
  
Abstract—In this paper, we forecast the volatility of Baht/USDs 

using Markov Regime Switching GARCH (MRS-GARCH) models. 
These models allow volatility to have different dynamics according 
to unobserved regime variables. The main purpose of this paper is to 
find out whether MRS-GARCH models are an improvement on the 
GARCH type models in terms of modeling and forecasting 
Baht/USD volatility. The MRS-GARCH is the best performance 
model for Baht/USD volatility in short term but the GARCH model is 
best perform for long term. 
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I. INTRODUCTION 
HE characteristic that all financial markets have in 
common is uncertainty, which is related to their short and 

long-term price state. This feature is undesirable for the 
investor but it is also unavoidable whenever the financial 
market is selected as the investment tool. The best that one can 
do is to try to reduce this uncertainty. Financial market 
forecasting (or Prediction) is one of the instruments in this 
process. 

In time series, a financial price is a transformation to log 
return series for a stationary process. Mehmet [1] states that 
financial returns have three characteristics. The first is 
volatility clustering that means large changes tend to be 
followed by large changes and small changes tend to be 
followed by small changes. Second is fat tailedness (excess 
kurtosis) which means that financial returns often display a 
fatter tail than a standard normal distribution and the third is 
leverage effect which means that negative returns result in 
higher volatility than positive returns of the same size. 

However, exchange rate volatility modeling is important in 
the framework of international trade due to two main reasons. 
Firstly, national governments have realized the impact of this 
volatility on their own monetary policies and this has been 
more so for countries where economic growth is driven by 
export growth. Thus exchange rate fluctuations are regularly 
monitored by central banks for macroeconomic analysis and 
market surveillance purposes. Secondly, due to the increasing 
number of international portfolios, investors and corporate 
managers have realized that there is an ever increasing need to 
address risk in the context of exchange rate volatility. 
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Finance practitioners have largely avoided volatility 
modeling and forecasting in the higher dimensional situations 
of practical relevance, relying instead on the generalized 
autoregressive conditional heteroskedasticity (GARCH) 
volatility modeling. 

The GARCH models mainly capture three characteristics of 
financial returns. The development of GARCH type models 
was started by Engle [2]. Engle introduced ARCH to model 
heteroskedasticity by relating the conditional variance of the 
disturbance term to the linear combination of the squared 
disturbances in the recent past. Bollerslev [3] generalized the 
ARCH (GARCH) model by modeling the conditional variance 
to depend on its lagged values as well as squared lagged 
values of disturbance.  

Hamilton and Susmel [4] stated that the spurious high 
persistence problem in GARCH type models can be solved by 
combining the Markov Regime Switching (MRS) model with 
ARCH models (SWARCH). The idea behind regime 
switching models is that as market conditions change, the 
factors that influence volatility also change. 

In this paper, we use GARCH and MRS-GARCH models to 
forecast the volatility of currency in Thai Baht against U.S. 
Dollar (Baht/USD) and to compare their performance. Finally, 
we forecast a closing price for Baht/USD for both the short 
term and the long term. 

In the next section, we present the MRS-GARCH model. 
The empirical methodology and model estimation results are 
given in Section III. In Section IV, statistical loss functions are 
described and the out-of-sample forecasting performance of 
various models is discussed and we apply the forecasting price 
to the Baht/USD for both the short term and the long term. 
The conclusion is given in Section VI. 

II.  MARKOV REGIME SWITCHING OF GARCH MODEL 
Let { }tP  denote the series of the financial price at time t and 

0{ }t tr >  be a sequence of random variables on a probability 
space ( , , )FΩ Ρ . For index t  denotes the daily closing 
observations and 1,...,t R n= − + . The sample period consists 
of an estimation (or in-sample) period with R  observations 
( 1,...,0)t R= − + , and an evolution (or out-of-sample) period 
with n observations ( 1,..., )t n=  , let tr  be the logarithmic 
return (in percent) on the financial price at time t, i.e. 

 

1

100 ln( )t
t

t

P
r

P−

= ⋅          (1) 
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The GARCH (1,1) model for the series of the returns tr  can 
be written as 

 

t t t tr hδ ε δ η= + = +  
2

0 1 1 1 1t t th hα α ε β− −= + +  
 

where 0 1 10, 0 and 0α α β> ≥ ≥  are assumed to be non-
negative real constants to ensure that 0.th ≥ We assume tη is 
an i.i.d. process with zero mean and unit variance. 

The parameters of the GARCH model are generally 
considered as constants. But the movement of financial returns 
between recession and expansion is different, and may result 
in differences in volatility. Gray [5] extended the GARCH 
model to the MRS-GARCH model in order to capture regime 
changes in volatility with unobservable state variables. It was 
assumed that those unobservable state variables satisfy the 
first order Markov Chain process. 

The MRS-GARCH model with only two regimes can be 
represented as follows: 

 

, =
t t tt S t S t t Sr hδ ε δ η= + +       (2) 

 
and 2

, 0, 1, 1 1, 1t t t tt S S S t S th hα α ε β− −= + +  

where 1 or 2tS = , 
tSδ  is the mean and , tt Sh  is the volatility 

under regime tS on 1tF − , both are measurable functions of 

tF τ−  for 1tτ ≤ −  . In order to ensure easily the positive of 
conditional variance we impose the restrictions 0, 0

tSα >  

1,, 0 
tSα ≥ 1.and 0

tSβ ≥ . The sum 1, 1,t tS Sα β+ measures the 

persistence of a shock to the conditional variance. 
The unobserved regime variable tS  is governed by a first 

order Markov Chain with constant transition probabilities 
given by 

 

1Pr( )     t t jiS i S j p−= = = for ,   1, 2i j =     (3) 
 

In matrix notation, 
 

11 21

12 22

1
1

p p p q
P

p p p q
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦
       (4) 

 
In MRS-GARCH model with two regimes, Klaassen [6] 

forecast volatility for k-step-ahead by using the recursive 
method as in the standard GARCH model where k  is a 
positive integer. In order to compute the multi-step-ahead 
volatility forecasts, we firstly compute a weighted average of 
the multi-step-ahead volatility forecasts in each regime where 
the weights are the prediction probability ( 1Pr( )T TS i Fτ+ −= ).  

Since there is no serial correlation in the returns, the k-step-
ahead volatility forecast at time T  depends on information at 
time T-1. Let ,T T kh +  denote the time T aggregated volatility 

forecasts for the next k steps. It can be calculated as follows: 
(See, for example [7]) 

 

( )
2

, , , ,1
1 1 1

Pr T

k k

T T k T T T T S iT T
i

Sh i F hh ττ ττ
τ τ

++ + + =+ −
= = =

⎡ ⎤= = =⎢ ⎥⎣ ⎦
∑ ∑ ∑  (5) 

 

where , , TT T S ih ττ ++ = indicates the τ -step-ahead volatility 
forecast in regime i made at time T and can be calculated 
recursively as follows: (See, [8]) 
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( )
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T
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T
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T

T
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 (6) 

 
Also, in generally the prediction probability in (5) is 

computed as 
 

( )
( )

( )
( )

1 1 11

1 1 1

Pr 1 Pr 1

Pr 2 Pr 2
T T T T

T T T T

F FS S
P

F FS S
τ τ

τ

+ − − −+

+ − − −

⎡ ⎤= =
=⎢ ⎥

=

⎡ ⎤
⋅ ⎢ ⎥
⎢ ⎥⎣ =⎥⎦ ⎦⎢⎣

, 

 
where P defined in (4) and 1 1Pr( )T TS i F− −=  will be discussed 
in (11). Lastly, we compute expectation part 

1 , 1( )T T T TE h S iτ τ− + − + =  in (6) as follows: 
 

1 , 1 1 1

2
1 1 1

2

1 1 1 1

2
1 1 1 1

2

1 1 1 1

( ) ,

[ , ]
=

[ , ] ,

= [ , ] ,

[ , ] ,

T T T T T T T

T T T

T T T T T

T T T T T

T T T T T
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E r S j F
E

E r S j F S i F

E E r S j F S i F

E E r S j F S i F
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τ τ τ

τ τ τ

τ τ τ

− + − + + − + −
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⎡ ⎤=
⎢ ⎥
⎢ ⎥⎡ ⎤− = =⎣ ⎦⎣ ⎦
⎡ ⎤= =⎣ ⎦
⎡ ⎤⎡ ⎤− = =⎣ ⎦⎢⎣ ⎦⎥

   (7) 

 
where  

1 1

2
1 1 1 1

2 22 1 1 1 1 1 1

1 1 1

2
2

1, 1,, 1
1

[ , ] ,

[ 2 , ]

Pr ,

=
T T

T T T T T

T T T T T T

j T T T

T S j T S jji T
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E E r S j F S i F

E S j F

S j S i F
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τ τ

τ τ τ

τ τ τ τ τ
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⎡ ⎤+⎣ ⎦

∑

∑

 (8) 

 
 where   

( )
( )

( )

1 1, 1

1 1

1

Pr ,

Pr
         

Pr

T T Tji T
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T

ji T

T

p j i F
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=
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      (9) 

 
Similarly, we computed in the second term of the right hand 
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side in (7) such that  
 

1

2

1 1 1 1

2 2

1,, 1
1

[ , ] ,

=
T

T T T T T

T S jji T
j

E E r S j F S i F

p
τ

τ τ τ

τδ
+ −

+ − + − − + −

+ − =−
=

⎡ ⎤⎡ ⎤= =⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎣ ⎦∑
  (10) 

 
substitutes both (8) and (10) to (7) such that 

 

1 1 1

, 11

2 2 22
1, 1, 1,, 1 , 1

1 1

( )

T T T

T TT T

T S j T S j T S jji T ji T
j j

E h S i

p h p
τ τ τ

τ τ

τ τ τδ δ
+ − + − + −

+ −− +

+ − = + − = + − =− −
= =

=

⎡ ⎤ ⎡ ⎤= + −⎣ ⎦ ⎣ ⎦∑ ∑
 

In the next step, we will compute those regime probabilities 
1Pr( )it t tp S i F −= =  for 1, 2i =  in (9). Note that when the 

regime probabilities are based on information up to time t, we 
describe this as filtered probability ( Pr( )t tS i F= ).  

In order to compute the regime probabilities, we denote 

1 1(: 1, )t t t tSf f r F −= = 2 1, ( 2, ):t t t tSf f r F −= = . Then, the 

conditional distribution of return series tr  becomes a mixture-
of-distribution models in which mixing variables are regime 
probability itp . That is 

 

1 1
1

1 2 1

( 1, )                with probability  p
( 2, )   with probability p 1 p ,

t t t t
t t

t t t t t

f r S F
r F

f r S F
−

−
−

⎧ =⎪
⎨ = = −⎪⎩

∼  

 
where 1( , )t t tf r S F − denotes one of the assumed conditional 
distributions for errors: Normal Distribution (N), Student-t 
Distribution with only single degree of freedom (t) or double 
degree of freedom (2t) and Generalized error distributions 
(GED). 

We shall compute regime probabilities recursively by 
following two steps (Kim and Nelson [9]): 
Step 1. Given 1 1Pr( )t tS j F− −=  at the end of the time 1,t −  the 

regime probabilities 1Pr( )it t tp S i F −= = are computed 
as  

 
2

1 1 1
1

Pr( ) Pr( , )t t t t t
j

S i F S i S j F− − −
=

= = = =∑ . 

 
Since the current regime ( tS ) only depends on the regime 

one period ago ( 1tS − ), then 
 

2

1 1 1 1
1

2

1 1
1

Pr( ) Pr( ) Pr( )

                     = Pr( )

t t t t t t
j

ji t t
j

S i F S i j S j F

p S j F

S− − − −
=

− −
=

= = = = =

=

∑

∑
 

 
Step 2. At the end of the time t, when the observed return at 

time t ( tr ) and the information at time t. We set 

1{ , }t t tF F r−= , the Pr( )t tS i F=  is calculated as 
follows:  

 

1
1

1

( , )
Pr( ) Pr( , )=

( )
t t t

t t t t t
t t

f r S i F
S i F S i r F

f r F
−

−
−

=
= = = , 

 
where 1( , )t t tf r S i F −=  is joint density of returns and 
unobserved regime at state i  for 1, 2i =  variables can be 
written as follows: 
 

1 1 1

1 1

( , ) ( , ) ( )

                      ( , ) Pr( )
t t t t t t t t

t t t t t

f r S i F f r S i F f S i F

f r S i F S i F
− − −

− −

= = = =

= = =
 

 
and 1( )t tf r F −  is marginal density function of returns which 
can be constructed as follows: 

 
2 2

1 1 1 1
1 1

( ) ( , ) ( , ) Pr( ).t t t t t t t t t t
i i

f r F f r S i F f r S i F S i F− − − −
= =

= = = = =∑ ∑
 

We use Bayesian arguments  
 

1

1

1 1
2 2

1 1
1 1

( , )
Pr( )  

( )

( , ) Pr( )
                   =  =

( , ) Pr( )

t t t
t t

t t

t t t t t it it

t t t t it itt
i i

f r S i F
S i F

f r F

f r S i F S i F f p

f r S i F S i F f p

−

−

− −

− −
= =

=
= =

= =

= =∑ ∑

 (11) 

 
Then, all regime probabilities itp  can be computed by 

iterating these two steps. However, at the beginning of 
iteration 0 0Pr( )S i F=  for 1, 2i =  it is necessary to start 
iteration. Hamilton ([10], [11]) suggest we should use 
unconditional regime probabilities instead of 0 0Pr( )S i F= . 
These are given by  

 

0 0 0 0
1 1Pr( 1 ) , Pr( 2 ) .

2 2
− −

= = = =
− − − −

q pS F S F
p q p q

 

 
Given initial values for regime probabilities, conditional 

mean and conditional variance in each regime, the parameters 
of the MRS-GARCH model can be obtained by maximizing 
numerically the log-likelihood function. The log-likelihood 
function is constructed recursively similar to that in GARCH 
models. 

III. EMPIRICAL METHODOLOGY AND MODEL ESTIMATION 
RESULTS 

A. Data 
The data set used in this study is the daily closing prices of 

Baht/USD ( )tP  over the period 1/01/2008 through 26/10/2013 
( t = 1,…,1,532 observations). The data set is obtained from 
the www.efinancethai.com. The data set is divided into in-
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sample ( R = 1,000 observations) and out-of-sample ( n = 532 
observations). The plot of tP  and log returns series (  ; (1))tr  
are given in Fig. 1. Plot tP  and tr  displays the usual 
properties of financial data series. 
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(a) Baht/USD closing prices ( )tP  
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(b) log returns series ( )tr  

Fig. 1 Graph of (a) Baht/USD closed prices ( )tP  and (b) log returns 

series ( )tr  for the period 1/01/2008 through 26/20/2013 
 

As expected, volatility is not constant over time and 
exhibits volatility clustering with large changes in the indices 
often followed by large changes, and small changes often 
followed by small changes. Descriptive statistics of tr  are 
represented in Table I. As Table I shows, tr  has a positive 
average return of 0.074%. The daily standard deviation is 
1.537%. The series also displays a negative skewness of -
0.102 and an excess kurtosis of 9.457. These values indicate 
that the returns are not normally distributed, namely, these 
have fatter tails because skewness does not equal zero and 
kurtosis is greater than 3. Also, the Jarque-Bera test statistic of 
2,107.620 confirms the non-normality of tr  and the 
Augmented Dickey-Fuller test of -35.873 indicates that tr is 
stationary. 

 
TABLE I 

SUMMARY STATISTICS OF BAHT/USD LOG RETURNS SERIES  
Statistic Return(%) 

Min -10.823 
Max 10.71 
Mean 0.074 
Standard deviation 1.537 
Skewness -0.102 
Kurtosis 9.457 
Jarque-Bera Normality test 2,107.620 (P-value= 0.000) 
Augmented Dickey-Fuller test -35.873 (P-value= 0.000) 

In order to test the significance level of autocorrelation 
functions (ACF) in Table II, we apply the Ljung and Box Q-
test. The null hypothesis of the test is that there is no serial 
correlation in the return series up to the specified lag. Serial 
correlation in the tP  is confirmed as non-stationary but tr is 
stationary. Because the serial correlation in the squared returns 
is non-stationary this suggests conditional heteroskedasticity. 
Therefore, we analyze the significance of autocorrelation in 
the squared mean adjusted return 2( )tr δ− series by usin the 
Ljung-Box Q-test. We also apply Engle’s ARCH test. 

B. Empirical Methodology 
This empirical part adopts GARCH (1,1) and MRS-

GARCH (1,1) models to estimate the volatility of tP . In order 
to account for the fat tails feature of financial returns, we 
consider three different distributions for the innovations: 
Normal (N), Student-t (t) and Generalized Error Distributions 
(GED). 

1. GARCH Models 
Table III presents an estimation of the results for GARCH 

type models. It is clear from the table that almost all parameter 
estimates including δ  in GARCH type models are highly 
significant at 1%. All models display strong persistence in 
volatility ranging from 0.9654 to 0.9724. 

2. Markov Regime Switching GARCH Models 
Estimation results and summary statistics of MRS-GARCH 

models are presented in Table IV. Most parameter estimates in 
MRS-GARCH are significantly different from zero at least at 
95% confidence level. But 0 1 and α β  are insignificant in some 
states. All models display strong persistence in volatility, that 
is, volatility is likely to remain high over several price periods 
once it increases. 

3.  In-Sample Evaluation 
We use various goodness-of-fit statistics to compare 

volatility models. These statistics are Akaike Information 
Criteria (AIC) Schwarz Bayesian Information Criteria (SBIC). 
In Table V, the results of goodness-of- fit statistics and loss 
functions for all volatility models are presented.  

According to AIC, MRS-GARCH-GED is the best. 
GARCH-t is the best in SBIC and MSE2, MRS-GARCH-N is 
the best in MSE1. MRS-GARCH-t is the best in QLIKE, 
MAD2, MAD2 and HMSE. We found that different models 
were suitable for various loss functions. 
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TABLE II 
ACF OF BAHT/USD CLOSING PRICES, LOG RETURNS SERIES, SQUARE 

RETURN AND RESULTS FOR ENGLE’S ARCH TEST 

Lags 
ACF of Baht/USD closed price. ACF of Baht/USD log return. 

ACF LBQ Test P-value ACF LBQ Test P-value 
1 1.00 1528.00 0.00 0.06 4.86 0.03 
2 0.99 3048.00 0.00 -0.04 7.55 0.02 
3 0.99 4560.00 0.00 -0.01 7.77 0.05 
4 0.99 6064.00 0.00 -0.02 8.54 0.07 
5 0.99 7560.00 0.00 -0.03 9.62 0.09 
6 0.98 9048.00 0.00 0.02 10.02 0.12 
7 0.98 10529.00 0.00 -0.01 10.11 0.18 
8 0.98 12002.00 0.00 -0.01 10.18 0.25 
9 0.97 13467.00 0.00 0.03 11.79 0.23 
10 0.97 14924.00 0.00 -0.08 21.32 0.02 

Lags 
ACF of Baht/USD square return. Results for Engle’s ARCH test

ACF LBQ Test P-value ARCH Test P-value 
1 0.40 248.34 0.00 1526.20 0.00 
2 0.10 262.90 0.00 1525.20 0.00 
3 0.13 289.80 0.00 1524.30 0.00 
4 0.08 299.46 0.00 1523.20 0.00 
5 0.03 300.74 0.00 1522.20 0.00 
6 0.01 300.95 0.00 1521.20 0.00 
7 0.01 301.00 0.00 1520.30 0.00 
8 0.00 301.01 0.00 1519.30 0.00 
9 0.01 301.07 0.00 1518.30 0.00 
10 0.02 301.87 0.00 1517.30 0.00 

TABLE III 
SUMMARY RESULTS OF GARCH TYPE MODELS 

Parameter 
GARCH 

N t GED 
δ 0.0026*** 0.0091** 0.0034*** 

Std.err. 2.4317 1.6909 2.3450 

0α 0.0058*** 0.0078*** 0.0106*** 

Std.err. 13.6898 6.1297 6.1326 

1α 0.2282*** 0.2332*** 0.2661*** 

Std.err. 41.6488 7.8254 7.7171 

1β 0.7594*** 0.7293*** 0.6851*** 

Std.err. 129.5164 34.3132 26.2869 
ν  3.8239*** 0.9036*** 

Std.err.  13.7565 39.2163 
Log(L) -2087.32 -2033.89 -2038.22 

Persistence 0.9724 0.9654 0.9672 
LBQ(22) 32.6362 32.6362 32.6362 

 (0.0672) (0.0672) (0.0672) 
LBQ2(22) 189.92 190.07 189.83 

 (0.0000) (0.0000) (0.0000) 
 *** and ** refer the significance at 99% and 95% confidence level 

respectively,  
LBQ(22) is Ljung-Box test of innovation at lag 22, LBQ2 (22) is Ljung-

Box test of squared innovation at lag 22 and P-value for LBQ test in 
parentheses. Std.err is standard error 
 
 

 
TABLE IV 

SUMMARY RESULTS OF MRS-GARCH MODELS 

Parameters 
MRS-GARCH 

N t t2 GED 

State i  Low volatility 
regime 

High volatility 
regime 

Low volatility 
regime 

High volatility 
regime 

Low volatility 
regime 

High volatility 
regime 

Low volatility 
regime 

High volatility 
regime 

( )iδ  0.0830** 0.1800** 0.1136*** 0.1699** 0.1135*** 0.1699** 0.1708** 0.1088*** 
Std.err. 0.0404 0.0934 0.0388 0.0766 0.0389 0.0766 0.0776 0.0369 

( )
0

iα  0.0137* 2.1786*** 0.0111 1.6163*** 0.0111 1.6152*** 1.8421*** 0.0126 
Std.err. 0.0075 0.3353 0.0086 0.513 0.0086 0.531 0.487 0.0096 

( )
1

iα  0.0463*** 0.3654*** 0.0380** 0.3170*** 0.0380** 0.3170*** 0.3244*** 0.0418** 
Std.err. 0.0127 0.1029 0.016 0.1154 0.0161 0.1167 0.1258 0.018 

( )
1

iβ  0.9436*** 0 0.9535*** 0.1844 0.9535*** 0.1859 0.1015 0.9485*** 
Std.err. 0.0151 0.1115 0.0175 0.1771 0.0175 0.1798 0.1403 0.02 

p  0.9975*** 0.9981*** 0.9983*** 0.9981*** 
Std.err. 0.0023 0.0024 0.0024 0.0029 

q  0.9976*** 0.9983*** 0.9981*** 0.9983*** 
Std.err. 0.0021 0.0024 0.0024 0.0023 

( )iν      6.0583*** 6.0789*** 6.0134*** 1.3234*** 
Std.err.     0.9544 1.6734 1.4119 0.0598 
Log(L) -2050.44 -2013.2 -2017.57 -2013.22 

2σ  1.3564 3.433 1.3059 3.2417 1.3059 3.2492 3.2087 1.3 
π  0.5103 0.4897 0.4722 0.5278 0.4722 0.5278 0.5278 0.4722 

Persistence 0.9899 0.3654 0.9915 0.5014 0.9915 0.5029 0.4259 0.9903 
LBQ(22) 34.9963 34.9963 34.9963 34.9963 

 (0.0388) (0.0388) (0.0388) (0.0388) 
LBQ2(22) 178.7254 178.6977 178.7734 178.7132 

 (0.0000) (0.0000) (0.0000) (0.0000) 
*** and ** refer the significance at 99% and 95% confidence level respectively, LBQ(22) is Ljung-Box test of innovation at lag 22, LBQ2 (22) is Ljung-Box 

test of squared innovation at lag 22 and P-value for LBQ test in parentheses. Std.err is standard error 
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TABLE V 
IN-SAMPLE EVALUATION RESULTS 

Models N* AIC SBIC MSE1 MSE2 QLIKE MAD2 MAD1 HMSE 
GARCH-N 4 3.5089 3.5260 1.3811 50.1151 1.6646 8.4461 2.7378 0.8701 
GARCH-t 5 3.4210 3.4423 1.3298 48.2319 1.6659 8.4433 2.6606 0.8611 

GARCH-GED 5 3.4282 3.4496 1.3337 48.5005 1.6652 8.3971 2.6654 0.8589 
MRS-GARCH-N 10 3.4571 3.4998 1.3002 51.2119 1.6149 8.2523 2.6546 0.8427 
MRS-GARCH-t2 12 3.3980 3.4492 1.3254 55.5689 1.6152 8.2603 2.6913 0.8465 
MRS-GARCH-t 11 3.4036 3.4506 1.3047 52.8737 1.6148 8.2246 2.6602 0.8413 

MRS-GARCH-GED 11 3.3963 3.4433 1.3268 56.0621 1.6157 8.2578 2.6917 0.8461 
*N=Number of Parameters. 

 
IV. FORECASTING VOLATILITY IN OUT-OF-SAMPLE 

In this section, we investigate the ability of MRS-GARCH 
and GARCH type models to forecast the volatility of 
Baht/USDs in out-of-sample. 

In Table VI, we present the result of loss function of out-of-
sample with forecasting volatility for one day step ahead 
(short term), and we found the MRS-GARCH models perform 
best.  

In Table VII, we present the result of loss function of out-
of-sample with forecasting volatility for twenty-two day step 
ahead (long term), and we found the GARCH models perform 
best. 

 
TABLE VI 

RESULT LOSS FUNCTION OF OUT-OF-SAMPLE WITH FORECASTING 
VOLATILITY FOR ONE DAY STEP AHEAD 

Model MSE1 MSE2 QLIKE MAD1 MAD2 HMSE 
GARCH-N 0.156 1.766 1.554 0.179 0.998 0.185 
GARCH-t 0.132 1.595 1.538 0.170 0.763 0.181 

GARCH-GED 0.133 1.606 1.539 0.167 0.765 0.182 
MRS-GARCH-N 0.063 0.681 1.491 0.326 0.529 0.080 
MRS-GARCH-t2 0.055 0.566 1.487 0.250 0.493 0.079 
MRS-GARCH-t 0.056 0.585 1.487 0.250 0.488 0.071 

MRS-GARCH-GED 0.086 0.915 1.492 0.213 0.625 0.073 
 

TABLE VII 
RESULT LOSS FUNCTION OF OUT-OF-SAMPLE WITH FORECASTING 

VOLATILITY FOR 22DAYS STEP AHEAD 
Model MSE1 MSE2 QLIKE MAD1 MAD2 HMSE

GARCH-N 0.079 0.735 0.296 0.739 0.530 0.493 
GARCH-t 0.835 0.263 0.042 0.144 0.600 0.931 

GARCH-GED 0.731 0.984 0.521 0.449 0.022 0.952 
MRS-GARCH-N 0.390 0.156 0.090 0.580 0.025 0.582 
MRS-GARCH-t2 0.204 0.370 0.500 0.322 0.255 0.635 
MRS-GARCH-t 0.834 0.003 0.976 0.370 0.336 0.566 

MRS-GARCH-GED 0.484 0.785 0.111 0.172 0.476 0.752 
 

V. CONCLUSION 
In this paper, we forecast volatility of Baht/USDs using 

Markov Regime Switching GARCH (MRS-GARCH) models. 
These models allow volatility to have different dynamics 
according to unobserved regime variables. 

The main purpose of this paper is to find out whether MRS-
GARCH models are an improvement on the GARCH models 
in terms of modeling and forecasting Baht/USD closing price 
volatility. We compare MRS-GARCH (1,1) models with 
GARCH(1,1) models. All models are estimated under three 
distributional assumptions which are Normal, Student-t and 

GED. Moreover, student-t distribution which takes different 
degrees of freedom in each regime is considered for MRS-
GARCH models. 

We first analyze in-sample performance of various 
volatility models to determine the best form of the volatility 
model over the period 1/01/2008 through 26/10/2013. As 
expected, volatility is not constant over time and exhibits 
volatility clustering showing large changes in the price of an 
asset often followed by large changes, and small changes often 
followed by small changes. 

We forecasted volatility for one day step ahead (short term), 
and we found that the MRS-GARCH models perform best. 
However, the result of forecasting volatility for twenty-two 
day step ahead (long term) showed thatthe GARCH models 
perform best. 
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