Search results for: Sign language recognition
825 Design Based Performance Prediction of Component Based Software Products
Authors: K. S. Jasmine, R. Vasantha
Abstract:
Component-Based software engineering provides an opportunity for better quality and increased productivity in software development by using reusable software components [10]. One of the most critical aspects of the quality of a software system is its performance. The systematic application of software performance engineering techniques throughout the development process can help to identify design alternatives that preserve desirable qualities such as extensibility and reusability while meeting performance objectives [1]. In the present scenario, software engineering methodologies strongly focus on the functionality of the system, while applying a “fix- it-later" approach to software performance aspects [3]. As a result, lengthy fine-tunings, expensive extra hard ware, or even redesigns are necessary for the system to meet the performance requirements. In this paper, we propose design based, implementation independent, performance prediction approach to reduce the overhead associated in the later phases while developing a performance guaranteed software product with the help of Unified Modeling Language (UML).Keywords: Software Reuse, Component-based development, Unified Modeling Language, Software performance, Software components, Performance engineering, Software engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868824 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).
Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 284823 Qualitative Case Study Research in Accounting: Challenges and Prospects the Libyan Case Study
Authors: Bubaker F. Shareia
Abstract:
Much of the literature on research design has focused on research conducted in developed, uni-cultural or primarily English speaking countries. Studies of qualitative case study research, the challenges, and prospects have been embedded in Western/Eurocentric society and social theories. Although there have been some theoretical studies, few empirical studies have been conducted to explore the nature of the challenges of qualitative case study in developing countries. These challenges include accessibility to organizations, conducting interviews in developing countries, accessing documents and observing official meetings, language and cultural challenges, the use of consent forms, issues affecting access to companies, respondent issues, and data analysis. The author, while conducting qualitative case study research in Libya, faced all these issues. The discussion in this paper examines these issues in order to make a contribution toward the literature in this area.Keywords: Accounting, Libya, culture, language, developing countries, qualitative case study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288822 Two States Mapping Based Neural Network Model for Decreasing of Prediction Residual Error
Authors: Insung Jung, lockjo Koo, Gi-Nam Wang
Abstract:
The objective of this paper is to design a model of human vital sign prediction for decreasing prediction error by using two states mapping based time series neural network BP (back-propagation) model. Normally, lot of industries has been applying the neural network model by training them in a supervised manner with the error back-propagation algorithm for time series prediction systems. However, it still has a residual error between real value and prediction output. Therefore, we designed two states of neural network model for compensation of residual error which is possible to use in the prevention of sudden death and metabolic syndrome disease such as hypertension disease and obesity. We found that most of simulations cases were satisfied by the two states mapping based time series prediction model compared to normal BP. In particular, small sample size of times series were more accurate than the standard MLP model. We expect that this algorithm can be available to sudden death prevention and monitoring AGENT system in a ubiquitous homecare environment.
Keywords: Neural network, U-healthcare, prediction, timeseries, computer aided prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986821 Emotional Analysis for Text Search Queries on Internet
Authors: Gemma García López
Abstract:
The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.Keywords: Emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 716820 Reading Strategy Awareness of English Major Students
Authors: Hsin-Yi Lien
Abstract:
The study explored the role of metacognition in foreign language anxiety on a sample of 411 Taiwanese students of English as a Foreign Language. The reading strategy inventory was employed to evaluate the tertiary learners’ level of metacognitive awareness and a semi-structured background questionnaire was also used to examine the learners’ perceptions of their English proficiency and satisfaction of their current English learning. In addition, gender and academic level differences in employment of reading strategies were investigated. The results showed the frequency of reading strategy use increase slightly along with academic years and males and females actually employ different reading strategies. The EFL tertiary learners in the present study utilized cognitive strategies more frequently than metacognitive strategies or support strategies. Male students use metacognitive strategy more often while female students use cognitive and support strategy more frequently.
Keywords: Cognitive strategy, gender differences, metacognitive strategy, support strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3430819 The Use of Project to Enhance Learning Domains Stated by National Qualifications Framework: TQF
Authors: Duangkamol Thitivesa
Abstract:
This paper explores the use of project work in a content-based instruction in a Rajabhat University, Thailand. The use of project is to promote kinds of learning expected of student teachers as stated by Thailand Quality Framework: TQF. The kinds of learning are grouped into five domains: Ethical and moral development, knowledge, cognitive skill, interpersonal skills and responsibility, and analytical and communication skills. The content taught in class is used to lead the student teachers to relate their previously-acquired linguistic knowledge to meaningful realizations of the language system in passages of immediate relevance to their professional interests, teaching methods in particular. Two research questions are formulate to guide this study: 1) To what degree are the five domains of learning expected of student teachers after the use of project in a content class?, and 2) What is the academic achievement of the students’ writing skills, as part of the learning domains stated by TQF, against the 70% attainment target after the use of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of a summative achievement test, student writing works, an observation checklist, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students’ record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students’ ability to attend to, recognize, and focus on meaningful patterns of language forms.
Keywords: Thailand Quality Framework, Project Work, Writing skill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028818 Effect of Surface Stress on the Deformation around a Nanosized Elliptical Hole: a Finite Element Study
Authors: Weifeng Wang, Xianwei Zeng, Jianping Ding
Abstract:
When the characteristic length of an elastic solid is down to the nanometer level, its deformation behavior becomes size dependent. Surface energy /surface stress have recently been applied to explain such dependency. In this paper, the effect of strain-independent surface stress on the deformation of an isotropic elastic solid containing a nanosized elliptical hole is studied by the finite element method. Two loading cases are considered, in the first case, hoop stress along the rim of the elliptical hole induced by pure surface stress is studied, in the second case, hoop stress around the elliptical opening under combined remote tension and surface stress is investigated. It has been shown that positive surface stress induces compressive hoop stress along the hole, and negative surface stress has opposite effect, maximum hoop stress occurs near the major semi-axes of the ellipse. Under combined loading of remote tension and surface stress, stress concentration around the hole can be either intensified or weakened depending on the sign of the surface stress.Keywords: Surface stress, finite element method, stress concentration, nanosized elliptical hole
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079817 Learning Block Memories with Metric Networks
Authors: Mario Gonzalez, David Dominguez, Francisco B. Rodriguez
Abstract:
An attractor neural network on the small-world topology is studied. A learning pattern is presented to the network, then a stimulus carrying local information is applied to the neurons and the retrieval of block-like structure is investigated. A synaptic noise decreases the memory capability. The change of stability from local to global attractors is shown to depend on the long-range character of the network connectivity.Keywords: Hebbian learning, image recognition, small world, spatial information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867816 PmSPARQL: Extended SPARQL for Multi-paradigm Path Extraction
Authors: Thabet Slimani, Boutheina Ben Yaghlane, Khaled Mellouli
Abstract:
In the last few years, the Semantic Web gained scientific acceptance as a means of relationships identification in knowledge base, widely known by semantic association. Query about complex relationships between entities is a strong requirement for many applications in analytical domains. In bioinformatics for example, it is critical to extract exchanges between proteins. Currently, the widely known result of such queries is to provide paths between connected entities from data graph. However, they do not always give good results while facing the user need by the best association or a set of limited best association, because they only consider all existing paths but ignore the path evaluation. In this paper, we present an approach for supporting association discovery queries. Our proposal includes (i) a query language PmSPRQL which provides a multiparadigm query expressions for association extraction and (ii) some quantification measures making easy the process of association ranking. The originality of our proposal is demonstrated by a performance evaluation of our approach on real world datasets.
Keywords: Association extraction, query Language, relationships, knowledge base, multi-paradigm query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451815 Hair Mechanical Properties Depending on Age and Origin
Authors: Meriem Benzarti, Mohamed Ben Tkaya, Cyril Pailler Mattei, Hassan Zahouani
Abstract:
Hair is a non homogenous complex material which can be associated with a polymer. It is made up 95% of Keratin. Hair has a great social significance for human beings. In the High Middle Ages, for example, long hairs have been reserved for kings and nobles. Most common interest in hair is focused on hair growth, hair types and hair care, but hair is also an important biomaterial which can vary depending on ethnic origin or on age, hair colour for example can be a sign of ethnic ancestry or age (dark hair for Asiatic, blond hair for Caucasian and white hair for old people in general). In this context, different approaches have been conducted to determine the differences in mechanical properties and characterize the fracture topography at the surface of hair depending on its type and its age. A tensile testing machine was especially designed to achieve tensile tests on hair. This device is composed of a microdisplacement system and a force sensor whose peak load is limited to 3N. The curves and the values extracted from each experiment, allow us to compare the evolution of the mechanical properties from one hair to another. Observations with a Scanning Electron Microscope (SEM) and with an interferometer were made on different hairs. Thus, it is possible to access the cuticle state and the fracture topography for each category.Keywords: Hair, relaxation test, SEM, interferometer, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472814 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: Deep neural models, natural language inference, recognizing textual entailment, sentence-to-sentence relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456813 The Impact of Gamification on Self-Assessment for English Language Learners in Saudi Arabia
Authors: Wala A. Bagunaid, Maram Meccawy, Arwa Allinjawi, Zilal Meccawy
Abstract:
Continuous self-assessment becomes crucial in self-paced online learning environments. Students often depend on themselves to assess their progress; which is considered an essential requirement for any successful learning process. Today’s education institutions face major problems around student motivation and engagement. Thus, personalized e-learning systems aim to help and guide the students. Gamification provides an opportunity to help students for self-assessment and social comparison with other students through attempting to harness the motivational power of games and apply it to the learning environment. Furthermore, Open Social Student Modeling (OSSM) as considered as the latest user modeling technologies is believed to improve students’ self-assessment and to allow them to social comparison with other students. This research integrates OSSM approach and gamification concepts in order to provide self-assessment for English language learners at King Abdulaziz University (KAU). This is achieved through an interactive visual representation of their learning progress.Keywords: E-learning system, gamification, motivation, social comparison, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507812 AI Tutor: A Computer Science Domain Knowledge Graph-Based QA System on JADE platform
Authors: Yingqi Cui, Changran Huang, Raymond Lee
Abstract:
In this paper, we proposed an AI Tutor using ontology and natural language process techniques to generate a computer science domain knowledge graph and answer users’ questions based on the knowledge graph. We define eight types of relation to extract relationships between entities according to the computer science domain text. The AI tutor is separated into two agents: learning agent and Question-Answer (QA) agent and developed on JADE (a multi-agent system) platform. The learning agent is responsible for reading text to extract information and generate a corresponding knowledge graph by defined patterns. The QA agent can understand the users’ questions and answer humans’ questions based on the knowledge graph generated by the learning agent.
Keywords: Artificial intelligence, natural language process, knowledge graph, agent, QA system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 898811 Classification of the Latin Alphabet as Pattern on ARToolkit Markers for Augmented Reality Applications
Authors: Mohamed Badeche, Mohamed Benmohammed
Abstract:
augmented reality is a technique used to insert virtual objects in real scenes. One of the most used libraries in the area is the ARToolkit library. It is based on the recognition of the markers that are in the form of squares with a pattern inside. This pattern which is mostly textual is source of confusing. In this paper, we present the results of a classification of Latin characters as a pattern on the ARToolkit markers to know the most distinguishable among them.
Keywords: ARToolkit library, augmented reality, K-means, patterns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844810 N-Grams: A Tool for Repairing Word Order Errors in Ill-formed Texts
Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou, Konstantinos Mamouras
Abstract:
This paper presents an approach for repairing word order errors in English text by reordering words in a sentence and choosing the version that maximizes the number of trigram hits according to a language model. A possible way for reordering the words is to use all the permutations. The problem is that for a sentence with length N words the number of all permutations is N!. The novelty of this method concerns the use of an efficient confusion matrix technique for reordering the words. The confusion matrix technique has been designed in order to reduce the search space among permuted sentences. The limitation of search space is succeeded using the statistical inference of N-grams. The results of this technique are very interesting and prove that the number of permuted sentences can be reduced by 98,16%. For experimental purposes a test set of TOEFL sentences was used and the results show that more than 95% can be repaired using the proposed method.
Keywords: Permutations filtering, Statistical language model N-grams, Word order errors, TOEFL
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671809 A Surrealist Play of Associations: Neoliberalism, Critical Pedagogy and Surrealism in Secondary English Language Arts
Authors: Stephanie Ho
Abstract:
This project utilizes principles derived from the Surrealist movement to prioritize creative and critical thinking in secondary English Language Arts (ELA). The implementation of Surrealist-style pedagogies within an ELA classroom will be rooted in critical, radical pedagogy, which addresses the injustices caused by economic-oriented educational systems. The use of critical pedagogy will enable the subversive artistic and political aims of Surrealism to be transmitted to a classroom context. Through aesthetic reading strategies, appreciative questioning and dialogue, students will actively critique the power dynamics which structure (and often restrict) their lives. Within the ELA domain, cost-effective approaches often replace the actual “arts” of ELA. This research will therefore explore how Surrealist-oriented pedagogies could restore imaginative freedom and deconstruct conceptual barriers (normative standards, curricular constraints, and status quo power relations) in secondary ELA. This research will also examine how Surrealism can be used as a political and pedagogical model to treat societal problems mirrored in ELA classrooms. The stakeholders are teachers, as they experience constant pressure within their practices. Similarly, students encounter rigorous, results-based pressures. These dynamics contribute to feelings of powerlessness, thus reinforcing a formulaic model of ELA. The ELA curriculum has potential to create laboratories for critical discussion and active movement towards social change. This proposed research strategy of Surrealist-oriented pedagogies could enable students to experiment with social issues and develop senses of agency and voice that reflect awareness of contemporary society while simultaneously building their ELA skills.
Keywords: Arts-informed pedagogies, language arts, literature, Surrealism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740808 Lexical Database for Multiple Languages: Multilingual Word Semantic Network
Authors: K. K. Yong, R. Mahmud, C. S. Woo
Abstract:
Data mining and knowledge engineering have become a tough task due to the availability of large amount of data in the web nowadays. Validity and reliability of data also become a main debate in knowledge acquisition. Besides, acquiring knowledge from different languages has become another concern. There are many language translators and corpora developed but the function of these translators and corpora are usually limited to certain languages and domains. Furthermore, search results from engines with traditional 'keyword' approach are no longer satisfying. More intelligent knowledge engineering agents are needed. To address to these problems, a system known as Multilingual Word Semantic Network is proposed. This system adapted semantic network to organize words according to concepts and relations. The system also uses open source as the development philosophy to enable the native language speakers and experts to contribute their knowledge to the system. The contributed words are then defined and linked using lexical and semantic relations. Thus, related words and derivatives can be identified and linked. From the outcome of the system implementation, it contributes to the development of semantic web and knowledge engineering.
Keywords: Multilingual, semantic network, intelligent knowledge engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967807 Automatic Discrimimation of the Modes of Permanent Flow of a Liquid Simulating Blood
Authors: Malika.D Kedir-Talha, Mohamed Mehenni
Abstract:
In order to be able to automatically differentiate between two modes of permanent flow of a liquid simulating blood, it was imperative to put together a data bank. Thus, the acquisition of the various amplitude spectra of the Doppler signal of this liquid in laminar flow and other spectra in turbulent flow enabled us to establish an automatic difference between the two modes. According to the number of parameters and their nature, a comparative study allowed us to choose the best classifier.Keywords: Doppler spectrum, flow mode, pattern recognition, permanent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209806 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597805 2D Graphical Analysis of Wastewater Influent Capacity Time Series
Authors: Monika Chuchro, Maciej Dwornik
Abstract:
The extraction of meaningful information from image could be an alternative method for time series analysis. In this paper, we propose a graphical analysis of time series grouped into table with adjusted colour scale for numerical values. The advantages of this method are also discussed. The proposed method is easy to understand and is flexible to implement the standard methods of pattern recognition and verification, especially for noisy environmental data.Keywords: graphical analysis, time series, seasonality, noisy environmental data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455804 High-Value Health System for All: Technologies for Promoting Health Education and Awareness
Authors: M. P. Sebastian
Abstract:
Health for all is considered as a sign of well-being and inclusive growth. New healthcare technologies are contributing to the quality of human lives by promoting health education and awareness, leading to the prevention, early diagnosis and treatment of the symptoms of diseases. Healthcare technologies have now migrated from the medical and institutionalized settings to the home and everyday life. This paper explores these new technologies and investigates how they contribute to health education and awareness, promoting the objective of high-value health system for all. The methodology used for the research is literature review. The paper also discusses the opportunities and challenges with futuristic healthcare technologies. The combined advances in genomics medicine, wearables and the IoT with enhanced data collection in electronic health record (EHR) systems, environmental sensors, and mobile device applications can contribute in a big way to high-value health system for all. The promise by these technologies includes reduced total cost of healthcare, reduced incidence of medical diagnosis errors, and reduced treatment variability. The major barriers to adoption include concerns with security, privacy, and integrity of healthcare data, regulation and compliance issues, service reliability, interoperability and portability of data, and user friendliness and convenience of these technologies.
Keywords: Bigdata, education, healthcare, ICT, patients, technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045803 A New Implementation of PCA for Fast Face Detection
Authors: Hazem M. El-Bakry
Abstract:
Principal Component Analysis (PCA) has many different important applications especially in pattern detection such as face detection / recognition. Therefore, for real time applications, the response time is required to be as small as possible. In this paper, new implementation of PCA for fast face detection is presented. Such new implementation is designed based on cross correlation in the frequency domain between the input image and eigenvectors (weights). Simulation results show that the proposed implementation of PCA is faster than conventional one.Keywords: Fast Face Detection, PCA, Cross Correlation, Frequency Domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801802 Migrant Women English Instructors’ Transformative Workplace Learning Experiences in Post-Secondary English Language Programs in Ontario, Canada
Authors: Justine Jun
Abstract:
This study aims to reveal migrant women English instructors' workplace learning experiences in Canadian post-secondary institutions in Ontario. Migrant women English instructors in higher education are an understudied group of teachers. This study employs a qualitative research paradigm. Mezirow’s Transformative Learning Theory is an essential lens for the researcher to explain, analyze, and interpret the research data. It is a collaborative research project. The researcher and participants cooperatively create photographic or other artwork data responding to the research questions. Photovoice and arts-informed data collection methodology are the main methods. Research participants engage in the study as co-researchers and inquire about their own workplace learning experiences, actively utilizing their critical self-reflective and dialogic skills. Co-researchers individually select the forms of artwork they prefer to engage with to represent their transformative workplace learning experiences about the Canadian workplace cultures that they underwent while working with colleagues and administrators in the workplace. Once the co-researchers generate their cultural artifacts as research data, they collaboratively interpret their artworks with the researcher and other volunteer co-researchers. Co-researchers jointly investigate the themes emerging from the artworks. They also interpret the meanings of their own and others’ workplace learning experiences embedded in the artworks through interactive one-on-one or group interviews. The following are the research questions that the migrant women English instructor participants examine and answer: (1) What have they learned about their workplace culture and how do they explain their learning experiences? (2) How transformative have their learning experiences been at work? (3) How have their colleagues and administrators influenced their transformative learning? (4) What kind of support have they received? What supports have been valuable to them and what changes would they like to see? (5) What have their learning experiences transformed? (6) What has this arts-informed research process transformed? The study findings implicate English language instructor support currently practiced in post-secondary English language programs in Ontario, Canada, especially for migrant women English instructors. This research is a doctoral empirical study in progress. This study has the urgency to address the research problem that few studies have investigated migrant English instructors’ professional learning and support issues in the workplace, precisely that of English instructors working with adult learners in Canada. While appropriate social and professional support for migrant English instructors is required throughout the country, the present workplace realities in Ontario's English language programs need to be heard soon. For that purpose, the conceptualization of this study is crucial. It makes the investigation of under-represented instructors’ under-researched social phenomena, workplace learning and support, viable and rigorous. This paper demonstrates the robust theorization of English instructors’ workplace experiences using Mezirow’s Transformative Learning Theory in the English language teacher education field.
Keywords: English teacher education, professional learning, transformative learning theory, workplace learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643801 Do C-Test and Cloze Procedure Measure what they Purport to be Measuring? A Case of Criterion-Related Validity
Authors: Masoud Saeedi, Mansour Tavakoli, Shirin Rahimi Kazerooni, Vahid Parvaresh
Abstract:
This article investigated the validity of C-test and Cloze test which purport to measure general English proficiency. To provide empirical evidence pertaining to the validity of the interpretations based on the results of these integrative language tests, their criterion-related validity was investigated. In doing so, the test of English as a foreign language (TOEFL) which is an established, standardized, and internationally administered test of general English proficiency was used as the criterion measure. Some 90 Iranian English majors participated in this study. They were seniors studying English at a university in Tehran, Iran. The results of analyses showed that there is a statistically significant correlation among participants- scores on Cloze test, C-test, and the TOEFL. Building on the findings of the study and considering criterion-related validity as the evidential basis of the validity argument, it was cautiously deducted that these tests measure the same underlying trait. However, considering the limitations of using criterion measures to validate tests, no absolute claims can be made as to the construct validity of these integrative tests.
Keywords: Integrative testing, C-test, Cloze test, theTOEFL, Validity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3333800 Implementing Education 4.0 Trends in Language Learning
Authors: Luz Janeth Ospina M.
Abstract:
The fourth industrial revolution is changing the role of education substantially and, therefore, the role of instructors and learners at all levels. Education 4.0 is an imminent response to the needs of a globalized world where humans and technology are being aligned to enable endless possibilities, among them the need for students, as digital natives, to communicate effectively in at least one language besides their mother tongue, and also the requirement of developing theirs. This is an exploratory study in which a control group (N = 21), all of the students of Spanish as a foreign language at the university level, after taking a Spanish class, responded to an online questionnaire about the engagement, atmosphere, and environment in which their course was delivered. These aspects considered in the survey were relative to the instructor’s teaching style, including: (a) active, hands-on learning; (b) flexibility for in-class activities, easily switching between small group work, individual work, and whole-class discussion; and (c) integrating technology into the classroom. Strongly believing in these principles, the instructor deliberately taught the course in a SCALE-UP room, as it could facilitate such a positive and encouraging learning environment. These aspects are trends related to Education 4.0 and have become integral to the instructor’s pedagogical stance that calls for a constructive-affective role, instead of a transmissive one. As expected, with a learning environment that (a) fosters student engagement and (b) improves student outcomes, the subjects were highly engaged, which was partially due to the learning environment. An overwhelming majority (all but one) of students agreed or strongly agreed that the atmosphere and the environment were ideal. Outcomes of this study are relevant and indicate that it is about time for teachers to build up a meaningful correlation between humans and technology. We should see the trends of Education 4.0 not as a threat but as practices that should be in the hands of critical and creative instructors whose pedagogical stance responds to the needs of the learners in the 21st century.
Keywords: Active learning, education 4.0, higher education, pedagogical stance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705799 Combining the Description Features of UMLRT and CSP+T Specifications Applied to a Complete Design of Real-Time Systems
Authors: Kawtar Benghazi Akhlaki, Manuel I. Capel-Tuñón
Abstract:
UML is a collection of notations for capturing a software system specification. These notations have a specific syntax defined by the Object Management Group (OMG), but many of their constructs only present informal semantics. They are primarily graphical, with textual annotation. The inadequacies of standard UML as a vehicle for complete specification and implementation of real-time embedded systems has led to a variety of competing and complementary proposals. The Real-time UML profile (UML-RT), developed and standardized by OMG, defines a unified framework to express the time, scheduling and performance aspects of a system. We present in this paper a framework approach aimed at deriving a complete specification of a real-time system. Therefore, we combine two methods, a semiformal one, UML-RT, which allows the visual modeling of a realtime system and a formal one, CSP+T, which is a design language including the specification of real-time requirements. As to show the applicability of the approach, a correct design of a real-time system with hard real time constraints by applying a set of mapping rules is obtained.
Keywords: CSP+T, formal software specification, process algebras, real-time systems, unified modeling language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812798 An Application of SMED Methodology
Authors: Berna Ulutas
Abstract:
Single Minute Exchange of Dies (SMED) mainly focuses on recognition of internal and external activities. It is concerned particularly with transferring internal activities into external ones in as many numbers as possible, by also minimizing the internal ones. The validity of the method and procedures are verified by an application a Styrofoam manufacturing process where setup times are critical for time reduction. Significant time savings have been achieved with minimum investment. Further, the issues related with employer safety and ergonomics principles during die exchange are noted.
Keywords: Die exchange, internal-external set-up, lean manufacturing, single minute die exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7446797 The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach
Authors: Okezie A. Ihugba
Abstract:
The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bound tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between log of electricity consumption (LELC) and log of manufacturing value added (LMVA) is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure.
Keywords: ARDL, cointegration, Nigeria's manufacturing, electricity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 412796 Block Sorting: A New Characterization and a New Heuristic
Authors: Swapnoneel Roy, Ashok Kumar Thakur, Minhazur Rahman
Abstract:
The Block Sorting problem is to sort a given permutation moving blocks. A block is defined as a substring of the given permutation, which is also a substring of the identity permutation. Block Sorting has been proved to be NP-Hard. Until now two different 2-Approximation algorithms have been presented for block sorting. These are the best known algorithms for Block Sorting till date. In this work we present a different characterization of Block Sorting in terms of a transposition cycle graph. Then we suggest a heuristic, which we show to exhibit a 2-approximation performance guarantee for most permutations.Keywords: Block Sorting, Optical Character Recognition, Genome Rearrangements, Sorting Primitives, ApproximationAlgorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2144