Search results for: Interface designer.
10 Automated, Objective Assessment of Pilot Performance in Simulated Environment
Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt
Abstract:
Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).
Keywords: Automated assessment, flight simulator, human factors, pilot training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8159 Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Development, Verification and Clinical Trials
Authors: Eun-Geun Kim, Won-Pil Park, Dae-Gon Woo, Chang-Yong Ko, Yong-Heum Lee, Dohyung Lim, Tae-Min Shin, Han-Sung Kim, Gyoun-Jung Lee
Abstract:
Functional gastrointestinal disorders affect millions of people spread all age regardless of race and sex. There are, however, rare diagnostic methods for the functional gastrointestinal disorders because functional disorders show no evidence of organic and physical causes. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Aim of this study is, therefore, to develop a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristic above related to the rigidity of the gastrointestinal tract well. Ultrasound system was designed. The system consisted of transmitter, ultrasonic transducer, receiver, TGC, and CPLD, and verified via a phantom test. For the phantom test, ten soft-tissue specimens were harvested from porcine. Five of them were then treated chemically to mimic a rigid condition of gastrointestinal tract well, which was induced by functional gastrointestinal disorders. Additionally, the specimens were tested mechanically to identify if the mimic was reasonable. The customized ultrasound system was finally verified through application to human subjects with/without functional gastrointestinal disorders (Normal and Patient Groups). It was identified from the mechanical test that the chemically treated specimens were more rigid than normal specimen. This finding was favorably compared with the result obtained from the phantom test. The phantom test also showed that ultrasound system well described the specimen geometric characteristics and detected an alteration in the specimens. The maximum amplitude of the ultrasonic reflective signal in the rigid specimens (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal specimens (0.1±0.0Vp-p). Clinical tests using our customized ultrasound system for human subject showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3Vp-p) were generally higher than those in normal group (0.1±0.2Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These results suggest that newly designed diagnostic system based on ultrasound technique may diagnose enough the functional gastrointestinal disorders.Keywords: Functional Gastrointestinal Disorders, DiagnosticSystem, Phantom Test, Ultrasound System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17978 Additive Friction Stir Manufacturing Process: Interest in Understanding Thermal Phenomena and Numerical Modeling of the Temperature Rise Phase
Authors: A. Lauvray, F. Poulhaon, P. Michaud, P. Joyot, E. Duc
Abstract:
Additive Friction Stir Manufacturing, or AFSM, is a new industrial process that follows the emergence of friction-based processes. The AFSM process is a solid-state additive process using the energy produced by the friction at the interface between a rotating non-consumable tool and a substrate. Friction depends on various parameters like axial force, rotation speed or friction coefficient. The feeder material is a metallic rod that flows through a hole in the tool. There is still a lack in understanding of the physical phenomena taking place during the process. This research aims at a better AFSM process understanding and implementation, thanks to numerical simulation and experimental validation performed on a prototype effector. Such an approach is considered a promising way for studying the influence of the process parameters and to finally identify a process window that seems relevant. The deposition of material through the AFSM process takes place in several phases. In chronological order these phases are the docking phase, the dwell time phase, the deposition phase, and the removal phase. The present work focuses on the dwell time phase that enables the temperature rise of the system due to pure friction. An analytic modeling of heat generation based on friction considers as main parameters the rotational speed and the contact pressure. Another parameter considered influential is the friction coefficient assumed to be variable, due to the self-lubrication of the system with the rise in temperature or the materials in contact roughness smoothing over time. This study proposes through a numerical modeling followed by an experimental validation to question the influence of the various input parameters on the dwell time phase. Rotation speed, temperature, spindle torque and axial force are the main monitored parameters during experimentations and serve as reference data for the calibration of the numerical model. This research shows that the geometry of the tool as well as fluctuations of the input parameters like axial force and rotational speed are very influential on the temperature reached and/or the time required to reach the targeted temperature. The main outcome is the prediction of a process window which is a key result for a more efficient process implementation.
Keywords: numerical model, additive manufacturing, frictional heat generation, process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5257 A Review on Stormwater Harvesting and Reuse
Authors: Fatema Akram, Mohammad G. Rasul, M. Masud K. Khan, M. Sharif I. I. Amir
Abstract:
Australia is a country of some 7,700 million square kilometers with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban stormwater and treated wastewater. But till now it is not widely practiced in Australia, and particularly stormwater is neglected. In Australia, only 4% of stormwater and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As stormwater is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing stormwater recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of stormwater harvesting and reuse. Numerical modeling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes stormwater quantity to design the system components, and the hydraulic model helps to route the flow through stormwater infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a stormwater harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of stormwater harvesting and reuse such as available guidelines of stormwater harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of stormwater harvesting and reuse.
Keywords: Stormwater Management, Stormwater Harvesting and Reuse, Numerical Modeling, Geographic Information System (GIS), Decision Support System (DSS), Database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30626 Sound Selection for Gesture Sonification and Manipulation of Virtual Objects
Authors: Benjamin Bressolette, S´ebastien Denjean, Vincent Roussarie, Mitsuko Aramaki, Sølvi Ystad, Richard Kronland-Martinet
Abstract:
New sensors and technologies – such as microphones, touchscreens or infrared sensors – are currently making their appearance in the automotive sector, introducing new kinds of Human-Machine Interfaces (HMIs). The interactions with such tools might be cognitively expensive, thus unsuitable for driving tasks. It could for instance be dangerous to use touchscreens with a visual feedback while driving, as it distracts the driver’s visual attention away from the road. Furthermore, new technologies in car cockpits modify the interactions of the users with the central system. In particular, touchscreens are preferred to arrays of buttons for space improvement and design purposes. However, the buttons’ tactile feedback is no more available to the driver, which makes such interfaces more difficult to manipulate while driving. Gestures combined with an auditory feedback might therefore constitute an interesting alternative to interact with the HMI. Indeed, gestures can be performed without vision, which means that the driver’s visual attention can be totally dedicated to the driving task. In fact, the auditory feedback can both inform the driver with respect to the task performed on the interface and on the performed gesture, which might constitute a possible solution to the lack of tactile information. As audition is a relatively unused sense in automotive contexts, gesture sonification can contribute to reducing the cognitive load thanks to the proposed multisensory exploitation. Our approach consists in using a virtual object (VO) to sonify the consequences of the gesture rather than the gesture itself. This approach is motivated by an ecological point of view: Gestures do not make sound, but their consequences do. In this experiment, the aim was to identify efficient sound strategies, to transmit dynamic information of VOs to users through sound. The swipe gesture was chosen for this purpose, as it is commonly used in current and new interfaces. We chose two VO parameters to sonify, the hand-VO distance and the VO velocity. Two kinds of sound parameters can be chosen to sonify the VO behavior: Spectral or temporal parameters. Pitch and brightness were tested as spectral parameters, and amplitude modulation as a temporal parameter. Performances showed a positive effect of sound compared to a no-sound situation, revealing the usefulness of sounds to accomplish the task.Keywords: Auditory feedback, gesture, sonification, sound perception, virtual object.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9715 Investigation of New Method to Achieve Well Dispersed Multiwall Carbon Nanotubes Reinforced Al Matrix Composites
Authors: A.H.Javadi, Sh.Mirdamadi, M.A.Faghisani, S.Shakhesi
Abstract:
Nanostructured materials have attracted many researchers due to their outstanding mechanical and physical properties. For example, carbon nanotubes (CNTs) or carbon nanofibres (CNFs) are considered to be attractive reinforcement materials for light weight and high strength metal matrix composites. These composites are being projected for use in structural applications for their high specific strength as well as functional materials for their exciting thermal and electrical characteristics. The critical issues of CNT-reinforced MMCs include processing techniques, nanotube dispersion, interface, strengthening mechanisms and mechanical properties. One of the major obstacles to the effective use of carbon nanotubes as reinforcements in metal matrix composites is their agglomeration and poor distribution/dispersion within the metallic matrix. In order to tap into the advantages of the properties of CNTs (or CNFs) in composites, the high dispersion of CNTs (or CNFs) and strong interfacial bonding are the key issues which are still challenging. Processing techniques used for synthesis of the composites have been studied with an objective to achieve homogeneous distribution of carbon nanotubes in the matrix. Modified mechanical alloying (ball milling) techniques have emerged as promising routes for the fabrication of carbon nanotube (CNT) reinforced metal matrix composites. In order to obtain a homogeneous product, good control of the milling process, in particular control of the ball movement, is essential. The control of the ball motion during the milling leads to a reduction in grinding energy and a more homogeneous product. Also, the critical inner diameter of the milling container at a particular rotational speed can be calculated. In the present work, we use conventional and modified mechanical alloying to generate a homogenous distribution of 2 wt. % CNT within Al powders. 99% purity Aluminium powder (Acros, 200mesh) was used along with two different types of multiwall carbon nanotube (MWCNTs) having different aspect ratios to produce Al-CNT composites. The composite powders were processed into bulk material by compaction, and sintering using a cylindrical compaction and tube furnace. Field Emission Scanning electron microscopy (FESEM), X-Ray diffraction (XRD), Raman spectroscopy and Vickers macro hardness tester were used to evaluate CNT dispersion, powder morphology, CNT damage, phase analysis, mechanical properties and crystal size determination. Despite the success of ball milling in dispersing CNTs in Al powder, it is often accompanied with considerable strain hardening of the Al powder, which may have implications on the final properties of the composite. The results show that particle size and morphology vary with milling time. Also, by using the mixing process and sonication before mechanical alloying and modified ball mill, dispersion of the CNTs in Al matrix improves.Keywords: multiwall carbon nanotube, Aluminum matrixcomposite, dispersion, mechanical alloying, sintering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23304 Multiscale Modelization of Multilayered Bi-Dimensional Soils
Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur
Abstract:
Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.
Keywords: Multiscale, bi-dimensional, wavelets, SPM, backscattering, multilayer, air pockets, vegetable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6123 Creative Mapping Landuse and Human Activities: From the Inventories of Factories to the History of the City and Citizens
Authors: R. Tamborrino, F. Rinaudo
Abstract:
Digital technologies offer possibilities to effectively convert historical archives into instruments of knowledge able to provide a guide for the interpretation of historical phenomena. Digital conversion and management of those documents allow the possibility to add other sources in a unique and coherent model that permits the intersection of different data able to open new interpretations and understandings. Urban history uses, among other sources, the inventories that register human activities in a specific space (e.g. cadastres, censuses, etc.). The geographic localisation of that information inside cartographic supports allows for the comprehension and visualisation of specific relationships between different historical realities registering both the urban space and the peoples living there. These links that merge the different nature of data and documentation through a new organisation of the information can suggest a new interpretation of other related events. In all these kinds of analysis, the use of GIS platforms today represents the most appropriate answer. The design of the related databases is the key to realise the ad-hoc instrument to facilitate the analysis and the intersection of data of different origins. Moreover, GIS has become the digital platform where it is possible to add other kinds of data visualisation. This research deals with the industrial development of Turin at the beginning of the 20th century. A census of factories realized just prior to WWI provides the opportunity to test the potentialities of GIS platforms for the analysis of urban landscape modifications during the first industrial development of the town. The inventory includes data about location, activities, and people. GIS is shaped in a creative way linking different sources and digital systems aiming to create a new type of platform conceived as an interface integrating different kinds of data visualisation. The data processing allows linking this information to an urban space, and also visualising the growth of the city at that time. The sources, related to the urban landscape development in that period, are of a different nature. The emerging necessity to build, enlarge, modify and join different buildings to boost the industrial activities, according to their fast development, is recorded by different official permissions delivered by the municipality and now stored in the Historical Archive of the Municipality of Turin. Those documents, which are reports and drawings, contain numerous data on the buildings themselves, including the block where the plot is located, the district, and the people involved such as the owner, the investor, and the engineer or architect designing the industrial building. All these collected data offer the possibility to firstly re-build the process of change of the urban landscape by using GIS and 3D modelling technologies thanks to the access to the drawings (2D plans, sections and elevations) that show the previous and the planned situation. Furthermore, they access information for different queries of the linked dataset that could be useful for different research and targets such as economics, biographical, architectural, or demographical. By superimposing a layer of the present city, the past meets to the present-industrial heritage, and people meet urban history.Keywords: Digital urban history, census, digitalisation, GIS, modelling, digital humanities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12332 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.
Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7321 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.
Keywords: Wetting, acoustic reflectometry, gigahertz, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306