparison Using ANFIS Control in Active Quarter Car Model
Authors: Devdutt
Abstract:
In this paper, vibration control response of passenger seat in quarter car model having three degrees of freedom is studied. Three different control strategies are taken into account using Adaptive Neuro Fuzzy Inference System (ANFIS) controller. In first case, ANFIS controller is applied in main suspension of active quarter car model. In second case, passenger seat suspension is assembled with ANFIS controller. Finally, both main and passenger seat suspensions are integrated with ANFIS controller. Simulation work under random road excitations is performed using passive and controlled quarter car models for performance comparison of passenger ride comfort. Ride comfort analysis is also compared as per ISO 2631-1 criterion. The obtained simulation responses are compared taking passenger seat acceleration and displacement response in time and frequency domain for the selection of best control strategy in designed quarter car model.
Keywords: Active suspension system, ANFIS controller, passenger ride comfort, quarter car model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8377791 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.
Keywords: Random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4487790 Motivating Factors to Use Electric Vehicles Based on Behavioral Intention Model in South Korea
Authors: Seyedsamad Tahani, Samira Ghorbanpour, Sekyung Han
Abstract:
The global warming crisis forced humans to consider their place in the world and the earth's future. In this regard, Electric Vehicles (EVs) are a significant step towards protecting the environment. By identifying factors that influence people's behavior intentions toward using EVs, we proposed a theoretical model by extending the Technology Acceptance Model (TAM), including three more concepts, Subjective Norm (SN), Self-Efficacy (SE), and Perceived Behavior Control (PBC). The study was conducted in South Korea, and a random sample was taken at a specific time. In order to collect data, a questionnaire was created in a Google Form and sent via Kakao Talk, a popular social media application used in Korea. There were about 220 participants in this survey. However, 201 surveys were completely done. The findings revealed that all factors in the TAM model and the other added concepts such as SNs, SE and PBC significantly affect the behavioral intention of using EVs.
Keywords: Electric vehicles, behavioral intention, subjective norm, self-efficacy, perceived behavior control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5727789 Climate Change in Albania and Its Effect on Cereal Yield
Abstract:
This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine learning methods, such as Random Forest (RF), are used to predict cereal yield responses to climacteric and other variables. RF showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the RF method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods: multiple linear regression and lasso regression method.
Keywords: Cereal yield, climate change, machine learning, multiple regression model, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497788 Reliability Based Performance Evaluation of Stone Column Improved Soft Ground
Authors: A. GuhaRay, C. V. S. P. Kiranmayi, S. Rudraraju
Abstract:
The present study considers the effect of variation of different geotechnical random variables in the design of stone column-foundation systems for assessing the bearing capacity and consolidation settlement of highly compressible soil. The soil and stone column properties, spacing, diameter and arrangement of stone columns are considered as the random variables. Probability of failure (Pf) is computed for a target degree of consolidation and a target safe load by Monte Carlo Simulation (MCS). The study shows that the variation in coefficient of radial consolidation (cr) and cohesion of soil (cs) are two most important factors influencing Pf. If the coefficient of variation (COV) of cr exceeds 20%, Pf exceeds 0.001, which is unsafe following the guidelines of US Army Corps of Engineers. The bearing capacity also exceeds its safe value for COV of cs > 30%. It is also observed that as the spacing between the stone column increases, the probability of reaching a target degree of consolidation decreases. Accordingly, design guidelines, considering both consolidation and bearing capacity of improved ground, are proposed for different spacing and diameter of stone columns and geotechnical random variables.
Keywords: Bearing capacity, consolidation, geotechnical random variables, probability of failure, stone columns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11777787 Software Reliability Prediction Model Analysis
Authors: L. Mirtskhulava, M. Khunjgurua, N. Lomineishvili, K. Bakuria
Abstract:
Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.
Keywords: Exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16807786 An Adaptive Model for Blind Image Restoration using Bayesian Approach
Authors: S.K. Satpathy, S.K. Nayak, K. K. Nagwanshi, S. Panda, C. Ardil
Abstract:
Image restoration involves elimination of noise. Filtering techniques were adopted so far to restore images since last five decades. In this paper, we consider the problem of image restoration degraded by a blur function and corrupted by random noise. A method for reducing additive noise in images by explicit analysis of local image statistics is introduced and compared to other noise reduction methods. The proposed method, which makes use of an a priori noise model, has been evaluated on various types of images. Bayesian based algorithms and technique of image processing have been described and substantiated with experimentation using MATLAB.Keywords: Image Restoration, Probability DensityFunction (PDF), Neural Networks, Bayesian Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22477785 Travel Time Model for Cylinder Type Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we mainly analyze an automated parking system where the storage and retrieval requests are performed by a tower crane. In this parking system, the S/R crane which is located at the middle of the bottom of the cylinder parking area can rotate in both clockwise and counterclockwise and three kinds of movements can be done simultaneously. We develop some mathematical travel time models for the single command cycle under the random storage assignment using the characteristics of this system. Finally, we compare these travel models with discrete case and it is shown that these travel models display a good satisfactory performance.Keywords: Parking system, travel time model, tower crane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7937784 Real Time Compensation of Machining Errors for Machine Tools NC based on Systematic Dispersion
Authors: M. Rahou, A. Cheikh, F. Sebaa
Abstract:
Manufacturing tolerancing is intended to determine the intermediate geometrical and dimensional states of the part during its manufacturing process. These manufacturing dimensions also serve to satisfy not only the functional requirements given in the definition drawing, but also the manufacturing constraints, for example geometrical defects of the machine, vibration and the wear of the cutting tool. In this paper, an experimental study on the influence of the wear of the cutting tool (systematic dispersions) is explored. This study was carried out on three stages .The first stage allows machining without elimination of dispersions (random, systematic) so the tolerances of manufacture according to total dispersions. In the second stage, the results of the first stage are filtered in such way to obtain the tolerances according to random dispersions. Finally, from the two previous stages, the systematic dispersions are generated. The objective of this study is to model by the least squares method the error of manufacture based on systematic dispersion. Finally, an approach of optimization of the manufacturing tolerances was developed for machining on a CNC machine toolKeywords: Dispersions, Compensation, modeling, manufacturing Tolerance, machine tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23367783 Peeling Behavior of Thin Elastic Films Bonded to Rigid Substrate of Random Surface Topology
Authors: Ravinu Garg, Naresh V. Datla
Abstract:
We study the fracture mechanics of peeling of thin films perfectly bonded to a rigid substrate of any random surface topology using an analytical formulation. A generalized theoretical model has been developed to determine the peel strength of thin elastic films. It is demonstrated that an improvement in the peel strength can be achieved by modifying the surface characteristics of the rigid substrate. Characterization study has been performed to analyze the effect of different parameters on effective peel force from the rigid surface. Different surface profiles such as circular and sinusoidal has been considered to demonstrate the bonding characteristics of film-substrate interface. Condition for the instability in the debonding of the film is analyzed, where the localized self-debonding arises depending upon the film and surface characteristics. This study is towards improved adhesion strength of thin films to rigid substrate using different textured surfaces.
Keywords: Debonding, fracture mechanics, surface topology, thin film adhesion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16897782 Brain MRI Segmentation and Lesions Detection by EM Algorithm
Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane
Abstract:
In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21667781 A Methodology for the Synthesis of Multi-Processors
Authors: Hamid Yasinian
Abstract:
Random epistemologies and hash tables have garnered minimal interest from both security experts and experts in the last several years. In fact, few information theorists would disagree with the evaluation of expert systems. In our research, we discover how flip-flop gates can be applied to the study of superpages. Though such a hypothesis at first glance seems perverse, it is derived from known results.
Keywords: Synthesis, Multi-Processors, Interactive Model, Moor’s Law.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23007780 Stochastic Comparisons of Heterogeneous Samples with Homogeneous Exponential Samples
Authors: Nitin Gupta, Rakesh Kumar Bajaj
Abstract:
In the present communication, stochastic comparison of a series (parallel) system having heterogeneous components with random lifetimes and series (parallel) system having homogeneous exponential components with random lifetimes has been studied. Further, conditions under which such a comparison is possible has been established.Keywords: Exponential distribution, Order statistics, Star ordering, Stochastic ordering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15647779 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites
Authors: M. Palizvan, M. T. Abadi, M. H. Sadr
Abstract:
Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.
Keywords: Homogenization, cohesive zone model, fiber-matrix debonding, RVE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7877778 Analyzing the Factors Effecting the Passenger Car Breakdowns using Com-Poisson GLM
Authors: N. Mamode Khan, V. Jowaheer
Abstract:
Number of breakdowns experienced by a machinery is a highly under-dispersed count random variable and its value can be attributed to the factors related to the mechanical input and output of that machinery. Analyzing such under-dispersed count observations as a function of the explanatory factors has been a challenging problem. In this paper, we aim at estimating the effects of various factors on the number of breakdowns experienced by a passenger car based on a study performed in Mauritius over a year. We remark that the number of passenger car breakdowns is highly under-dispersed. These data are therefore modelled and analyzed using Com-Poisson regression model. We use quasi-likelihood estimation approach to estimate the parameters of the model. Under-dispersion parameter is estimated to be 2.14 justifying the appropriateness of Com-Poisson distribution in modelling under-dispersed count responses recorded in this study.
Keywords: Breakdowns, under-dispersion, com-poisson, generalized linear model, quasi-likelihood estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15447777 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program
Authors: Ming Wen, Nasim Nezamoddini
Abstract:
Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.
Keywords: FEA, random vibration fatigue, process automation, AHP, TOPSIS, multiple-criteria decision-making, MCDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5317776 A Fitted Random Sampling Scheme for Load Distribution in Grid Networks
Authors: O. A. Rahmeh, P. Johnson, S. Lehmann
Abstract:
Grid networks provide the ability to perform higher throughput computing by taking advantage of many networked computer-s resources to solve large-scale computation problems. As the popularity of the Grid networks has increased, there is a need to efficiently distribute the load among the resources accessible on the network. In this paper, we present a stochastic network system that gives a distributed load-balancing scheme by generating almost regular networks. This network system is self-organized and depends only on local information for load distribution and resource discovery. The in-degree of each node is refers to its free resources, and job assignment and resource discovery processes required for load balancing is accomplished by using fitted random sampling. Simulation results show that the generated network system provides an effective, scalable, and reliable load-balancing scheme for the distributed resources accessible on Grid networks.
Keywords: Complex networks, grid networks, load-balancing, random sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17857775 Bayesian Meta-Analysis to Account for Heterogeneity in Studies Relating Life Events to Disease
Authors: Elizabeth Stojanovski
Abstract:
Associations between life events and various forms of cancers have been identified. The purpose of a recent random-effects meta-analysis was to identify studies that examined the association between adverse events associated with changes to financial status including decreased income and breast cancer risk. The same association was studied in four separate studies which displayed traits that were not consistent between studies such as the study design, location, and time frame. It was of interest to pool information from various studies to help identify characteristics that differentiated study results. Two random-effects Bayesian meta-analysis models are proposed to combine the reported estimates of the described studies. The proposed models allow major sources of variation to be taken into account, including study level characteristics, between study variance and within study variance, and illustrate the ease with which uncertainty can be incorporated using a hierarchical Bayesian modelling approach.
Keywords: Random-effects, meta-analysis, Bayesian, variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6597774 Assessment of Carbon Dioxide Separation by Amine Solutions Using Electrolyte Non-Random Two-Liquid and Peng-Robinson Models: Carbon Dioxide Absorption Efficiency
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
A high pressure carbon dioxide (CO2) absorption from a specific gas in a conventional column has been evaluated by the Aspen HYSYS simulator using a wide range of single absorbents and blended solutions to estimate the outlet CO2 concentration, absorption efficiency and CO2 loading to choose the most proper solution in terms of CO2 capture for environmental concerns. The property package (Acid Gas-Chemical Solvent) which is compatible with all applied solutions for the simulation in this study, estimates the properties based on an electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for the vapor and liquid hydrocarbon phases. Among all the investigated single amines as well as blended solutions, piperazine (PZ) and the mixture of piperazine and monoethanolamine (MEA) have been found as the most effective absorbents respectively for CO2 absorption with high reactivity based on the simulated operational conditions.
Keywords: Absorption, amine solutions, Aspen HYSYS, carbon dioxide, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5847773 Reliability Approximation through the Discretization of Random Variables using Reversed Hazard Rate Function
Authors: Tirthankar Ghosh, Dilip Roy, Nimai Kumar Chandra
Abstract:
Sometime it is difficult to determine the exact reliability for complex systems in analytical procedures. Approximate solution of this problem can be provided through discretization of random variables. In this paper we describe the usefulness of discretization of a random variable using the reversed hazard rate function of its continuous version. Discretization of the exponential distribution has been demonstrated. Applications of this approach have also been cited. Numerical calculations indicate that the proposed approach gives very good approximation of reliability of complex systems under stress-strength set-up. The performance of the proposed approach is better than the existing discrete concentration method of discretization. This approach is conceptually simple, handles analytic intractability and reduces computational time. The approach can be applied in manufacturing industries for producing high-reliable items.
Keywords: Discretization, Reversed Hazard Rate, Exponential distribution, reliability approximation, engineering item.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26197772 A New Image Encryption Approach using Combinational Permutation Techniques
Authors: A. Mitra, Y. V. Subba Rao, S. R. M. Prasanna
Abstract:
This paper proposes a new approach for image encryption using a combination of different permutation techniques. The main idea behind the present work is that an image can be viewed as an arrangement of bits, pixels and blocks. The intelligible information present in an image is due to the correlations among the bits, pixels and blocks in a given arrangement. This perceivable information can be reduced by decreasing the correlation among the bits, pixels and blocks using certain permutation techniques. This paper presents an approach for a random combination of the aforementioned permutations for image encryption. From the results, it is observed that the permutation of bits is effective in significantly reducing the correlation thereby decreasing the perceptual information, whereas the permutation of pixels and blocks are good at producing higher level security compared to bit permutation. A random combination method employing all the three techniques thus is observed to be useful for tactical security applications, where protection is needed only against a casual observer.Keywords: Encryption, Permutation, Good key, Combinationalpermutation, Pseudo random index generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231