Search results for: network data envelopment analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14887

Search results for: network data envelopment analysis

14287 Using the Combined Model of PROMETHEE and Fuzzy Analytic Network Process for Determining Question Weights in Scientific Exams through Data Mining Approach

Authors: Hassan Haleh, Amin Ghaffari, Parisa Farahpour

Abstract:

Need for an appropriate system of evaluating students- educational developments is a key problem to achieve the predefined educational goals. Intensity of the related papers in the last years; that tries to proof or disproof the necessity and adequacy of the students assessment; is the corroborator of this matter. Some of these studies tried to increase the precision of determining question weights in scientific examinations. But in all of them there has been an attempt to adjust the initial question weights while the accuracy and precision of those initial question weights are still under question. Thus In order to increase the precision of the assessment process of students- educational development, the present study tries to propose a new method for determining the initial question weights by considering the factors of questions like: difficulty, importance and complexity; and implementing a combined method of PROMETHEE and fuzzy analytic network process using a data mining approach to improve the model-s inputs. The result of the implemented case study proves the development of performance and precision of the proposed model.

Keywords: Assessing students, Analytic network process, Clustering, Data mining, Fuzzy sets, Multi-criteria decision making, and Preference function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
14286 Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions

Authors: Anita S. Gangal, P. K. Kalra, D. S. Chauhan

Abstract:

The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.

Keywords: Complex backpropagation algorithm, complex errorfunctions, complex valued neural network, split activation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
14285 The Visualizer for Real-Time Analysis of Internet Trends

Authors: Radek Malinský, Ivan Jelínek

Abstract:

The current web has become a modern encyclopedia, where people share their thoughts and ideas on various topics around them. This kind of encyclopedia is very useful for other people who are looking for answers to their questions. However, with the growing popularity of social networking and blogging and ever expanding network services, there has also been a growing diversity of technologies along with a different structure of individual web sites. It is therefore difficult to directly find a relevant answer for a common Internet user. This paper presents a web application for the real-time end-to-end analysis of selected Internet trends where the trend can be whatever the people post online. The application integrates fully configurable tools for data collection and analysis using selected webometric algorithms, and for its chronological visualization to user. It can be assumed that the application facilitates the users to evaluate the quality of various products that are mentioned online.

Keywords: Trend, visualizer, web analysis, web 2.0.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
14284 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting

Authors: R. Behmanesh, I. Rahimi

Abstract:

recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.

Keywords: RNN, DOE, regression, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
14283 Performance Evaluation of Routing Protocols For High Density Ad Hoc Networks based on Qos by GlomoSim Simulator

Authors: E. Ahvar, M. Fathy

Abstract:

Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR) , Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing(LAR1).The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.

Keywords: Ad hoc Network , Glomosim , routing protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
14282 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
14281 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images

Authors: I. Oloyede

Abstract:

The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.

Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
14280 Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range

Authors: Masahiro Kuzunishi, Tetsuya Furukawa, Ke Lu

Abstract:

Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range.

Keywords: Classification Hierarchies, Data Analysis, Multilabeled Data, Orders of Sets of Labels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
14279 HIV Modelling - Parallel Implementation Strategies

Authors: Dimitri Perrin, Heather J. Ruskin, Martin Crane

Abstract:

We report on the development of a model to understand why the range of experience with respect to HIV infection is so diverse, especially with respect to the latency period. To investigate this, an agent-based approach is used to extract highlevel behaviour which cannot be described analytically from the set of interaction rules at the cellular level. A network of independent matrices mimics the chain of lymph nodes. Dealing with massively multi-agent systems requires major computational effort. However, parallelisation methods are a natural consequence and advantage of the multi-agent approach and, using the MPI library, are here implemented, tested and optimized. Our current focus is on the various implementations of the data transfer across the network. Three communications strategies are proposed and tested, showing that the most efficient approach is communication based on the natural lymph-network connectivity.

Keywords: HIV, Immune modelling, MPI, Parallelisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
14278 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks

Authors: Ashanie Guanathillake, Kithsiri Samarasinghe

Abstract:

Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering  algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.

Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370
14277 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: Aggregate data, combined-level data, Individual patient data, meta analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
14276 Svision: Visual Identification of Scanning and Denial of Service Attacks

Authors: Iosif-Viorel Onut, Bin Zhu, Ali A. Ghorbani

Abstract:

We propose a novel graphical technique (SVision) for intrusion detection, which pictures the network as a community of hosts independently roaming in a 3D space defined by the set of services that they use. The aim of SVision is to graphically cluster the hosts into normal and abnormal ones, highlighting only the ones that are considered as a threat to the network. Our experimental results using DARPA 1999 and 2000 intrusion detection and evaluation datasets show the proposed technique as a good candidate for the detection of various threats of the network such as vertical and horizontal scanning, Denial of Service (DoS), and Distributed DoS (DDoS) attacks.

Keywords: Anomaly Visualization, Network Security, Intrusion Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
14275 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment

Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan

Abstract:

This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.

Keywords: Cognitive decline, functional connectivity, MCI, MMSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
14274 Application of Artificial Neural Network in Assessing Fill Slope Stability

Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung

Abstract:

This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.

Keywords: Landslide, limit analysis, ANN, soil properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1207
14273 Design of Local Interconnect Network Controller for Automotive Applications

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.

Keywords: Local interconnect network, controller, transceiver, processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
14272 Analysis on the Game-Playing Tendency of SNGs (Social Network Games) users by Gender

Authors: Jooyeon Yook, Wonjun Ko

Abstract:

As the Social network game(SNG) is rising dramatically worldwide, an interesting aspect has appeared in the demographic analysis. That is the ratio of the game users by gender. Although the ratio of male and female users in online game was 60:40% previously, the ratio of male and female users in SNG stood at 47:53% which shows that the ratio of female users is higher than that of male users. Here, it should be noted that 35% in those 53% female users are the first-time users of game. This fact suggests that women who were not interested in game previously has taken an interest in SNG. Notwithstanding this issue, there have been little studies on the female users of SNG although there are many studies that analyzed the tendency of female users- online game play. This study conducted the analyzed how the game-playing tendency of SNG gamers was manifested in the game by gender. For that, this study will identify the tendency of SNG users by gender based on the preceding studies that analyzed the online game users by gender. The subject of this study was confined to the farm and urban construction simulation games which were offered based on the mobile application platform. Regarding the methodology of study, the first focus group interview(FGI) was conducted with the male and female users who had played games on Social network service(SNS) until recently. Later, the second one-on-one in-depth interview was conducted to gain an insight into the psychological state of the subjects.

Keywords: Social network Game, Gender, Play inclination, Game psychology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
14271 An Elaborate Survey on Node Replication Attack in Static Wireless Sensor Networks

Authors: N. S. Usha, E. A. Mary Anita

Abstract:

Recent innovations in the field of technology led to the use of   wireless sensor networks in various applications, which consists of a number of small, very tiny, low-cost, non-tamper proof and resource constrained sensor nodes. These nodes are often distributed and deployed in an unattended environment, so as to collaborate with each other to share data or information. Amidst various applications, wireless sensor network finds a major role in monitoring battle field in military applications. As these non-tamperproof nodes are deployed in an unattended location, they are vulnerable to many security attacks. Amongst many security attacks, the node replication attack seems to be more threatening to the network users. Node Replication attack is caused by an attacker, who catches one true node, duplicates the first certification and cryptographic materials, makes at least one or more copies of the caught node and spots them at certain key positions in the system to screen or disturb the network operations. Preventing the occurrence of such node replication attacks in network is a challenging task. In this survey article, we provide the classification of detection schemes and also explore the various schemes proposed in each category. Also, we compare the various detection schemes against certain evaluation parameters and also its limitations. Finally, we provide some suggestions for carrying out future research work against such attacks.

Keywords: Clone node, data security, detection schemes, node replication attack, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808
14270 Efficient System for Speech Recognition using General Regression Neural Network

Authors: Abderrahmane Amrouche, Jean Michel Rouvaen

Abstract:

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.

Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
14269 Performance Comparison of AODV and Soft AODV Routing Protocol

Authors: Abhishek, Seema Devi, Jyoti Ohri

Abstract:

A mobile ad hoc network (MANET) represents a system of wireless mobile nodes that can self-organize freely and dynamically into arbitrary and temporary network topology. Unlike a wired network, wireless network interface has limited transmission range. Routing is the task of forwarding data packets from source to a given destination. Ad-hoc On Demand Distance Vector (AODV) routing protocol creates a path for a destination only when it required. This paper describes the implementation of AODV routing protocol using MATLAB-based Truetime simulator. In MANET's node movements are not fixed while they are random in nature. Hence intelligent techniques i.e. fuzzy and ANFIS are used to optimize the transmission range. In this paper, we compared the transmission range of AODV, fuzzy AODV and ANFIS AODV. For soft computing AODV, we have taken transmitted power and received threshold as input and transmission range as output. ANFIS gives better results as compared to fuzzy AODV.

Keywords: ANFIS, AODV, fuzzy, MANET, reactive routing protocol, routing protocol, Truetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1329
14268 Centralized Monitoring and Self-protected against Fiber Fault in FTTH Access Network

Authors: Mohammad Syuhaimi Ab-Rahman, Boonchuan Ng, Kasmiran Jumari

Abstract:

This paper presented a new approach for centralized monitoring and self-protected against fiber fault in fiber-to-the-home (FTTH) access network by using Smart Access Network Testing, Analyzing and Database (SANTAD). SANTAD will be installed with optical line terminal (OLT) at central office (CO) for in-service transmission surveillance and fiber fault localization within FTTH with point-to-multipoint (P2MP) configuration downwardly from CO towards customer residential locations based on the graphical user interface (GUI) processing capabilities of MATLAB software. SANTAD is able to detect any fiber fault as well as identify the failure location in the network system. SANTAD enable the status of each optical network unit (ONU) connected line is displayed onto one screen with capability to configure the attenuation and detect the failure simultaneously. The analysis results and information will be delivered to the field engineer for promptly actions, meanwhile the failure line will be diverted to protection line to ensure the traffic flow continuously. This approach has a bright prospect to improve the survivability and reliability as well as increase the efficiency and monitoring capabilities in FTTH.

Keywords: Fiber fault, FTTH, SANTAD, transmission surveillance, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
14267 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait

Authors: Ali A. Hammadi

Abstract:

In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.

Keywords: Passive optical networks, fiber to the premises, access network, OTDR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
14266 A New Scheme for Improving the Quality of Service in Heterogeneous Wireless Network for Data Stream Sending

Authors: Ebadollah Zohrevandi, Rasoul Roustaei, Omid Moradtalab

Abstract:

In this paper, we first consider the quality of service problems in heterogeneous wireless networks for sending the video data, which their problem of being real-time is pronounced. At last, we present a method for ensuring the end-to-end quality of service at application layer level for adaptable sending of the video data at heterogeneous wireless networks. To do this, mechanism in different layers has been used. We have used the stop mechanism, the adaptation mechanism and the graceful degrade at the application layer, the multi-level congestion feedback mechanism in the network layer and connection cutting off decision mechanism in the link layer. At the end, the presented method and the achieved improvement is simulated and presented in the NS-2 software.

Keywords: Congestion, Handoff, Heterogeneous wireless networks, Adaptation mechanism, Stop mechanism, Graceful degrade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
14265 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: Social Network, link prediction, granular computing, Type-2 fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
14264 Spatial Query Localization Method in Limited Reference Point Environment

Authors: Victor Krebss

Abstract:

Task of object localization is one of the major challenges in creating intelligent transportation. Unfortunately, in densely built-up urban areas, localization based on GPS only produces a large error, or simply becomes impossible. New opportunities arise for the localization due to the rapidly emerging concept of a wireless ad-hoc network. Such network, allows estimating potential distance between these objects measuring received signal level and construct a graph of distances in which nodes are the localization objects, and edges - estimates of the distances between pairs of nodes. Due to the known coordinates of individual nodes (anchors), it is possible to determine the location of all (or part) of the remaining nodes of the graph. Moreover, road map, available in digital format can provide localization routines with valuable additional information to narrow node location search. However, despite abundance of well-known algorithms for solving the problem of localization and significant research efforts, there are still many issues that currently are addressed only partially. In this paper, we propose localization approach based on the graph mapped distances on the digital road map data basis. In fact, problem is reduced to distance graph embedding into the graph representing area geo location data. It makes possible to localize objects, in some cases even if only one reference point is available. We propose simple embedding algorithm and sample implementation as spatial queries over sensor network data stored in spatial database, allowing employing effectively spatial indexing, optimized spatial search routines and geometry functions.

Keywords: Intelligent Transportation System, Sensor Network, Localization, Spatial Query, GIS, Graph Embedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
14263 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.

As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
14262 A Study of Behavioral Phenomena Using ANN

Authors: Yudhajit Datta

Abstract:

Behavioral aspects of experience such as will power are rarely subjected to quantitative study owing to the numerous complexities involved. Will is a phenomenon that has puzzled humanity for a long time. It is a belief that will power of an individual affects the success achieved by them in life. It is also thought that a person endowed with great will power can overcome even the most crippling setbacks in life while a person with a weak will cannot make the most of life even the greatest assets. This study is an attempt to subject the phenomena of will to the test of an artificial neural network through a computational model. The claim being tested is that will power of an individual largely determines success achieved in life. It is proposed that data pertaining to success of individuals be obtained from an experiment and the phenomenon of will be incorporated into the model, through data generated recursively using a relation between will and success characteristic to the model. An artificial neural network trained using part of the data, could subsequently be used to make predictions regarding data points in the rest of the model. The procedure would be tried for different models and the model where the networks predictions are found to be in greatest agreement with the data would be selected; and used for studying the relation between success and will.

Keywords: Will Power, Success, ANN, Time Series Prediction, Sliding Window, Computational Model, Behavioral Phenomena.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
14261 Synthesis of Wavelet Filters using Wavelet Neural Networks

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

An application of Beta wavelet networks to synthesize pass-high and pass-low wavelet filters is investigated in this work. A Beta wavelet network is constructed using a parametric function called Beta function in order to resolve some nonlinear approximation problem. We combine the filter design theory with wavelet network approximation to synthesize perfect filter reconstruction. The order filter is given by the number of neurons in the hidden layer of the neural network. In this paper we use only the first derivative of Beta function to illustrate the proposed design procedures and exhibit its performance.

Keywords: Beta wavelets, Wavenet, multiresolution analysis, perfect filter reconstruction, salient point detect, repeatability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
14260 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network

Authors: Abdulaziz Alsadhan, Naveed Khan

Abstract:

In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.

Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765
14259 A Metric-Set and Model Suggestion for Better Software Project Cost Estimation

Authors: Murat Ayyıldız, Oya Kalıpsız, Sırma Yavuz

Abstract:

Software project effort estimation is frequently seen as complex and expensive for individual software engineers. Software production is in a crisis. It suffers from excessive costs. Software production is often out of control. It has been suggested that software production is out of control because we do not measure. You cannot control what you cannot measure. During last decade, a number of researches on cost estimation have been conducted. The metric-set selection has a vital role in software cost estimation studies; its importance has been ignored especially in neural network based studies. In this study we have explored the reasons of those disappointing results and implemented different neural network models using augmented new metrics. The results obtained are compared with previous studies using traditional metrics. To be able to make comparisons, two types of data have been used. The first part of the data is taken from the Constructive Cost Model (COCOMO'81) which is commonly used in previous studies and the second part is collected according to new metrics in a leading international company in Turkey. The accuracy of the selected metrics and the data samples are verified using statistical techniques. The model presented here is based on Multi-Layer Perceptron (MLP). Another difficulty associated with the cost estimation studies is the fact that the data collection requires time and care. To make a more thorough use of the samples collected, k-fold, cross validation method is also implemented. It is concluded that, as long as an accurate and quantifiable set of metrics are defined and measured correctly, neural networks can be applied in software cost estimation studies with success

Keywords: Software Metrics, Software Cost Estimation, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
14258 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation

Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro

Abstract:

More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.

Keywords: Utility-scale PV systems, reactive power control, solar irradiance, voltage fluctuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253