Search results for: Pattern Recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1537

Search results for: Pattern Recognition

937 Development of a Computer Vision System for the Blind and Visually Impaired Person

Authors: Roselyn A. Maaño

Abstract:

Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may results from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.

Keywords: Algorithms, Blind, Computer Vision, Embedded Systems, Image Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3610
936 A Novel Neighborhood Defined Feature Selection on Phase Congruency Images for Recognition of Faces with Extreme Variations

Authors: Satyanadh Gundimada, Vijayan K Asari

Abstract:

A novel feature selection strategy to improve the recognition accuracy on the faces that are affected due to nonuniform illumination, partial occlusions and varying expressions is proposed in this paper. This technique is applicable especially in scenarios where the possibility of obtaining a reliable intra-class probability distribution is minimal due to fewer numbers of training samples. Phase congruency features in an image are defined as the points where the Fourier components of that image are maximally inphase. These features are invariant to brightness and contrast of the image under consideration. This property allows to achieve the goal of lighting invariant face recognition. Phase congruency maps of the training samples are generated and a novel modular feature selection strategy is implemented. Smaller sub regions from a predefined neighborhood within the phase congruency images of the training samples are merged to obtain a large set of features. These features are arranged in the order of increasing distance between the sub regions involved in merging. The assumption behind the proposed implementation of the region merging and arrangement strategy is that, local dependencies among the pixels are more important than global dependencies. The obtained feature sets are then arranged in the decreasing order of discriminating capability using a criterion function, which is the ratio of the between class variance to the within class variance of the sample set, in the PCA domain. The results indicate high improvement in the classification performance compared to baseline algorithms.

Keywords: Discriminant analysis, intra-class probability distribution, principal component analysis, phase congruency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
935 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247
934 A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Robert Niese, Bernd Michaelis

Abstract:

Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.

Keywords: Computer Vision and Image Analysis, Object Tracking, Gesture Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
933 Towards a Complete Automation Feature Recognition System for Sheet Metal Manufacturing

Authors: Bahaa Eltahawy, Mikko Ylihärsilä, Reino Virrankoski, Esko Petäjä

Abstract:

Sheet metal processing is automated, but the step from product models to the production machine control still requires human intervention. This may cause time consuming bottlenecks in the production process and increase the risk of human errors. In this paper we present a system, which automatically recognizes features from the CAD-model of the sheet metal product. By using these features, the system produces a complete model of the particular sheet metal product. Then the model is used as an input for the sheet metal processing machine. Currently the system is implemented, capable to recognize more than 11 of the most common sheet metal structural features, and the procedure is fully automated. This provides remarkable savings in the production time, and protects against the human errors. This paper presents the developed system architecture, applied algorithms and system software implementation and testing.

Keywords: Feature recognition, automation, sheet metal manufacturing, CAM, CAD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1150
932 The Content Based Objective Metrics for Video Quality Evaluation

Authors: Michal Mardiak, Jaroslav Polec

Abstract:

In this paper we proposed comparison of four content based objective metrics with results of subjective tests from 80 video sequences. We also include two objective metrics VQM and SSIM to our comparison to serve as “reference” objective metrics because their pros and cons have already been published. Each of the video sequence was preprocessed by the region recognition algorithm and then the particular objective video quality metric were calculated i.e. mutual information, angular distance, moment of angle and normalized cross-correlation measure. The Pearson coefficient was calculated to express metrics relationship to accuracy of the model and the Spearman rank order correlation coefficient to represent the metrics relationship to monotonicity. The results show that model with the mutual information as objective metric provides best result and it is suitable for evaluating quality of video sequences.

Keywords: Objective quality metrics, mutual information, region recognition, content based metrics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
931 The Diet Adherence in Cardiovascular Disease Risk Factors Patients in the North of Iran Based on the Mediterranean Diet Adherence

Authors: Marjan Mahdavi-Roshan, Arsalan Salari, Mahboobeh Gholipour, Moona Naghshbandi

Abstract:

Background and objectives: Before any nutritional intervention, it is necessary to have the prospect of eating habits of people with cardiovascular risk factors. In this study, we assessed the adherence of healthy diet based on Mediterranean dietary pattern and related factors in adults in the north of Iran. Methods: This study was conducted on 550 men and women with cardiovascular risk factors that referred to Heshmat hospital in Rasht, northern Iran. Information was collected by interview and reading medical history and measuring anthropometric indexes. The Mediterranean Diet Adherence Screener was used for assessing dietary adherence, this screener was modified according to religious beliefs and culture of Iran. Results: The mean age of participants was 58±0.38 years. The mean of body mass index was 27±0.01 kg/m2, and the mean of waist circumference was 98±0.2 cm. The mean of dietary adherence was 5.76±0.07. 45% of participants had low adherence, and just 4% had suitable adherence. The mean of dietary adherence in men was significantly higher than women (p=0. 07). Participants in rural area and high educational participants insignificantly had an unsuitable dietary Adherence. There was no significant association between some cardiovascular disease risk factors and dietary adherence. Conclusion: Education to different group about dietary intake correction and using a Mediterranean dietary pattern that is similar to dietary intake in the north of Iran, for controlling cardiovascular disease is necessary.

Keywords: Dietary adherence, Mediterranean dietary pattern, cardiovascular disease, north of Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
930 Preliminary Investigation on Combustion Characteristics of Rice Husk in FBC

Authors: W. Permchart, S. Tanatvanit

Abstract:

The experimental results on combustion of rice husk in a conical fluidized bed combustor (referred to as the conical FBC) using silica sand as the bed material are presented in this paper. The effects of excess combustion air and combustor loading as well as the sand bed height on the combustion pattern in FBC were investigated. Temperatures and gas concentrations (CO and NO) along over the combustor height as well as in the flue gas downstream from the ash collecting cyclone were measured. The results showed that the axial temperature profiles in FBC were explicitly affected by the combustor loading whereas the excess air and bed height were found to have minor influences on the temperature pattern. Meanwhile, the combustor loading and the excess air significantly affected the axial CO and NO concentration profiles; however, these profiles were almost independent of the bed height. The combustion and thermal efficiencies for this FBC were quantified for different operating conditions.

Keywords: Temperature, Combustor loading, Excess air, Bed height.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
929 Scots Pine Needles as Bioindicators in Determining the Aerial Distribution Pattern of Sulphur Emissions around Industrial Plants

Authors: Risto Pöykiö, Jari Hietala, Hannu Nurmesniemi

Abstract:

In this study, the Scots pine (Pinus sylvestris L.) C needles (i.e. the current-year-needles) were used as bioindicators in determining the aerial distribution pattern of sulphur emissions around industrial point sources at Kemi, Northern Finland. The average sulphur concentration in the C needles was 897 mg/kg (d.w.), with a standard deviation of 118 mg/kg (d.w.) and range 740 – 1350 mg/kg (d.w.). According to results in this study, Scots pine needles (Pinus sylvestris L.) appear to be an ideal bioindicators for identifying atmospheric sulphur pollution derived from industrial plants and can complement the information provided by plant mapping studies around industrial plants.

Keywords: Emission, Sulphur, Scots Pine, Pinus sylvestris

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
928 Customer Knowledge and Service Development, the Web 2.0 Role in Co-production

Authors: Roberto Boselli, Mirko Cesarini, Mario Mezzanzanica

Abstract:

The paper is concerned with relationships between SSME and ICTs and focuses on the role of Web 2.0 tools in the service development process. The research presented aims at exploring how collaborative technologies can support and improve service processes, highlighting customer centrality and value coproduction. The core idea of the paper is the centrality of user participation and the collaborative technologies as enabling factors; Wikipedia is analyzed as an example. The result of such analysis is the identification and description of a pattern characterising specific services in which users collaborate by means of web tools with value co-producers during the service process. The pattern of collaborative co-production concerning several categories of services including knowledge based services is then discussed.

Keywords: Service Interaction Patterns, Services Science, Web2.0 tools, Service Development Process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
927 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: Public emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
926 Monitoring CO2 and H2S Emission in Live Austrian and UK Concrete Sewer Pipes

Authors: Anna Romanova, Morteza A. Alani

Abstract:

Corrosion of concrete sewer pipes induced by sulfuric acid is an acknowledged problem and a ticking time-bomb to sewer operators. Whilst the chemical reaction of the corrosion process is well-understood, the indirect roles of other parameters in the corrosion process which are found in sewer environment are not highly reflected on. This paper reports on a field studies undertaken in Austria and United Kingdom, where the parameters of temperature, pH, H2S and CO2 were monitored over a period of time. The study establishes that (i) effluent temperature and pH have similar daily pattern and peak times, when examined in minutes scale; (ii) H2S and CO2 have an identical hourly pattern; (iii) H2S instant or shifted relation to effluent temperature is governed by the root mean square value of CO2.

Keywords: Concrete corrosion, carbon dioxide, hydrogen sulphide, sewer pipe, sulfuric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
925 Signature Recognition and Verification using Hybrid Features and Clustered Artificial Neural Network(ANN)s

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma, Hirendra Das

Abstract:

Signature represents an individual characteristic of a person which can be used for his / her validation. For such application proper modeling is essential. Here we propose an offline signature recognition and verification scheme which is based on extraction of several features including one hybrid set from the input signature and compare them with the already trained forms. Feature points are classified using statistical parameters like mean and variance. The scanned signature is normalized in slant using a very simple algorithm with an intention to make the system robust which is found to be very helpful. The slant correction is further aided by the use of an Artificial Neural Network (ANN). The suggested scheme discriminates between originals and forged signatures from simple and random forgeries. The primary objective is to reduce the two crucial parameters-False Acceptance Rate (FAR) and False Rejection Rate (FRR) with lesser training time with an intension to make the system dynamic using a cluster of ANNs forming a multiple classifier system.

Keywords: offline, algorithm, FAR, FRR, ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
924 Aliveness Detection of Fingerprints using Multiple Static Features

Authors: Heeseung Choi, Raechoong Kang, Kyungtaek Choi, Jaihie Kim

Abstract:

Fake finger submission attack is a major problem in fingerprint recognition systems. In this paper, we introduce an aliveness detection method based on multiple static features, which derived from a single fingerprint image. The static features are comprised of individual pore spacing, residual noise and several first order statistics. Specifically, correlation filter is adopted to address individual pore spacing. The multiple static features are useful to reflect the physiological and statistical characteristics of live and fake fingerprint. The classification can be made by calculating the liveness scores from each feature and fusing the scores through a classifier. In our dataset, we compare nine classifiers and the best classification rate at 85% is attained by using a Reduced Multivariate Polynomial classifier. Our approach is faster and more convenient for aliveness check for field applications.

Keywords: Aliveness detection, Fingerprint recognition, individual pore spacing, multiple static features, residual noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
923 Enhancing Human-Computer Interaction and Feedback in Touchscreen Icon

Authors: Hsinfu Huang Li-Hao Chen

Abstract:

In order to enhance the usability of the human computer interface (HCI) on the touchscreen, this study explored the optimal tactile depth and effect of visual cues on the user-s tendency to touch the touchscreen icons. The experimental program was designed on the touchscreen in this study. Results indicated that the ratio of the icon size to the tactile depth was 1:0.106. There were significant effects of experienced users and novices on the tactile feedback depth (p < 0.01). In addition, the results proved that the visual cues provided a feedback that helped to guide the user-s touch icons accurately and increased the capture efficiency for a tactile recognition field. This tactile recognition field was 18.6 mm in length. There was consistency between the experienced users and novices under the visual cue effects. Finally, the study developed an applied design with touch feedback for touchscreen icons.

Keywords: HCI, Touchscreen icon, Touch feedback, Optimaltactile depth, Visual cues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
922 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG

Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil

Abstract:

A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.

Keywords: Brain activity, dense EEG, evoked responses, spatiotemporal analysis, SVM, perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
921 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network

Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan

Abstract:

The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.

Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3011
920 Evaluation of Robust Feature Descriptors for Texture Classification

Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo

Abstract:

Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.

Keywords: Texture classification, texture descriptor, SIFT, SURF, ORB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
919 Sound Instance: Art, Perception and Composition through Soundscapes

Authors: Ricardo Mestre

Abstract:

The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. With the objective for a greater recognition of sound reality, through the selection and differentiation of sounds, the soundscape studies focus on the contribution for a better tuning of the world and to the balance and well-being of humanity. Sound environment, produced and created in various ways, can provide various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference. Alongside volunteers we were able to create six representations of sound instances, based on the individual perception of his/her life, focusing on the present, past and future. With this investigation it was possible to determine that sound instance has a tool for self-recognition, considering the statements of opinion about the experience from the volunteers, reflecting about the three time lines, based on memories, thoughts and wishes.

Keywords: Sound instance, soundscape, sound art, self-recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 578
918 Distributed Splay Suffix Arrays: A New Structure for Distributed String Search

Authors: Tu Kun, Gu Nai-jie, Bi Kun, Liu Gang, Dong Wan-li

Abstract:

As a structure for processing string problem, suffix array is certainly widely-known and extensively-studied. But if the string access pattern follows the “90/10" rule, suffix array can not take advantage of the fact that we often find something that we have just found. Although the splay tree is an efficient data structure for small documents when the access pattern follows the “90/10" rule, it requires many structures and an excessive amount of pointer manipulations for efficiently processing and searching large documents. In this paper, we propose a new and conceptually powerful data structure, called splay suffix arrays (SSA), for string search. This data structure combines the features of splay tree and suffix arrays into a new approach which is suitable to implementation on both conventional and clustered computers.

Keywords: suffix arrays, splay tree, string search, distributedalgorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
917 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
916 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion

Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto

Abstract:

In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.

Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
915 Study of the Effect of Project Management on Manufacturing and Production Projects

Authors: S.B. Ahmadi, Z. Moradpour, Gh. Liaghat

Abstract:

In this article the accumulated results out of the effects and length of the manufacture and production projects in the university and research standard have been settled with the usefulness definition of the process of project management for the accessibility to the proportional pattern in the “time and action" stages. Studies show that many problems confronted by the researchers in these projects are connected to the non-profiting of: 1) autonomous timing for gathering the educational theme, 2) autonomous timing for planning and pattern, presenting before the construction, and 3) autonomous timing for manufacture and sample presentation from the output. The result of this study indicates the division of every manufacture and production projects into three smaller autonomous projects from its kind, budget and autonomous expenditure, shape and order of the stages for the management of these kinds of projects. In this case study real result are compared with theoretical results.

Keywords: Project management, Manufacturing, production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
914 The Key Role of the Steroidal Hormones in the Pattern Distribution of the Epiphyseal Structure in Rabbit

Authors: Fatahian Dehkordi R.F, Parchami A.

Abstract:

Steroidal hormones with the efficient changes on the epiphyseal growth plate may influence tissue structure properties. Presents paper to investigate the effects of gonadectomy in the pattern distribution of the epiphyseal structure. Fifteen adult female New Zealand white rabbits were separated into three groups. One group was intact and others groups were selected for surgical operation. From these two groups, one group carried out steroidal administration. The results obtained showed that there is no statistically difference in the mean diameter of the growth plate cells between all three groups. The maximum value of the cartilage cells were allocated to the gonadectomized group and the minimum number were observed in Hormonal induced group significantly. Growth plate height was significantly greater in gonadectomized group than in two other groups.

Keywords: Steroidal hormones, Ovariectomy, Rabbit, Epiphyseal structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280
913 The Incidence of Obesity among Adult Women in Pekanbaru City, Indonesia, Related to High Fat Consumption, Stress Level, and Physical Activity

Authors: Yudia Mailani Putri, Martalena Purba, B. J. Istiti Kandarina

Abstract:

Background: Obesity has been recognized as a global health problem. Individuals classified as overweight and obese are increasing at an alarming rate. This condition is associated with psychological and physiological problems. as a person reaches adulthood, somatic growth ceases. At this stage, the human body has developed fully, to a stable state. As the capital of Riau Province in Indonesia, Pekanbaru is dominated by Malay ethnic population habitually consuming cholesterol-rich fatty foods as a daily menu, a trigger to the onset of obesity resulting in high prevalence of degenerative diseases. Research objectives: The aim of this study is elaborating the relationship between high-fat consumption pattern, stress level, physical activity and the incidence of obesity in adult women in Pekanbaru city. Research Methods: Among the combined research methods applied in this study, the first stage is quantitative observational, analytical cross-sectional research design with adult women aged 20-40 living in Pekanbaru city. The sample consists of 200 women with BMI≥25. Sample data is processed with univariate, bivariate (correlation and simple linear regression) and multivariate (multiple linear regression) analysis. The second phase is qualitative descriptive study purposive sampling by in-depth interviews. six participants withdrew from the study. Results: According to the results of the bivariate analysis, there are relationships between the incidence of obesity and the pattern of high fat foods consumption (energy intake (p≤0.000; r = 0.536), protein intake (p≤0.000; r=0.307), fat intake (p≤0.000; r=0.416), carbohydrate intake (p≤0.000; r=0.430), frequency of fatty food consumption (p≤0.000; r=0.506) and frequency of viscera foods consumption (p≤0.000; r=0.535). There is a relationship between physical activity and incidence of obesity (p≤0.000; r=-0.631). However, there is no relationship between the level of stress (p=0.741; r=0.019-) and the incidence of obesity. Physical activity is a predominant factor in the incidence of obesity in adult women in Pekanbaru city. Conclusion: There are relationships between high-fat food consumption pattern, physical activity and the incidence of obesity in Pekanbaru city whereas physical activity is a predominant factor in the occurrence of obesity, supported by the unchangeable pattern of high-fat foods consumption.

Keywords: Obesity, adult, high in fat, stress, physical activity, consumption pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 820
912 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
911 Architecture of Speech-based Registration System

Authors: Mayank Kumar, D B Mahesh Kumar, Ashwin S Kumar, N K Srinath

Abstract:

In this era of technology, fueled by the pervasive usage of the internet, security is a prime concern. The number of new attacks by the so-called “bots", which are automated programs, is increasing at an alarming rate. They are most likely to attack online registration systems. Technology, called “CAPTCHA" (Completely Automated Public Turing test to tell Computers and Humans Apart) do exist, which can differentiate between automated programs and humans and prevent replay attacks. Traditionally CAPTCHA-s have been implemented with the challenge involved in recognizing textual images and reproducing the same. We propose an approach where the visual challenge has to be read out from which randomly selected keywords are used to verify the correctness of spoken text and in turn detect the presence of human. This is supplemented with a speaker recognition system which can identify the speaker also. Thus, this framework fulfills both the objectives – it can determine whether the user is a human or not and if it is a human, it can verify its identity.

Keywords: CAPTCHA, automatic speech recognition, keyword spotting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
910 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels

Authors: J. P. Dubois, O. M. Abdul-Latif

Abstract:

Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.

Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
909 Real-time Laser Monitoring based on Pipe Detective Operation

Authors: Mongkorn Klingajay, Tawatchai Jitson

Abstract:

The pipe inspection operation is the difficult detective performance. Almost applications are mainly relies on a manual recognition of defective areas that have carried out detection by an engineer. Therefore, an automation process task becomes a necessary in order to avoid the cost incurred in such a manual process. An automated monitoring method to obtain a complete picture of the sewer condition is proposed in this work. The focus of the research is the automated identification and classification of discontinuities in the internal surface of the pipe. The methodology consists of several processing stages including image segmentation into the potential defect regions and geometrical characteristic features. Automatic recognition and classification of pipe defects are carried out by means of using an artificial neural network technique (ANN) based on Radial Basic Function (RBF). Experiments in a realistic environment have been conducted and results are presented.

Keywords: Artificial neural network, Radial basic function, Curve fitting, CCTV, Image segmentation, Data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
908 Weed Classification using Histogram Maxima with Threshold for Selective Herbicide Applications

Authors: Irshad Ahmad, Abdul Muhamin Naeem, Muhammad Islam, Shahid Nawaz

Abstract:

Information on weed distribution within the field is necessary to implement spatially variable herbicide application. Since hand labor is costly, an automated weed control system could be feasible. This paper deals with the development of an algorithm for real time specific weed recognition system based on Histogram Maxima with threshold of an image that is used for the weed classification. This algorithm is specifically developed to classify images into broad and narrow class for real-time selective herbicide application. The developed system has been tested on weeds in the lab, which have shown that the system to be very effectiveness in weed identification. Further the results show a very reliable performance on images of weeds taken under varying field conditions. The analysis of the results shows over 95 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Image processing, real-time recognition, weeddetection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163