Search results for: Fuzzy Logic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1194

Search results for: Fuzzy Logic

384 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads

Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza

Abstract:

This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.

Keywords: Divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
383 Learning FCM by Tabu Search

Authors: Somayeh Alizadeh, Mehdi Ghazanfari, Mostafa Jafari, Salman Hooshmand

Abstract:

Fuzzy Cognitive Maps (FCMs) is a causal graph, which shows the relations between essential components in complex systems. Experts who are familiar with the system components and their relations can generate a related FCM. There is a big gap when human experts cannot produce FCM or even there is no expert to produce the related FCM. Therefore, a new mechanism must be used to bridge this gap. In this paper, a novel learning method is proposed to construct causal graph based on historical data and by using metaheuristic such Tabu Search (TS). The efficiency of the proposed method is shown via comparison of its results of some numerical examples with those of some other methods.

Keywords: Fuzzy Cognitive Map (FCM), Learning, Meta heuristic, Genetic Algorithm, Tabu search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
382 A Mixed Expert Evaluation System and Dynamic Interval-Valued Hesitant Fuzzy Selection Approach

Authors: Hossein Gitinavard, Mohammad Hossein Fazel Zarandi

Abstract:

In the last decades, concerns about the environmental issues lead to professional and academic efforts on green supplier selection problems. In this sake, one of the main issues in evaluating the green supplier selection problems, which could increase the uncertainty, is the preferences of the experts' judgments about the candidate green suppliers. Therefore, preparing an expert system to evaluate the problem based on the historical data and the experts' knowledge can be sensible. This study provides an expert evaluation system to assess the candidate green suppliers under selected criteria in a multi-period approach. In addition, a ranking approach under interval-valued hesitant fuzzy set (IVHFS) environment is proposed to select the most appropriate green supplier in planning horizon. In the proposed ranking approach, the IVHFS and the last aggregation approach are considered to margin the errors and to prevent data loss, respectively. Hence, a comparative analysis is provided based on an illustrative example to show the feasibility of the proposed approach.

Keywords: Green supplier selection, expert system, ranking approach, interval-valued hesitant fuzzy setting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
381 A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data

Authors: N. Borjalilu, P. Rabiei, A. Enjoo

Abstract:

Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator’s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained.

Keywords: F-TOPSIS, fuzzy set, FDM, flight safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
380 Optimization of Strategies and Models Review for Optimal Technologies - Based On Fuzzy Schemes for Green Architecture

Authors: Ghada Elshafei, Abdelazim Negm

Abstract:

Recently, the green architecture becomes a significant way to a sustainable future. Green building designs involve finding the balance between comfortable homebuilding and sustainable environment. Moreover, the utilization of the new technologies such as artificial intelligence techniques are used to complement current practices in creating greener structures to keep the built environment more sustainable. The most common objectives in green buildings should be designed to minimize the overall impact of the built environment that effect on ecosystems in general and in particularly human health and natural environment. This will lead to protecting occupant health, improving employee productivity, reducing pollution and sustaining the environmental. In green building design, multiple parameters which may be interrelated, contradicting, vague and of qualitative/quantitative nature are broaden to use. This paper presents a comprehensive critical state- ofart- review of current practices based on fuzzy and its combination techniques. Also, presented how green architecture/building can be improved using the technologies that been used for analysis to seek optimal green solutions strategies and models to assist in making the best possible decision out of different alternatives.

Keywords: Green architecture/building, technologies, optimization, strategies, fuzzy techniques and models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
379 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.

Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
378 Multi-objective Optimization with Fuzzy Based Ranking for TCSC Supplementary Controller to Improve Rotor Angle and Voltage Stability

Authors: S. Panda, S. C. Swain, A. K. Baliarsingh, A. K. Mohanty, C. Ardil

Abstract:

Many real-world optimization problems involve multiple conflicting objectives and the use of evolutionary algorithms to solve the problems has attracted much attention recently. This paper investigates the application of multi-objective optimization technique for the design of a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the performance of a power system. The design objective is to improve both rotor angle stability and system voltage profile. A Genetic Algorithm (GA) based solution technique is applied to generate a Pareto set of global optimal solutions to the given multi-objective optimisation problem. Further, a fuzzy-based membership value assignment method is employed to choose the best compromise solution from the obtained Pareto solution set. Simulation results are presented to show the effectiveness and robustness of the proposed approach.

Keywords: Multi-objective optimisation, thyristor controlled series compensator, power system stability, genetic algorithm, pareto solution set, fuzzy ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
377 Comparison of ANFIS and ANN for Estimation of Biochemical Oxygen Demand Parameter in Surface Water

Authors: S. Areerachakul

Abstract:

Nowadays, several techniques such as; Fuzzy Inference System (FIS) and Neural Network (NN) are employed for developing of the predictive models to estimate parameters of water quality. The main objective of this study is to compare between the predictive ability of the Adaptive Neuro-Fuzzy Inference System (ANFIS) model and Artificial Neural Network (ANN) model to estimate the Biochemical Oxygen Demand (BOD) on data from 11 sampling sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage, Bangkok Metropolitan Administration, during 2004-2011. The five parameters of water quality namely Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Ammonia Nitrogen (NH3N), Nitrate Nitrogen (NO3N), and Total Coliform bacteria (T-coliform) are used as the input of the models. These water quality indices affect the biochemical oxygen demand. The experimental results indicate that the ANN model provides a higher correlation coefficient (R=0.73) and a lower root mean square error (RMSE=4.53) than the corresponding ANFIS model.

Keywords: adaptive neuro-fuzzy inference system, artificial neural network, biochemical oxygen demand, surface water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2529
376 A Preliminary Study on the Suitability of Data Driven Approach for Continuous Water Level Modeling

Authors: Muhammad Aqil, Ichiro Kita, Moses Macalinao

Abstract:

Reliable water level forecasts are particularly important for warning against dangerous flood and inundation. The current study aims at investigating the suitability of the adaptive network based fuzzy inference system for continuous water level modeling. A hybrid learning algorithm, which combines the least square method and the back propagation algorithm, is used to identify the parameters of the network. For this study, water levels data are available for a hydrological year of 2002 with a sampling interval of 1-hour. The number of antecedent water level that should be included in the input variables is determined by two statistical methods, i.e. autocorrelation function and partial autocorrelation function between the variables. Forecasting was done for 1-hour until 12-hour ahead in order to compare the models generalization at higher horizons. The results demonstrate that the adaptive networkbased fuzzy inference system model can be applied successfully and provide high accuracy and reliability for river water level estimation. In general, the adaptive network-based fuzzy inference system provides accurate and reliable water level prediction for 1-hour ahead where the MAPE=1.15% and correlation=0.98 was achieved. Up to 12-hour ahead prediction, the model still shows relatively good performance where the error of prediction resulted was less than 9.65%. The information gathered from the preliminary results provide a useful guidance or reference for flood early warning system design in which the magnitude and the timing of a potential extreme flood are indicated.

Keywords: Neural Network, Fuzzy, River, Forecasting

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
375 Combining ILP with Semi-supervised Learning for Web Page Categorization

Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul

Abstract:

This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.

Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
374 Identification of Nonlinear Predictor and Simulator Models of a Cement Rotary Kiln by Locally Linear Neuro-Fuzzy Technique

Authors: Masoud Sadeghian, Alireza Fatehi

Abstract:

One of the most important parts of a cement factory is the cement rotary kiln which plays a key role in quality and quantity of produced cement. In this part, the physical exertion and bilateral movement of air and materials, together with chemical reactions take place. Thus, this system has immensely complex and nonlinear dynamic equations. These equations have not worked out yet. Only in exceptional case; however, a large number of the involved parameter were crossed out and an approximation model was presented instead. This issue caused many problems for designing a cement rotary kiln controller. In this paper, we presented nonlinear predictor and simulator models for a real cement rotary kiln by using nonlinear identification technique on the Locally Linear Neuro- Fuzzy (LLNF) model. For the first time, a simulator model as well as a predictor one with a precise fifteen minute prediction horizon for a cement rotary kiln is presented. These models are trained by LOLIMOT algorithm which is an incremental tree-structure algorithm. At the end, the characteristics of these models are expressed. Furthermore, we presented the pros and cons of these models. The data collected from White Saveh Cement Company is used for modeling.

Keywords: Cement rotary kiln, nonlinear identification, Locally Linear Neuro-Fuzzy model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
373 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: Air flow, biomass combustion, feedback control system, fuel feeding, ladder logic, programmable logic controller, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
372 A Frame Work for the Development of a Suitable Method to Find Shoot Length at Maturity of Mustard Plant Using Soft Computing Model

Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri

Abstract:

The production of a plant can be measured in terms of seeds. The generation of seeds plays a critical role in our social and daily life. The fruit production which generates seeds, depends on the various parameters of the plant, such as shoot length, leaf number, root length, root number, etc When the plant is growing, some leaves may be lost and some new leaves may appear. It is very difficult to use the number of leaves of the tree to calculate the growth of the plant.. It is also cumbersome to measure the number of roots and length of growth of root in several time instances continuously after certain initial period of time, because roots grow deeper and deeper under ground in course of time. On the contrary, the shoot length of the tree grows in course of time which can be measured in different time instances. So the growth of the plant can be measured using the data of shoot length which are measured at different time instances after plantation. The environmental parameters like temperature, rain fall, humidity and pollution are also play some role in production of yield. The soil, crop and distance management are taken care to produce maximum amount of yields of plant. The data of the growth of shoot length of some mustard plant at the initial stage (7,14,21 & 28 days after plantation) is available from the statistical survey by a group of scientists under the supervision of Prof. Dilip De. In this paper, initial shoot length of Ken( one type of mustard plant) has been used as an initial data. The statistical models, the methods of fuzzy logic and neural network have been tested on this mustard plant and based on error analysis (calculation of average error) that model with minimum error has been selected and can be used for the assessment of shoot length at maturity. Finally, all these methods have been tested with other type of mustard plants and the particular soft computing model with the minimum error of all types has been selected for calculating the predicted data of growth of shoot length. The shoot length at the stage of maturity of all types of mustard plants has been calculated using the statistical method on the predicted data of shoot length.

Keywords: Fuzzy time series, neural network, forecasting error, average error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
371 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions

Authors: Hazem M. El-Bakry

Abstract:

In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.

Keywords: Boolean Functions, Simplification, KarnoughMap, Implementation of Logic Functions, Modular NeuralNetworks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
370 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions

Authors: Hazem M. El-Bakry

Abstract:

In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.

Keywords: Boolean functions, simplification, Karnough map, implementation of logic functions, modular neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
369 Fuzzy Optimization in Metabolic Systems

Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu

Abstract:

The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.

Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
368 Fuzzy Inference System for Determining Collision Risk of Ship in Madura Strait Using Automatic Identification System

Authors: Emmy Pratiwi, Ketut B. Artana, A. A. B. Dinariyana

Abstract:

Madura Strait is considered as one of the busiest shipping channels in Indonesia. High vessel traffic density in Madura Strait gives serious threat due to navigational safety in this area, i.e. ship collision. This study is necessary as an attempt to enhance the safety of marine traffic. Fuzzy inference system (FIS) is proposed to calculate risk collision of ships. Collision risk is evaluated based on ship domain, Distance to Closest Point of Approach (DCPA), and Time to Closest Point of Approach (TCPA). Data were collected by utilizing Automatic Identification System (AIS). This study considers several ships’ domain models to give the characteristic of marine traffic in the waterways. Each encounter in the ship domain is analyzed to obtain the level of collision risk. Risk level of ships, as the result in this study, can be used as guidance to avoid the accident, providing brief description about safety traffic in Madura Strait and improving the navigational safety in the area.

Keywords: Automatic identification system, collision risk, DCPA, fuzzy inference system, TCPA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
367 Using Vulnerability to Reduce False Positive Rate in Intrusion Detection Systems

Authors: Nadjah Chergui, Narhimene Boustia

Abstract:

Intrusion Detection Systems are an essential tool for network security infrastructure. However, IDSs have a serious problem which is the generating of massive number of alerts, most of them are false positive ones which can hide true alerts and make the analyst confused to analyze the right alerts for report the true attacks. The purpose behind this paper is to present a formalism model to perform correlation engine by the reduction of false positive alerts basing on vulnerability contextual information. For that, we propose a formalism model based on non-monotonic JClassicδє description logic augmented with a default (δ) and an exception (є) operator that allows a dynamic inference according to contextual information.

Keywords: Context, exception, default, IDS, Non-monotonic Description Logic JClassicδє, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
366 A Supervisory Scheme for Step-Wise Safe Switching Controllers

Authors: Fotis N. Koumboulis, Maria P. Tzamtzi

Abstract:

A supervisory scheme is proposed that implements Stepwise Safe Switching Logic. The functionality of the supervisory scheme is organized in the following eight functional units: Step- Wise Safe Switching unit, Common controllers design unit, Experimentation unit, Simulation unit, Identification unit, Trajectory cruise unit, Operating points unit and Expert system unit. The supervisory scheme orchestrates both the off-line preparative actions, as well as the on-line actions that implement the Stepwise Safe Switching Logic. The proposed scheme is a generic tool, that may be easily applied for a variety of industrial control processes and may be implemented as an automation software system, with the use of a high level programming environment, like Matlab.

Keywords: Supervisory systems, safe switching, nonlinear systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
365 Soft Real-Time Fuzzy Task Scheduling for Multiprocessor Systems

Authors: Mahdi Hamzeh, Sied Mehdi Fakhraie, Caro Lucas

Abstract:

All practical real-time scheduling algorithms in multiprocessor systems present a trade-off between their computational complexity and performance. In real-time systems, tasks have to be performed correctly and timely. Finding minimal schedule in multiprocessor systems with real-time constraints is shown to be NP-hard. Although some optimal algorithms have been employed in uni-processor systems, they fail when they are applied in multiprocessor systems. The practical scheduling algorithms in real-time systems have not deterministic response time. Deterministic timing behavior is an important parameter for system robustness analysis. The intrinsic uncertainty in dynamic real-time systems increases the difficulties of scheduling problem. To alleviate these difficulties, we have proposed a fuzzy scheduling approach to arrange real-time periodic and non-periodic tasks in multiprocessor systems. Static and dynamic optimal scheduling algorithms fail with non-critical overload. In contrast, our approach balances task loads of the processors successfully while consider starvation prevention and fairness which cause higher priority tasks have higher running probability. A simulation is conducted to evaluate the performance of the proposed approach. Experimental results have shown that the proposed fuzzy scheduler creates feasible schedules for homogeneous and heterogeneous tasks. It also and considers tasks priorities which cause higher system utilization and lowers deadline miss time. According to the results, it performs very close to optimal schedule of uni-processor systems.

Keywords: Computational complexity, Deadline, Feasible scheduling, Fuzzy scheduling, Priority, Real-time multiprocessor systems, Robustness, System utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
364 Rule-Based Message Passing for Collaborative Application in Distributed Environments

Authors: Wataru Yamazaki, Hironori Hiraishi, Fumio Mizoguchi

Abstract:

In this paper, we describe a rule-based message passing method to support developing collaborative applications, in which multiple users share resources in distributed environments. Message communications of applications in collaborative environments tend to be very complex because of the necessity to manage context situations such as sharing events, access controlling of users, and network places. In this paper, we propose a message communications method based on unification of artificial intelligence and logic programming for defining rules of such context information in a procedural object-oriented programming language. We also present an implementation of the method as java classes.

Keywords: agent programming, logic programming, multi-media application, collaborative application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
363 A Fuzzy Approach for Delay Proportion Differentiated Service

Authors: Mehran Garmehi, Yasser Mansouri

Abstract:

There are two paradigms proposed to provide QoS for Internet applications: Integrated service (IntServ) and Differentiated service (DiffServ).Intserv is not appropriate for large network like Internet. Because is very complex. Therefore, to reduce the complexity of QoS management, DiffServ was introduced to provide QoS within a domain using aggregation of flow and per- class service. In theses networks QoS between classes is constant and it allows low priority traffic to be effected from high priority traffic, which is not suitable. In this paper, we proposed a fuzzy controller, which reduced the effect of low priority class on higher priority ones. Our simulations shows that, our approach reduces the latency dependency of low priority class on higher priority ones, in an effective manner.

Keywords: QoS, Differentiated Service (DiffServ), FuzzyController, Delay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1288
362 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 931
361 A Power-Gating Scheme to Reduce Leakage Power for P-type Adiabatic Logic Circuits

Authors: Hong Li, Linfeng Li, Jianping Hu

Abstract:

With rapid technology scaling, the proportion of the static power consumption catches up with dynamic power consumption gradually. To decrease leakage consumption is becoming more and more important in low-power design. This paper presents a power-gating scheme for P-DTGAL (p-type dual transmission gate adiabatic logic) circuits to reduce leakage power dissipations under deep submicron process. The energy dissipations of P-DTGAL circuits with power-gating scheme are investigated in different processes, frequencies and active ratios. BSIM4 model is adopted to reflect the characteristics of the leakage currents. HSPICE simulations show that the leakage loss is greatly reduced by using the P-DTGAL with power-gating techniques.

Keywords: Leakage reduction, low power, deep submicronCMOS circuits, P-type adiabatic circuits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
360 Using the Combined Model of PROMETHEE and Fuzzy Analytic Network Process for Determining Question Weights in Scientific Exams through Data Mining Approach

Authors: Hassan Haleh, Amin Ghaffari, Parisa Farahpour

Abstract:

Need for an appropriate system of evaluating students- educational developments is a key problem to achieve the predefined educational goals. Intensity of the related papers in the last years; that tries to proof or disproof the necessity and adequacy of the students assessment; is the corroborator of this matter. Some of these studies tried to increase the precision of determining question weights in scientific examinations. But in all of them there has been an attempt to adjust the initial question weights while the accuracy and precision of those initial question weights are still under question. Thus In order to increase the precision of the assessment process of students- educational development, the present study tries to propose a new method for determining the initial question weights by considering the factors of questions like: difficulty, importance and complexity; and implementing a combined method of PROMETHEE and fuzzy analytic network process using a data mining approach to improve the model-s inputs. The result of the implemented case study proves the development of performance and precision of the proposed model.

Keywords: Assessing students, Analytic network process, Clustering, Data mining, Fuzzy sets, Multi-criteria decision making, and Preference function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
359 Securing Message in Wireless Sensor Network by using New Method of Code Conversions

Authors: Ahmed Chalak Shakir, GuXuemai, Jia Min

Abstract:

Recently, wireless sensor networks have been paid more interest, are widely used in a lot of commercial and military applications, and may be deployed in critical scenarios (e.g. when a malfunctioning network results in danger to human life or great financial loss). Such networks must be protected against human intrusion by using the secret keys to encrypt the exchange messages between communicating nodes. Both the symmetric and asymmetric methods have their own drawbacks for use in key management. Thus, we avoid the weakness of these two cryptosystems and make use of their advantages to establish a secure environment by developing the new method for encryption depending on the idea of code conversion. The code conversion-s equations are used as the key for designing the proposed system based on the basics of logic gate-s principals. Using our security architecture, we show how to reduce significant attacks on wireless sensor networks.

Keywords: logic gates, code conversions, Gray-code, and clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
358 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill

Authors: S. Khosravi, A. Afshar, F. Barazandeh

Abstract:

In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.

Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
357 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
356 A Framework for Early Differential Diagnosis of Tropical Confusable Diseases Using the Fuzzy Cognitive Map Engine

Authors: Faith-Michael E. Uzoka, Boluwaji A. Akinnuwesi, Taiwo Amoo, Flora Aladi, Stephen Fashoto, Moses Olaniyan, Joseph Osuji

Abstract:

The overarching aim of this study is to develop a soft-computing system for the differential diagnosis of tropical diseases. These conditions are of concern to health bodies, physicians, and the community at large because of their mortality rates, and difficulties in early diagnosis due to the fact that they present with symptoms that overlap, and thus become ‘confusable’. We report on the first phase of our study, which focuses on the development of a fuzzy cognitive map model for early differential diagnosis of tropical diseases. We used malaria as a case disease to show the effectiveness of the FCM technology as an aid to the medical practitioner in the diagnosis of tropical diseases. Our model takes cognizance of manifested symptoms and other non-clinical factors that could contribute to symptoms manifestations. Our model showed 85% accuracy in diagnosis, as against the physicians’ initial hypothesis, which stood at 55% accuracy. It is expected that the next stage of our study will provide a multi-disease, multi-symptom model that also improves efficiency by utilizing a decision support filter that works on an algorithm, which mimics the physician’s diagnosis process.

Keywords: Medical diagnosis, tropical diseases, fuzzy cognitive map, decision support filters, malaria differential diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
355 Forecasting the Sea Level Change in Strait of Hormuz

Authors: Hamid Goharnejad, Amir Hossein Eghbali

Abstract:

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study, climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One of models (Discrete Wavelet artificial Neural Network) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and input parameters to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 t0 105 cm. Furthermore, the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Keywords: Climate change scenarios, sea-level rise, strait of Hormuz, artificial neural network, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425