Search results for: fuzzy number
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4415

Search results for: fuzzy number

3845 Development of an Automated Quality Management System to Control District Heating

Authors: Nigina Toktasynova, Sholpan Sagyndykova, Zhanat Kenzhebayeva, Maksat Kalimoldayev, Mariya Ishimova, Irbulat Utepbergenov

Abstract:

To solve these problems, we investigated the management system of heating enterprise, including strategic planning based on the balanced scorecard (BSC), quality management in accordance with the standards of the Quality Management System (QMS) ISO 9001 and analysis of the system based on expert judgment using fuzzy inference. To carry out our work we used the theory of fuzzy sets, the QMS in accordance with ISO 9001, BSC, method of construction of business processes according to the notation IDEF0, theory of modeling using Matlab software simulation tools and graphical programming LabVIEW. The results of the work are as follows: We determined possibilities of improving the management of heat-supply plant-based on QMS; after the justification and adaptation of software tool it has been used to automate a series of functions for the management and reduction of resources and for the maintenance of the system up to date; an application for the analysis of the QMS based on fuzzy inference has been created with novel organization of communication software with the application enabling the analysis of relevant data of enterprise management system. 

Keywords: Balanced scorecard, heat supply, quality management system, the theory of fuzzy sets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
3844 Dempster-Shafer's Approach for Autonomous Virtual Agent Navigation in Virtual Environments

Authors: Jafreezal Jaafar, Eric McKenzie

Abstract:

This paper presents a solution for the behavioural animation of autonomous virtual agent navigation in virtual environments. We focus on using Dempster-Shafer-s Theory of Evidence in developing visual sensor for virtual agent. The role of the visual sensor is to capture the information about the virtual environment or identifie which part of an obstacle can be seen from the position of the virtual agent. This information is require for vitual agent to coordinate navigation in virtual environment. The virual agent uses fuzzy controller as a navigation system and Fuzzy α - level for the action selection method. The result clearly demonstrates the path produced is reasonably smooth even though there is some sharp turn and also still not diverted too far from the potential shortest path. This had indicated the benefit of our method, where more reliable and accurate paths produced during navigation task.

Keywords: Agent, navigation, Dempster Shafer, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
3843 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory

Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi

Abstract:

One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.

Keywords: Rough Set Theory, Attribute Reduction, Fuzzy Logic, Memetic Algorithms, Record to Record Algorithm, Great Deluge Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
3842 Transient Stability Assessment Using Fuzzy SVM and Modified Preventive Control

Authors: B. Dora Arul Selvi, .N. Kamaraj

Abstract:

Transient Stability is an important issue in power systems planning, operation and extension. The objective of transient stability analysis problem is not satisfied with mere transient instability detection or evaluation and it is most important to complement it by defining fast and efficient control measures in order to ensure system security. This paper presents a new Fuzzy Support Vector Machines (FSVM) to investigate the stability status of power systems and a modified generation rescheduling scheme to bring back the identified unstable cases to a more economical and stable operating point. FSVM improves the traditional SVM (Support Vector Machines) by adding fuzzy membership to each training sample to indicate the degree of membership of this sample to different classes. The preventive control based on economic generator rescheduling avoids the instability of the power systems with minimum change in operating cost under disturbed conditions. Numerical results on the New England 39 bus test system show the effectiveness of the proposed method.

Keywords: Fuzzy Support Vector Machine (FSVM), Incremental Cost, Preventive Control, Transient stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
3841 Contractor Selection in Saudi Arabia

Authors: M. A. Bajaber, M. A. Taha

Abstract:

Contractor selection in Saudi Arabia is very important due to the large construction boom and the contractor role to get over construction risks. The need for investigating contractor selection is due to the following reasons; large number of defaulted or failed projects (18%), large number of disputes attributed to contractor during the project execution stage (almost twofold), the extension of the General Agreement on Tariffs and Trade (GATT) into construction industry, and finally the few number of researches. The selection strategy is not perfect and considered as the reason behind irresponsible contractors. As a response, this research was conducted to review the contractor selection strategies as an integral part of a long advanced research to develop a good selection model. Many techniques can be used to form a selection strategy; multi criteria for optimizing decision, prequalification to discover contractor-s responsibility, bidding process for competition, third party guarantee to enhance the selection, and fuzzy techniques for ambiguities and incomplete information.

Keywords: Bidding, Construction industry, Contractor selection, Saudi Arabia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141
3840 Stock Price Forecast by Using Neuro-Fuzzy Inference System

Authors: Ebrahim Abbasi, Amir Abouec

Abstract:

In this research, the researchers have managed to design a model to investigate the current trend of stock price of the "IRAN KHODRO corporation" at Tehran Stock Exchange by utilizing an Adaptive Neuro - Fuzzy Inference system. For the Longterm Period, a Neuro-Fuzzy with two Triangular membership functions and four independent Variables including trade volume, Dividend Per Share (DPS), Price to Earning Ratio (P/E), and also closing Price and Stock Price fluctuation as an dependent variable are selected as an optimal model. For the short-term Period, a neureo – fuzzy model with two triangular membership functions for the first quarter of a year, two trapezoidal membership functions for the Second quarter of a year, two Gaussian combination membership functions for the third quarter of a year and two trapezoidal membership functions for the fourth quarter of a year were selected as an optimal model for the stock price forecasting. In addition, three independent variables including trade volume, price to earning ratio, closing Stock Price and a dependent variable of stock price fluctuation were selected as an optimal model. The findings of the research demonstrate that the trend of stock price could be forecasted with the lower level of error.

Keywords: Stock Price forecast, membership functions, Adaptive Neuro-Fuzzy Inference System, trade volume, P/E, DPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
3839 Order Partitioning in Hybrid MTS/MTO Contexts using Fuzzy ANP

Authors: H. Rafiei, M. Rabbani

Abstract:

A novel concept to balance and tradeoff between make-to-stock and make-to-order has been hybrid MTS/MTO production context. One of the most important decisions involved in the hybrid MTS/MTO environment is determining whether a product is manufactured to stock, to order, or hybrid MTS/MTO strategy. In this paper, a model based on analytic network process is developed to tackle the addressed decision. Since the regarded decision deals with the uncertainty and ambiguity of data as well as experts- and managers- linguistic judgments, the proposed model is equipped with fuzzy sets theory. An important attribute of the model is its generality due to diverse decision factors which are elicited from the literature and developed by the authors. Finally, the model is validated by applying to a real case study to reveal how the proposed model can actually be implemented.

Keywords: Fuzzy analytic network process, Hybrid make-tostock/ make-to-order, Order partitioning, Production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2176
3838 Fuzzy C-Means Clustering for Biomedical Documents Using Ontology Based Indexing and Semantic Annotation

Authors: S. Logeswari, K. Premalatha

Abstract:

Search is the most obvious application of information retrieval. The variety of widely obtainable biomedical data is enormous and is expanding fast. This expansion makes the existing techniques are not enough to extract the most interesting patterns from the collection as per the user requirement. Recent researches are concentrating more on semantic based searching than the traditional term based searches. Algorithms for semantic searches are implemented based on the relations exist between the words of the documents. Ontologies are used as domain knowledge for identifying the semantic relations as well as to structure the data for effective information retrieval. Annotation of data with concepts of ontology is one of the wide-ranging practices for clustering the documents. In this paper, indexing based on concept and annotation are proposed for clustering the biomedical documents. Fuzzy c-means (FCM) clustering algorithm is used to cluster the documents. The performances of the proposed methods are analyzed with traditional term based clustering for PubMed articles in five different diseases communities. The experimental results show that the proposed methods outperform the term based fuzzy clustering.

Keywords: MeSH Ontology, Concept Indexing, Annotation, semantic relations, Fuzzy c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
3837 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: Classification, fuzzy, inspection system, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
3836 Design of Membership Ranges for Fuzzy Logic Control of Refrigeration Cycle Driven by a Variable Speed Compressor

Authors: Changho Han, Jaemin Lee, Li Hua, Seokkwon Jeong

Abstract:

Design of membership function ranges in fuzzy logic control (FLC) is presented for robust control of a variable speed refrigeration system (VSRS). The criterion values of the membership function ranges can be carried out from the static experimental data, and two different values are offered to compare control performance. Some simulations and real experiments for the VSRS were conducted to verify the validity of the designed membership functions. The experimental results showed good agreement with the simulation results, and the error change rate and its sampling time strongly affected the control performance at transient state of the VSRS.

Keywords: Variable speed refrigeration system, Fuzzy logic control, membership function range, control performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963
3835 Fuzzy C-Means Clustering Algorithm for Voltage Stability in Large Power Systems

Authors: Mohamad R. Khaldi, Christine S. Khoury, Guy M. Naim

Abstract:

The steady-state operation of maintaining voltage stability is done by switching various controllers scattered all over the power network. When a contingency occurs, whether forced or unforced, the dispatcher is to alleviate the problem in a minimum time, cost, and effort. Persistent problem may lead to blackout. The dispatcher is to have the appropriate switching of controllers in terms of type, location, and size to remove the contingency and maintain voltage stability. Wrong switching may worsen the problem and that may lead to blackout. This work proposed and used a Fuzzy CMeans Clustering (FCMC) to assist the dispatcher in the decision making. The FCMC is used in the static voltage stability to map instantaneously a contingency to a set of controllers where the types, locations, and amount of switching are induced.

Keywords: Fuzzy logic, Power system control, Reactive power control, Voltage control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
3834 Designing a Fuzzy Logic Controller to Enhance Directional Stability of Vehicles under Difficult Maneuvers

Authors: Mehrdad N. Khajavi , Golamhassan Paygane, Ali Hakima

Abstract:

Vehicle which are turning or maneuvering at high speeds are susceptible to sliding and subsequently deviate from desired path. In this paper the dynamics governing the Yaw/Roll behavior of a vehicle has been simulated. Two different simulations have been used one for the real vehicle, for which a fuzzy controller is designed to increase its directional stability property. The other simulation is for a hypothetical vehicle with much higher tire cornering stiffness which is capable of developing the required lateral forces at the tire-ground patch contact to attain the desired lateral acceleration for the vehicle to follow the desired path without slippage. This simulation model is our reference model. The logic for keeping the vehicle on the desired track in the cornering or maneuvering state is to have some braking forces on the inner or outer tires based on the direction of vehicle deviation from the desired path. The inputs to our vehicle simulation model is steer angle δ and vehicle velocity V , and the outputs can be any kinematical parameters like yaw rate, yaw acceleration, side slip angle, rate of side slip angle and so on. The proposed fuzzy controller is a feed forward controller. This controller has two inputs which are steer angle δ and vehicle velocity V, and the output of the controller is the correcting moment M, which guides the vehicle back to the desired track. To develop the membership functions for the controller inputs and output and the fuzzy rules, the vehicle simulation has been run for 1000 times and the correcting moment have been determined by trial and error. Results of the vehicle simulation with fuzzy controller are very promising and show the vehicle performance is enhanced greatly over the vehicle without the controller. In fact the vehicle performance with the controller is very near the performance of the reference ideal model.

Keywords: Vehicle, Directional Stability, Fuzzy Logic Controller, ANFIS..

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
3833 Adaptive Neuro-Fuzzy Inference System for Financial Trading using Intraday Seasonality Observation Model

Authors: A. Kablan

Abstract:

The prediction of financial time series is a very complicated process. If the efficient market hypothesis holds, then the predictability of most financial time series would be a rather controversial issue, due to the fact that the current price contains already all available information in the market. This paper extends the Adaptive Neuro Fuzzy Inference System for High Frequency Trading which is an expert system that is capable of using fuzzy reasoning combined with the pattern recognition capability of neural networks to be used in financial forecasting and trading in high frequency. However, in order to eliminate unnecessary input in the training phase a new event based volatility model was proposed. Taking volatility and the scaling laws of financial time series into consideration has brought about the development of the Intraday Seasonality Observation Model. This new model allows the observation of specific events and seasonalities in data and subsequently removes any unnecessary data. This new event based volatility model provides the ANFIS system with more accurate input and has increased the overall performance of the system.

Keywords: Adaptive Neuro-fuzzy Inference system, High Frequency Trading, Intraday Seasonality Observation Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396
3832 Fuzzy Inference System Based Unhealthy Region Classification in Plant Leaf Image

Authors: K. Muthukannan, P. Latha

Abstract:

In addition to environmental parameters like rain, temperature diseases on crop is a major factor which affects production quality & quantity of crop yield. Hence disease management is a key issue in agriculture. For the management of disease, it needs to be detected at early stage. So, treat it properly & control spread of the disease. Now a day, it is possible to use the images of diseased leaf to detect the type of disease by using image processing techniques. This can be achieved by extracting features from the images which can be further used with classification algorithms or content based image retrieval systems. In this paper, color image is used to extract the features such as mean and standard deviation after the process of region cropping. The selected features are taken from the cropped image with different image size samples. Then, the extracted features are taken in to the account for classification using Fuzzy Inference System (FIS).

Keywords: Image Cropping, Classification, Color, Fuzzy Rule, Feature Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
3831 Parameters Estimation of Multidimensional Possibility Distributions

Authors: Sergey Sorokin, Irina Sorokina, Alexander Yazenin

Abstract:

We present a solution to the Maxmin u/E parameters estimation problem of possibility distributions in m-dimensional case. Our method is based on geometrical approach, where minimal area enclosing ellipsoid is constructed around the sample. Also we demonstrate that one can improve results of well-known algorithms in fuzzy model identification task using Maxmin u/E parameters estimation.

Keywords: Possibility distribution, parameters estimation, Maxmin u/E estimator, fuzzy model identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
3830 On Enhancing Robustness of an Evolutionary Fuzzy Tracking Controller

Authors: H. Megherbi, A. C. Megherbi, N. Megherbi, K. Benmahamed

Abstract:

This paper presents three-phase evolution search methodology to automatically design fuzzy logic controllers (FLCs) that can work in a wide range of operating conditions. These include varying load, parameter variations, and unknown external disturbances. The three-phase scheme consists of an exploration phase, an exploitation phase and a robustness phase. The first two phases search for FLC with high accuracy performances while the last phase aims at obtaining FLC providing the best compromise between the accuracy and robustness performances. Simulations were performed for direct-drive two-axis robot arm. The evolved FLC with the proposed design technique found to provide a very satisfactory performance under the wide range of operation conditions and to overcome problem associated with coupling and nonlinearities characteristics inherent to robot arms.

Keywords: Fuzzy logic control, evolutionary algorithms, robustness, exploration/exploitation phase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1449
3829 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
3828 Segmentation of Breast Lesions in Ultrasound Images Using Spatial Fuzzy Clustering and Structure Tensors

Authors: Yan Xu, Toshihiro Nishimura

Abstract:

Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edges detected by intensity, is used to extract speckle texture. And then, a spatial FCM clustering is applied on the image feature space for segmentation. In the experiments with simulated and clinical ultrasound images, the spatial FCM clustering with both intensity and texture information gets more accurate results than the conventional FCM or spatial FCM without texture information.

Keywords: fuzzy c-means, spatial information, structure tensor, ultrasound image segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
3827 Application of Fuzzy Logic in Fault Diagnosis in Transformers using Dissolved Gas based on Different Standards

Authors: Rahmatollah Hooshmand, Mahdi Banejad

Abstract:

One of the problems in fault diagnosis of transformer based on dissolved gas, is lack of matching the result of fault diagnosis of different standards with the real world. In this paper, the result of the different standards is analyzed using fuzzy and the result is compared with the empirical test. The comparison between the suggested method and existing methods indicate the capability of the suggested method in on-line fault diagnosis of the transformers. In addition, in some cases the existing standards are not able to diagnose the fault. In theses cases, the presented method has the potential of diagnosing the fault. The information of three transformers is used to the show the capability of the suggested method in diagnosing the fault. The results validate the capability of the presented method in fault diagnosis of the transformer.

Keywords: Fault Diagnosis of Transformer, Dissolved Gas, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
3826 Hybrid Fuzzy Selecting-Control-by- Range Controllers of a Servopneumatic Fatigue System

Authors: Marco Soares dos Santos, Jorge Augusto Ferreira, Camila Nicola Boeri, Fernando Neto da Silva

Abstract:

The present paper proposes high performance nonlinear force controllers for a servopneumatic real-time fatigue test machine. A CompactRIO® controller was used, being fully programmed using LabVIEW language. Fuzzy logic control algorithms were evaluated to tune the integral and derivative components in the development of hybrid controllers, namely a FLC P and a hybrid FLC PID real-time-based controllers. Their behaviours were described by using state diagrams. The main contribution is to ensure a smooth transition between control states, avoiding discrete transitions in controller outputs. Steady-state errors lower than 1.5 N were reached, without retuning the controllers. Good results were also obtained for sinusoidal tracking tasks from 1/¤Ç to 8/¤Ç Hz.

Keywords: Hybrid Fuzzy Selecting, Control, Range Controllers, Servopneumatic Fatigue System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
3825 Intelligent System and Renewable Energy: A Farming Platform in Precision Agriculture

Authors: Ryan B. Escorial, Elmer A. Maravillas, Chris Jordan G. Aliac

Abstract:

This study presents a small-scale water pumping system utilizing a fuzzy logic inference system attached to a renewable energy source. The fuzzy logic controller was designed and simulated in MATLAB fuzzy logic toolbox to examine the properties and characteristics of the input and output variables. The result of the simulation was implemented in a microcontroller, together with sensors, modules, and photovoltaic cells. The study used a grand rapid variety of lettuce, organic substrates, and foliar for observation of the capability of the device to irrigate crops. Two plant boxes intended for manual and automated irrigation were prepared with each box having 48 heads of lettuce. The observation of the system took 22-31 days, which is one harvest period of the crop. Results showed a 22.55% increase in agricultural productivity compared to manual irrigation. Aside from reducing human effort, and time, the smart irrigation system could help lessen some of the shortcomings of manual irrigations. It could facilitate the economical utilization of water, reducing consumption by 25%. The use of renewable energy could also help farmers reduce the cost of production by minimizing the use of diesel and gasoline.

Keywords: Fuzzy logic controller, intelligent system, precision agriculture, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301
3824 Use of Fuzzy Logic in the Corporate Reputation Assessment: Stock Market Investors’ Perspective

Authors: Tomasz L. Nawrocki, Danuta Szwajca

Abstract:

The growing importance of reputation in building enterprise value and achieving long-term competitive advantage creates the need for its measurement and evaluation for the management purposes (effective reputation and its risk management). The paper presents practical application of self-developed corporate reputation assessment model from the viewpoint of stock market investors. The model has a pioneer character and example analysis performed for selected industry is a form of specific test for this tool. In the proposed solution, three aspects - informational, financial and development, as well as social ones - were considered. It was also assumed that the individual sub-criteria will be based on public sources of information, and as the calculation apparatus, capable of obtaining synthetic final assessment, fuzzy logic will be used. The main reason for developing this model was to fulfill the gap in the scope of synthetic measure of corporate reputation that would provide higher degree of objectivity by relying on "hard" (not from surveys) and publicly available data. It should be also noted that results obtained on the basis of proposed corporate reputation assessment method give possibilities of various internal as well as inter-branch comparisons and analysis of corporate reputation impact.

Keywords: Corporate reputation, fuzzy logic, fuzzy model, stock market investors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
3823 Fuzzy Rules Emulated Network Adaptive Controller with Unfixed Learning Rate for a Class of Unknown Discrete-time Nonlinear Systems

Authors: Chidentree Treesatayapun

Abstract:

A direct adaptive controller for a class of unknown nonlinear discrete-time systems is presented in this article. The proposed controller is constructed by fuzzy rules emulated network (FREN). With its simple structure, the human knowledge about the plant is transferred to be if-then rules for setting the network. These adjustable parameters inside FREN are tuned by the learning mechanism with time varying step size or learning rate. The variation of learning rate is introduced by main theorem to improve the system performance and stabilization. Furthermore, the boundary of adjustable parameters is guaranteed through the on-line learning and membership functions properties. The validation of the theoretical findings is represented by some illustrated examples.

Keywords: Neuro-Fuzzy, learning algorithm, nonlinear discrete time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
3822 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System under Uncertainty

Authors: Ben Khayut, Lina Fabri, Maya Avikhana

Abstract:

The modern Artificial Narrow Intelligence (ANI) models cannot: a) independently, situationally, and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, and cognize under uncertainty and changing of the environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU). This system uses a neural network as its computational memory, and activates functions of the perception, identification of real objects, fuzzy situational control, and forming images of these objects. These images and objects are used for modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision Making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, and Wisdom. In doing so are performed analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge of the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of situational control, fuzzy logic, psycholinguistics, informatics, and modern possibilities of data science were applied. The proposed self-controlled system of brain and mind is oriented on use as a plug-in in multilingual subject applications.

Keywords: Computational psycholinguistic cognitive brain and mind system, situational fuzzy control, uncertainty, AI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 411
3821 Fuzzy Multi-Criteria Decision-Making Based on Ignatian Discernment Process

Authors: Pathinathan Theresanathan, Ajay Minj

Abstract:

Ignatian Discernment Process (IDP) is an intense decision-making tool to decide on life-issues. Decisions are influenced by various factors outside of the decision maker and inclination within. This paper develops IDP in the context of Fuzzy Multi-criteria Decision Making (FMCDM) process. Extended VIKOR method is a decision-making method which encompasses even conflict situations and accommodates weightage to various issues. Various aspects of IDP, namely three ways of decision making and tactics of inner desires, are observed, analyzed and articulated within the frame work of fuzzy rules. The decision-making situations are broadly categorized into two types. The issues outside of the decision maker influence the person. The inner feeling also plays vital role in coming to a conclusion. IDP integrates both the categories using Extended VIKOR method. Case studies are carried out and analyzed with FMCDM process. Finally, IDP is verified with an illustrative case study and results are interpreted. A confused person who could not come to a conclusion is able to take decision on a concrete way of life through IDP. The proposed IDP model recommends an integrated and committed approach to value-based decision making.

Keywords: Analytical hierarchy process, fuzzy multi-criteria decision making, Ignatian discernment process, Ignatian discernment, multi-criteria decision making, VIKOR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274
3820 Using Interval Constrained Petri Nets and Fuzzy Method for Regulation of Quality: The Case of Weight in Tobacco Factory

Authors: Nabli L., Dhouibi H., Collart Dutilleul S., Craye E.

Abstract:

The existence of maximal durations drastically modifies the performance evaluation in Discrete Event Systems (DES). The same particularity may be found on systems where the associated constraints do not concern the time. For example weight measures, in chemical industry, are used in order to control the quantity of consumed raw materials. This parameter also takes a fundamental part in the product quality as the correct transformation process is based upon a given percentage of each essence. Weight regulation therefore increases the global productivity of the system by decreasing the quantity of rejected products. In this paper we present an approach based on mixing different characteristics theories, the fuzzy system and Petri net system to describe the behaviour. An industriel application on a tobacco manufacturing plant, where the critical parameter is the weight is presented as an illustration.

Keywords: Petri Net, Manufacturing systems, Performance evaluation, Fuzzy logic, Tolerant system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
3819 Fuzzy Logic Control for a Speed Control of Induction Motor using Space Vector Pulse Width Modulation

Authors: Satean Tunyasrirut, Tianchai Suksri, Sompong Srilad

Abstract:

This paper presents design and implements a voltage source inverter type space vector pulse width modulation (SVPWM) for control a speed of induction motor. This scheme leads to be able to adjust the speed of the motor by control the frequency and amplitude of the stator voltage, the ratio of stator voltage to frequency should be kept constant. The fuzzy logic controller is also introduced to the system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.

Keywords: Fuzzy logic control, space vector pulse width modulation, induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
3818 Fuzzy Neuro Approach to Busbar Protection; Design and Implementation

Authors: M. R. Aghaebrahimi, H. Khorashadi Zadeh

Abstract:

This paper presents a new approach for busbar protection with stable operation of current transformer during saturation, using fuzzy neuro and symmetrical components theory. This technique uses symmetrical components of current signals to learn the hidden relationship existing in the input patterns. Simulation studies are preformed and the influence of changing system parameters such as inception fault and source impedance is studied. Details of the design procedure and the results of performance studies with the proposed relay are given in the paper. An analysis of the performance of the proposed technique during ct saturation conditions is presented. The performance of the technique was investigated for a variety of operating conditions and for several busbar configurations. Data generated by EMTDC simulations of model power systems were used in the investigations. The results indicate that the proposed technique is stable during ct saturation conditions.

Keywords: Busbar protection, fuzzy neuro, Ct saturation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
3817 New Approach for Load Modeling

Authors: S. Chokri

Abstract:

Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
3816 Screening of Strategic Management Criterions in Hospitals Using Delphi-Fuzzy Method

Authors: Helia Moayedi, Mahdi Moaidi

Abstract:

Nowadays, the managing and planning of hospitals is facing many problems. Failure to recognize the main criteria for strategic management to ensure long-term hospital performance can lead to many health problems. To achieve this goal, a qualitative-quantitate method titled Delphi-Fuzzy has been applied. This strategy makes it possible for experts to screen among the most important criteria in strategic management. To conduct this operation, a statistical society consisting of 20 experts in Ahwaz hospitals has been questioned. The final model confirms the key criterions after three stages of Delphi. This model provides the possibility to focus on the basic criteria and can determine the organization’s main orientation.

Keywords: Delphi-Fuzzy Method, hospital management, long-term planning, qualitative-quantitate method, screening of strategic criteria, strategic planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 715