Search results for: price forecast
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 479

Search results for: price forecast

419 Using Gaussian Process in Wind Power Forecasting

Authors: Hacene Benkhoula, Mohamed Badreddine Benabdella, Hamid Bouzeboudja, Abderrahmane Asraoui

Abstract:

The wind is a random variable difficult to master, for this, we developed a mathematical and statistical methods enable to modeling and forecast wind power. Gaussian Processes (GP) is one of the most widely used families of stochastic processes for modeling dependent data observed over time, or space or time and space. GP is an underlying process formed by unrecognized operator’s uses to solve a problem. The purpose of this paper is to present how to forecast wind power by using the GP. The Gaussian process method for forecasting are presented. To validate the presented approach, a simulation under the MATLAB environment has been given.

Keywords: Forecasting, Gaussian process, modeling, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
418 Implementation of Neural Network Based Electricity Load Forecasting

Authors: Myint Myint Yi, Khin Sandar Linn, Marlar Kyaw

Abstract:

This paper proposed a novel model for short term load forecast (STLF) in the electricity market. The prior electricity demand data are treated as time series. The model is composed of several neural networks whose data are processed using a wavelet technique. The model is created in the form of a simulation program written with MATLAB. The load data are treated as time series data. They are decomposed into several wavelet coefficient series using the wavelet transform technique known as Non-decimated Wavelet Transform (NWT). The reason for using this technique is the belief in the possibility of extracting hidden patterns from the time series data. The wavelet coefficient series are used to train the neural networks (NNs) and used as the inputs to the NNs for electricity load prediction. The Scale Conjugate Gradient (SCG) algorithm is used as the learning algorithm for the NNs. To get the final forecast data, the outputs from the NNs are recombined using the same wavelet technique. The model was evaluated with the electricity load data of Electronic Engineering Department in Mandalay Technological University in Myanmar. The simulation results showed that the model was capable of producing a reasonable forecasting accuracy in STLF.

Keywords: Neural network, Load forecast, Time series, wavelettransform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
417 Volatility Model with Markov Regime Switching to Forecast Baht/USD

Authors: N. Sopipan, A. Intarasit, K. Chuarkham

Abstract:

 In this paper, we forecast the volatility of Baht/USDs using Markov Regime Switching GARCH (MRS-GARCH) models. These models allow volatility to have different dynamics according to unobserved regime variables. The main purpose of this paper is to find out whether MRS-GARCH models are an improvement on the GARCH type models in terms of modeling and forecasting Baht/USD volatility. The MRS-GARCH is the best performance model for Baht/USD volatility in short term but the GARCH model is best perform for long term.

Keywords: Volatility, Markov Regime Switching, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
416 Using the Nerlovian Adjustment Model to Assess the Response of Farmers to Price and Other Related Factors: Evidence from Sierra Leone Rice Cultivation

Authors: Alhaji M. H. Conteh, Xiangbin Yan, Alfred V. Gborie

Abstract:

The goal of this study was to increase the awareness of the description and assessments of rice acreage response and to offer mechanisms for agricultural policy scrutiny. The ordinary least square (OLS) technique was utilized to determine the coefficients of acreage response models for the rice varieties. The magnitudes of the coefficients (λ) of both the ROK lagged and NERICA lagged acreages were found positive and highly significant, which indicates that farmers’ adjustment rate was very low. Regarding lagged actual price for both the ROK and NERICE rice varieties, the short-run price elasticitieswere lower than long-run, which is suggesting a long term adjustment of the acreage under the crop.

However, the apparent recommendations for policy transformation are to open farm gate prices and to decrease government’s involvement in agricultural sector especially in the acquisition of agricultural inputs. Impending research have to be centered on how this might be better realized. Necessary conditions should be made available to the private sector by means of minimizing price volatility. In accordance with structural reforms, it is necessary to convey output prices to farmers with minimum distortion. There is need to eradicate price subsidies and control, which generate distortion in the market in addition to huge financial costs.

Keywords: Acreage response, rate of adjustment, rice varieties, Sierra Leone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3790
415 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
414 Techno-Economic Study on the Potential of Dimethyl Ether as a Substitute for LPG

Authors: W. A. Pamungkas, R. B. Setyawati, A. F. Rifai, C. P. Setiawan, A. W. Budiman, Inayati, J. Waluyo, S. H. Pranolo

Abstract:

The increase in LPG consumption in Indonesia is not balanced with the amount of supply. The high demand for LPG due to the success of the government's kerosene-to-LPG conversion program and the COVID-19 pandemic in 2020 led to an increase in LPG consumption in the household sector and caused Indonesia's trade balance to experience a deficit. The high consumption of LPG encourages the need for alternative fuels which aims to substitute LPG. Dimethyl Ether (DME) is an organic compound with the chemical formula CH3OCH3, has a high cetane number and has characteristics similar to LPG. DME can be produced from various sources such as coal, biomass and natural gas. Based on the economic analysis conducted at 10% Internal Rate of Return (IRR), coal has the largest Net Present Value (NPV) of Rp. 20,034,837,497,241 with a payback period of 3.86 years, then biomass with an NPV of Rp. 10,401,526,072,850 and payback period of 5.16. The latter is natural gas with an NPV of IDR 7,401,272,559,191 and a payback period of 6.17 years. Of the three sources of raw materials used, if the sensitivity is calculated using the selling price of DME equal to the selling price of LPG, it will get an NPV value that is greater than the NPV value when using the current DME price. The advantages of coal as a raw material for DME are profitableness, low price and abundant resources, but it has high greenhouse gas emission.

Keywords: LPG, DME, coal, biomass, natural gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285
413 Variation of Spot Price and Profits of Andhra Pradesh State Grid in Deregulated Environment

Authors: Chava Sunil Kumar, P.S. Subrahmanyan, J. Amarnath

Abstract:

In this paper variation of spot price and total profits of the generating companies- through wholesale electricity trading are discussed with and without Central Generating Stations (CGS) share and seasonal variations are also considered. It demonstrates how proper analysis of generators- efficiencies and capabilities, types of generators owned, fuel costs, transmission losses and settling price variation using the solutions of Optimal Power Flow (OPF), can allow companies to maximize overall revenue. It illustrates how solutions of OPF can be used to maximize companies- revenue under different scenarios. And is also extended to computation of Available Transfer Capability (ATC) is very important to the transmission system security and market forecasting. From these results it is observed that how crucial it is for companies to plan their daily operations and is certainly useful in an online environment of deregulated power system. In this paper above tasks are demonstrated on 124 bus real-life Indian utility power system of Andhra Pradesh State Grid and results have been presented and analyzed.

Keywords: OPF, ATC, Electricity Market, Bid, Spot Price

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
412 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: Big data, building-value analysis, machine learning, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1164
411 Application of Neural Networks in Financial Data Mining

Authors: Defu Zhang, Qingshan Jiang, Xin Li

Abstract:

This paper deals with the application of a well-known neural network technique, multilayer back-propagation (BP) neural network, in financial data mining. A modified neural network forecasting model is presented, and an intelligent mining system is developed. The system can forecast the buying and selling signs according to the prediction of future trends to stock market, and provide decision-making for stock investors. The simulation result of seven years to Shanghai Composite Index shows that the return achieved by this mining system is about three times as large as that achieved by the buy and hold strategy, so it is advantageous to apply neural networks to forecast financial time series, the different investors could benefit from it.

Keywords: Data mining, neural network, stock forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3590
410 Optimal Policy for a Deteriorating Inventory Model with Finite Replenishment Rate and with Price Dependant Demand Rate and Cycle Length Dependant Price

Authors: Hamed Sabahno

Abstract:

In this paper, an inventory model with finite and constant replenishment rate, price dependant demand rate, time value of money and inflation, finite time horizon, lead time and exponential deterioration rate and with the objective of maximizing the present worth of the total system profit is developed. Using a dynamic programming based solution algorithm, the optimal sequence of the cycles can be found and also different optimal selling prices, optimal order quantities and optimal maximum inventories can be obtained for the cycles with unequal lengths, which have never been done before for this model. Also, a numerical example is used to show accuracy of the solution procedure.

Keywords: Deteriorating items, Dynamic programming, Finitereplenishment rate, Inventory control, Operation Research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
409 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
408 A Dynamic Hybrid Option Pricing Model by Genetic Algorithm and Black- Scholes Model

Authors: Yi-Chang Chen, Shan-Lin Chang, Chia-Chun Wu

Abstract:

Unlike this study focused extensively on trading behavior of option market, those researches were just taken their attention to model-driven option pricing. For example, Black-Scholes (B-S) model is one of the most famous option pricing models. However, the arguments of B-S model are previously mentioned by some pricing models reviewing. This paper following suggests the importance of the dynamic character for option pricing, which is also the reason why using the genetic algorithm (GA). Because of its natural selection and species evolution, this study proposed a hybrid model, the Genetic-BS model which combining GA and B-S to estimate the price more accurate. As for the final experiments, the result shows that the output estimated price with lower MAE value than the calculated price by either B-S model or its enhanced one, Gram-Charlier garch (G-C garch) model. Finally, this work would conclude that the Genetic-BS pricing model is exactly practical.

Keywords: genetic algorithm, Genetic-BS, option pricing model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2245
407 External Effects on Dynamic Competitive Model of Domestic Airline and High Speed Rail

Authors: Shih-Ching Lo, Yu-Ping Liao

Abstract:

Social-economic variables influence transportation demand largely. Analyses of discrete choice model consider social-economic variables to study traveler-s mode choice and demand. However, to calibrate the discrete choice model needs to have plenty of questionnaire survey. Also, an aggregative model is proposed. The historical data of passenger volumes for high speed rail and domestic civil aviation are employed to calibrate and validate the model. In this study, models with different social-economic variables, which are oil price, GDP per capita, CPI and economic growth rate, are compared. From the results, the model with the oil price is better than models with the other social-economic variables.

Keywords: forecasting, passenger volume, dynamic competitive model, social-economic variables, oil price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
406 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Authors: Paul Lajbcygier, Seng Lee

Abstract:

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.

Keywords: Artificial neural networks, co-integration, forecasting, trading rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
405 Energy Performance of Buildings Due to Downscaled Seasonal Models

Authors: Anastasia K. Eleftheriadou, Athanasios Sfetsos, Nikolaos Gounaris

Abstract:

The current paper presents an extensive bottom-up framework for assessing building sector-specific vulnerability to climate change: energy supply and demand. The research focuses on the application of downscaled seasonal models for estimating energy performance of buildings in Greece. The ARW-WRF model has been set-up and suitably parameterized to produce downscaled climatological fields for Greece, forced by the output of the CFSv2 model. The outer domain, D01/Europe, included 345 x 345 cells of horizontal resolution 20 x 20 km2 and the inner domain, D02/Greece, comprised 180 x 180 cells of 5 x 5 km2 horizontal resolution. The model run has been setup for a period with a forecast horizon of 6 months, storing outputs on a six hourly basis.

Keywords: Urban environment, vulnerability, climate change, energy performance, seasonal forecast models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
404 Potentials and Influencing Factors of Dynamic Pricing in Business: Empirical Insights of European Experts

Authors: Christopher Reichstein, Ralf-Christian Härting, Martina Häußler

Abstract:

With a continuously increasing speed of information exchange on the World Wide Web, retailers in the E-Commerce sector are faced with immense possibilities regarding different online purchase processes like dynamic price settings. By use of Dynamic Pricing, retailers are able to set short time price changes in order to optimize producer surplus. The empirical research illustrates the basics of Dynamic Pricing and identifies six influencing factors of Dynamic Pricing. The results of a structural equation modeling approach show five main drivers increasing the potential of dynamic price settings in the E-Commerce. Influencing factors are the knowledge of customers’ individual willingness to pay, rising sales, the possibility of customization, the data volume and the information about competitors’ pricing strategy.

Keywords: E-commerce, empirical research, experts, Dynamic Pricing (DP), influencing factors, potentials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
403 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: Ganoderma, oil palm, regression model, yield loss, economic loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3237
402 Hybrid Energy Supply with Dominantly Renewable Option for Small Industrial Complex

Authors: Tomislav Stambolic, Anton Causevski

Abstract:

The deficit of power for electricity demand reaches almost 30% for consumers in the last few years. This reflects with continually increasing the price of electricity, and today the price for small industry is almost 110Euro/MWh. The high price is additional problem for the owners in the economy crisis which is reflected with higher price of the goods. The paper gives analyses of the energy needs for real agro complex in Macedonia, private vinery with capacity of over 2 million liters in a year and with self grapes and fruits fields. The existing power supply is from grid with 10/04 kV transformer. The geographical and meteorological condition of the vinery location gives opportunity for including renewable as a power supply option for the vinery complex. After observation of the monthly energy needs for the vinery, the base scenario is the existing power supply from the distribution grid. The electricity bill in small industry has three factors: electricity in high and low tariffs in kWh and the power engaged for the technological process of production in kW. These three factors make the total electricity bill and it is over 110 Euro/MWh which is the price near competitive for renewable option. On the other side investments in renewable (especially photovoltaic (PV)) has tendency of decreasing with price of near 1,5 Euro/W. This means that renewable with PV can be real option for power supply for small industry capacities (under 500kW installed power). Therefore, the other scenarios give the option with PV and the last one includes wind option. The paper presents some scenarios for power supply of the vinery as the followings: • Base scenario of existing conventional power supply from the grid • Scenario with implementation of renewable of Photovoltaic • Scenario with implementation of renewable of Photovoltaic and Wind power The total power installed in a vinery is near 570 kW, but the maximum needs are around 250kW. At the end of the full paper some of the results from scenarios will be presented. The paper also includes the environmental impacts of the renewable scenarios, as well as financial needs for investments and revenues from renewable.

Keywords: Energy, Power Supply, Renewable, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
401 Assessing Relationship between Type of Financial Market and Market Indices in Tehran Stock Exchange

Authors: Zahra Amirhosseini, Alireza Bashiri

Abstract:

The aim of this study was to examine and identify the type of Iranian financial market in terms of being symmetrical or asymmetrical and to measure relationship between type of market and the market's indices. In this study, daily information on the market-s Share Price Index, Industrial Index and Top Fifty Most Active Companies during the years 1999-2010 has been used. In addition, to determine type of the financial market, rate of return on Security is taken into account. In this research, by using logistic regression analysis methods, relationship of the market type with the above mentioned indices have been examined. The results showed that the type of the financial market has a positive significant association with market share price index and Industrial Index. Index of Top Fifty Most Active Companies is significantly associated with type of financial market, however this relationship is inverse.

Keywords: All Share Price Index, Asymmetrical Market, Industrial Index, Symmetrical Market, Top Fifty Most Active Companies Index

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
400 Model Development for Allocation of Raw Material in Timber Processing Industry in Indonesia

Authors: Muh. Hisjam, Nancy Oktyajati, Wakhid A. Jauhari, Wahyudi Sutopo

Abstract:

This research is intended to develop a raw material allocation model in timber processing industry in Perum Perhutani Unit I, Central Java, Indonesia. The model can be used to determine the quantity of allocation of timber between chain in the supply chain to select supplier considering factors that are log price and the distance. In determining the quantity of allocation of timber between chains in the supply chain, the model considers the optimal inventory in each chain. Whilst the optimal inventory is determined based on demand forecast, the capacity and safety stock. Problem solving allocation is conducted by developing linear programming model that aims to minimize the total cost of the purchase, transportation cost and storage costs at each chain. The results of numerical examples show that the proposed model can generate savings of the purchase cost of 20.84% and select suppliers with mileage closer.

Keywords: Allocation model, linear programming, purchase costs, storage costs, suppliers, transportation costs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
399 Evaluation of the Execution Effect of the Minimum Grain Purchase Price in Rural Areas

Authors: Zhaojun Wang, Zongdi Sun, Yongjie Chen, Manman Chen, Linghui Wang

Abstract:

This paper uses the analytic hierarchy process to study the execution effect of the minimum purchase price of grain in different regions and various grain crops. Firstly, for different regions, five indicators including grain yield, grain sown area, gross agricultural production, grain consumption price index, and disposable income of rural residents were selected to construct an evaluation index system. We collect data of six provinces including Hebei Province, Heilongjiang Province and Shandong Province from 2006 to 2017. Then, the judgment matrix is constructed, and the hierarchical single ordering and consistency test are carried out to determine the scoring standard for the minimum purchase price of grain. The ranking of the execution effect from high to low is: Heilongjiang Province, Shandong Province, Hebei Province, Guizhou Province, Shaanxi Province, and Guangdong Province. Secondly, taking Shandong Province as an example, we collect the relevant data of sown area and yield of cereals, beans, potatoes and other crops from 2006 to 2017. The weight of area and yield index is determined by expert scoring method. And the average sown area and yield of cereals, beans and potatoes in 2006-2017 were calculated, respectively. On this basis, according to the sum of products of weights and mean values, the execution effects of different grain crops are determined. It turns out that among the cereals, the minimum purchase price had the best execution effect on paddy, followed by wheat and finally maize. Moreover, among major categories of crops, cereals perform best, followed by beans and finally potatoes. Lastly, countermeasures are proposed for different regions, various categories of crops, and different crops of the same category.

Keywords: Analytic hierarchy process, grain yield, grain sown area, minimum grain purchase price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
398 Comparison of Artificial Neural Network Architectures in the Task of Tourism Time Series Forecast

Authors: João Paulo Teixeira, Paula Odete Fernandes

Abstract:

The authors have been developing several models based on artificial neural networks, linear regression models, Box- Jenkins methodology and ARIMA models to predict the time series of tourism. The time series consist in the “Monthly Number of Guest Nights in the Hotels" of one region. Several comparisons between the different type models have been experimented as well as the features used at the entrance of the models. The Artificial Neural Network (ANN) models have always had their performance at the top of the best models. Usually the feed-forward architecture was used due to their huge application and results. In this paper the author made a comparison between different architectures of the ANNs using simply the same input. Therefore, the traditional feed-forward architecture, the cascade forwards, a recurrent Elman architecture and a radial based architecture were discussed and compared based on the task of predicting the mentioned time series.

Keywords: Artificial Neural Network Architectures, time series forecast, tourism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
397 A Quality Optimization Approach: An Application on Next Generation Networks

Authors: Gülfem I. Alptekin, S. Emre Alptekin

Abstract:

The next generation wireless systems, especially the cognitive radio networks aim at utilizing network resources more efficiently. They share a wide range of available spectrum in an opportunistic manner. In this paper, we propose a quality management model for short-term sub-lease of unutilized spectrum bands to different service providers. We built our model on competitive secondary market architecture. To establish the necessary conditions for convergent behavior, we utilize techniques from game theory. Our proposed model is based on potential game approach that is suitable for systems with dynamic decision making. The Nash equilibrium point tells the spectrum holders the ideal price values where profit is maximized at the highest level of customer satisfaction. Our numerical results show that the price decisions of the network providers depend on the price and QoS of their own bands as well as the prices and QoS levels of their opponents- bands.

Keywords: cognitive radio networks, game theory, nextgeneration wireless networks, spectrum management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
396 A New Quantile Based Fuzzy Time Series Forecasting Model

Authors: Tahseen A. Jilani, Aqil S. Burney, C. Ardil

Abstract:

Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.

Keywords: Quantile Regression, Fuzzy time series, fuzzy logicalrelationship groups, heuristic trend prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996
395 Agricultural Commodities Volatility in Some Selected Markets in the Northern and Western States in Nigeria

Authors: T. Danjuma, N. M. Ike-Muonso, H. C. Chinwenyi

Abstract:

The price volatility of agricultural commodities in Nigeria market is very essential and understanding its future evolution is important for informed decision making to policymakers. In this paper, we examined the volatilities of some agricultural commodities such as maize (white), cowpeas (brown) and sorghum (white) in Mubi and Dawanau markets in the Northern part of the country and compared its volatilities with the same agricultural commodities from Lagos and Ibadan markets in the Western part of Nigeria.

Keywords: Agricultural commodity, agricultural market, derivatives, volatility, price.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55
394 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: Hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
393 Extreme Temperature Forecast in Mbonge, Cameroon through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, temperature extremes are forecast by employing the block maxima method of the Generalized extreme value(GEV) distribution to analyse temperature data from the Cameroon Development Corporation (C.D.C). By considering two sets of data (Raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data while in the simulated data, the return values show an increasing trend but with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend but with an upper bound. This clearly shows that temperatures in the tropics even-though show a sign of increasing in the future, there is a maximum temperature at which there is no exceedence. The results of this paper are very vital in Agricultural and Environmental research.

Keywords: Return level, Generalized extreme value (GEV), Meteorology, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
392 A Study on Inference from Distance Variables in Hedonic Regression

Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro

Abstract:

In urban area, several landmarks may affect housing price and rents, and hedonic analysis should employ distance variables corresponding to each landmarks. Unfortunately, the effects of distances to landmarks on housing prices are generally not consistent with the true price. These distance variables may cause magnitude error in regression, pointing a problem of spatial multicollinearity. In this paper, we provided some approaches for getting the samples with less bias and method on locating the specific sampling area to avoid the multicollinerity problem in two specific landmarks case.

Keywords: Landmarks, hedonic regression, distance variables, collinearity, multicollinerity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
391 Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management System

Authors: Seyed Hossein Iranmanesh, Mansoureh Zarezadeh

Abstract:

This paper presents an application of Artificial Neural Network (ANN) to forecast actual cost of a project based on the earned value management system (EVMS). For this purpose, some projects randomly selected based on the standard data set , and it is produced necessary progress data such as actual cost ,actual percent complete , baseline cost and percent complete for five periods of project. Then an ANN with five inputs and five outputs and one hidden layer is trained to produce forecasted actual costs. The comparison between real and forecasted data show better performance based on the Mean Absolute Percentage Error (MAPE) criterion. This approach could be applicable to better forecasting the project cost and result in decreasing the risk of project cost overrun, and therefore it is beneficial for planning preventive actions.

Keywords: Earned Value Management System (EVMS), Artificial Neural Network (ANN), Estimate At Completion, Forecasting Methods, Project Performance Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
390 Disaggregating and Forecasting the Total Energy Consumption of a Building: A Case Study of a High Cooling Demand Facility

Authors: Juliana Barcelos Cordeiro, Khashayar Mahani, Farbod Farzan, Mohsen A. Jafari

Abstract:

Energy disaggregation has been focused by many energy companies since energy efficiency can be achieved when the breakdown of energy consumption is known. Companies have been investing in technologies to come up with software and/or hardware solutions that can provide this type of information to the consumer. On the other hand, not all people can afford to have these technologies. Therefore, in this paper, we present a methodology for breaking down the aggregate consumption and identifying the highdemanding end-uses profiles. These energy profiles will be used to build the forecast model for optimal control purpose. A facility with high cooling load is used as an illustrative case study to demonstrate the results of proposed methodology. We apply a high level energy disaggregation through a pattern recognition approach in order to extract the consumption profile of its rooftop packaged units (RTUs) and present a forecast model for the energy consumption.  

Keywords: Energy consumption forecasting, energy efficiency, load disaggregation, pattern recognition approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459