Search results for: Frequency domain.
1896 Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investigation
Authors: M. Elassaly
Abstract:
Damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story RC building.Keywords: Damage, frequency content, ground motion, PGA, RC building, seismic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20961895 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements
Authors: Henok Hailemariam, Frank Wuttke
Abstract:
Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.
Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11171894 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data
Authors: Hazem M. El-Bakry, Qiangfu Zhao
Abstract:
In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.
Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261893 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing domain presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.
Keywords: Classification, climbing, data imbalance, data scarcity, machine learning, time sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5671892 Globally Convergent Edge-preserving Reconstruction with Contour-line Smoothing
Authors: Marc C. Robini, Pierre-Jean Viverge, Yuemin Zhu, Jianhua Luo
Abstract:
The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computationally expensive or produce disappointing results. In this paper, we propose to incorporate the smoothness of the edge field in an implicit way by means of an additional penalty term defined in the wavelet domain. We also derive an efficient half-quadratic algorithm to solve the resulting optimization problem, including the case when the data fidelity term is non-quadratic and the cost function is nonconvex. Numerical experiments show that our technique preserves edge sharpness while smoothing contour lines; it produces visually pleasing reconstructions which are quantitatively better than those obtained without wavelet-domain constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13441891 Characterization of Pure Nickel Coatings Fabricated under Pulse Current Conditions
Authors: M. Sajjadnejad, H. Omidvar, M. Javanbakht, A. Mozafari
Abstract:
Pure nickel coatings have been successfully electrodeposited on copper substrates by the pulse plating technique. The influence of current density, duty cycle and pulse frequency on the surface morphology, crystal orientation, and microhardness was determined. It was found that the crystallite size of the deposit increases with increasing current density and duty cycle. The crystal orientation progressively changed from a random texture at 1 A/dm2 to (200) texture at 10 A/dm2. Increasing pulse frequency resulted in increased texture coefficient and peak intensity of (111) reflection. An increase in duty cycle resulted in considerable increase in texture coefficient and peak intensity of (311) reflection. Coatings obtained at high current densities and duty cycle present a mixed morphology of small and large grains. Maximum microhardness of 193 Hv was achieved at 4 A/dm2, 10 Hz and duty cycle of 50%. Nickel coatings with (200) texture are ductile while (111) texture improves the microhardness of the coatings.Keywords: Current density, Duty cycle, Microstructure, Nickel, Pulse frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22461890 Power Reduction by Automatic Monitoring and Control System in Active Mode
Authors: Somaye Abdollahi Pour, Mohsen Saneei
Abstract:
This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18501889 Adaptive Distributed Genetic Algorithms and Its VLSI Design
Authors: Kazutaka Kobayashi, Norihiko Yoshida, Shuji Narazaki
Abstract:
This paper presents a dynamic adaptation scheme for the frequency of inter-deme migration in distributed genetic algorithms (GA), and its VLSI hardware design. Distributed GA, or multi-deme-based GA, uses multiple populations which evolve concurrently. The purpose of dynamic adaptation is to improve convergence performance so as to obtain better solutions. Through simulation experiments, we proved that our scheme achieves better performance than fixed frequency migration schemes.Keywords: Genetic algorithms, dynamic adaptation, VLSI hardware.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691888 Fast Accurate Detection of Frequency Jumps Using Kalman Filter with Non Linear Improvements
Authors: Mahmoud E. Mohamed, Ahmed F. Shalash, Hanan A. Kamal
Abstract:
In communication systems, frequency jump is a serious problem caused by the oscillators used. Kalman filters are used to detect that jump, despite the tradeoff between the noise level and the speed of the detection. In this paper, an improvement is introduced in the Kalman filter, through a nonlinear change in the bandwidth of the filter. Simulation results show a considerable improvement in the filter speed with a very low noise level. Additionally, the effect on the response to false alarms is also presented and false alarm rate show improvement.
Keywords: Kalman Filter, Innovation, False Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22261887 Kuehne + Nagel's PharmaChain: IoT-Enabled Product Monitoring Using Radio Frequency Identification
Authors: Rebecca Angeles
Abstract:
This case study features the Kuehne + Nagel PharmaChain solution for ‘cold chain’ pharmaceutical and biologic product shipments with IOT-enabled features for shipment temperature and location tracking. Using the case study method and content analysis, this research project investigates the application of the structurational model of technology theory introduced by Orlikowski in order to interpret the firm’s entry and participation in the IOT-impelled marketplace.
Keywords: Internet of things, IoT, radio frequency identification, supply chain management, business intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19791886 BTG-BIBA: A Flexibility-Enhanced Biba Model Using BTG Strategies for Operating System
Authors: Gang Liu, Can Wang, Runnan Zhang, Quan Wang, Huimin Song, Shaomin Ji
Abstract:
Biba model can protect information integrity but might deny various non-malicious access requests of the subjects, thereby decreasing the availability in the system. Therefore, a mechanism that allows exceptional access control is needed. Break the Glass (BTG) strategies refer an efficient means for extending the access rights of users in exceptional cases. These strategies help to prevent a system from stagnation. An approach is presented in this work for integrating Break the Glass strategies into the Biba model. This research proposes a model, BTG-Biba, which provides both an original Biba model used in normal situations and a mechanism used in emergency situations. The proposed model is context aware, can implement a fine-grained type of access control and primarily solves cross-domain access problems. Finally, the flexibility and availability improvement with the use of the proposed model is illustrated.Keywords: Biba model, break the glass, context, cross-domain, fine-grained.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11541885 Effectiveness of Contourlet vs Wavelet Transform on Medical Image Compression: a Comparative Study
Authors: Negar Riazifar, Mehran Yazdi
Abstract:
Discrete Wavelet Transform (DWT) has demonstrated far superior to previous Discrete Cosine Transform (DCT) and standard JPEG in natural as well as medical image compression. Due to its localization properties both in special and transform domain, the quantization error introduced in DWT does not propagate globally as in DCT. Moreover, DWT is a global approach that avoids block artifacts as in the JPEG. However, recent reports on natural image compression have shown the superior performance of contourlet transform, a new extension to the wavelet transform in two dimensions using nonseparable and directional filter banks, compared to DWT. It is mostly due to the optimality of contourlet in representing the edges when they are smooth curves. In this work, we investigate this fact for medical images, especially for CT images, which has not been reported yet. To do that, we propose a compression scheme in transform domain and compare the performance of both DWT and contourlet transform in PSNR for different compression ratios (CR) using this scheme. The results obtained using different type of computed tomography images show that the DWT has still good performance at lower CR but contourlet transform performs better at higher CR.Keywords: Computed Tomography (CT), DWT, Discrete Contourlet Transform, Image Compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27981884 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites
Authors: Sutar Rani Ananda, M. V. Murugendrappa
Abstract:
To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.Keywords: Polypyrrole, dielectric constant, dielectric loss, AC conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14051883 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner
Authors: Loke Kean Koay, Mani Maran Ratnam
Abstract:
A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of mirror was selected since it attains minimum stress level, while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.
Keywords: Computer-aided design, design optimization, torsional scanner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19661882 Transient Voltage Distribution on the Single Phase Transmission Line under Short Circuit Fault Effect
Authors: A. Kojah, A. Nacaroğlu
Abstract:
Single phase transmission lines are used to transfer data or energy between two users. Transient conditions such as switching operations and short circuit faults cause the generation of the fluctuation on the waveform to be transmitted. Spatial voltage distribution on the single phase transmission line may change owing to the position and duration of the short circuit fault in the system. In this paper, the state space representation of the single phase transmission line for short circuit fault and for various types of terminations is given. Since the transmission line is modeled in time domain using distributed parametric elements, the mathematical representation of the event is given in state space (time domain) differential equation form. It also makes easy to solve the problem because of the time and space dependent characteristics of the voltage variations on the distributed parametrically modeled transmission line.
Keywords: Energy transmission, transient effects, transmission line, transient voltage, RLC short circuit, single phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11681881 Optimization of Shear Frame Structures Applying Various Forms of Wavelet Transforms
Authors: Seyed Sadegh Naseralavi, Sohrab Nemati, Ehsan Khojastehfar, Sadegh Balaghi
Abstract:
In the present research, various formulations of wavelet transform are applied on acceleration time history of earthquake. The mentioned transforms decompose the strong ground motion into low and high frequency parts. Since the high frequency portion of strong ground motion has a minor effect on dynamic response of structures, the structure is excited by low frequency part. Consequently, the seismic response of structure is predicted consuming one half of computational time, comparing with conventional time history analysis. Towards reducing the computational effort needed in seismic optimization of structure, seismic optimization of a shear frame structure is conducted by applying various forms of mentioned transformation through genetic algorithm.
Keywords: Time history analysis, wavelet transform, optimization, earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7971880 Ear Protectors and Their Action in Protecting Hearing System of Workers against Occupational Noise
Authors: F. Forouharmajd, S. Pourabdian, N. Ziayi Ghahnavieh
Abstract:
For many years, the ear protectors have been used to preventing the audio and non-audio effects of received noise from occupation environments. Despite performing hearing protection programs, there are many people which still suffer from noise-induced hearing loss. This study was conducted with the aim of determination of human hearing system response to received noise and the effectiveness of ear protectors on preventing of noise-induced hearing loss. Sound pressure microphones were placed in a simulated ear canal. The severity of noise measured inside and outside of ear canal. The noise reduction values due to installing ear protectors were calculated in the octave band frequencies and LabVIEW programmer. The results of noise measurement inside and outside of ear canal showed a different in received sound levels by ear canal. The effectiveness of ear protectors has been considerably reduced for the low frequency limits. A change in resonance frequency also was observed after using ear protectors. The study indicated the ear canal structure may affect the received noise and it may lead a difference between the received sound from the measured sound by a sound level meter, and hearing system. It means the human hearing system may probably respond different from a sound level meter. Hearing protectors’ efficiency declines by increasing the noise levels, and thus, they are not suitable to protect workers against industrial noise particularly low frequency noise. Hearing protectors may be solely a reason to damaging of hearing system in a special frequency via changing of human hearing system acoustical structure. We need developing the subjective method of hearing protectors testing, because their evaluation is not designed based on industrial noise or in the field.
Keywords: Ear protector, hearing system, occupational noise, workers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7601879 Consideration of Starlight Waves Redshift as Produced by Friction of These Waves on Its Way through Space
Authors: Angel Pérez Sánchez
Abstract:
In 1929, a light redshift was discovered in distant galaxies and was interpreted as produced by galaxies moving away from each other at high speed. This interpretation led to the consideration of a new source of energy, which was called Dark Energy. Redshift is a loss of light wave frequency produced by galaxies moving away at high speed, but the loss of frequency can also be produced by the friction of light waves on their way to Earth. This friction is impossible because outer space is empty, but if it were not empty and a medium existed in this empty space, then friction would be possible. The consequences would be extraordinary because Universe acceleration and Dark Energy would be in doubt. This article presents evidence that empty space is actually a medium occupied by different particles, among them the most significant would be Graviton or Higgs Boson. If gravity is produced by Higgs Boson particle according to Standard Model and gravity affects empty space, then Vacuum space is full of Higgs bosons.
Keywords: Big Bang, dark energy, doppler effect, redshift, starlight frequency reduction, universe acceleration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 441878 A Transform Domain Function Controlled VSSLMS Algorithm for Sparse System Identification
Authors: Cemil Turan, Mohammad Shukri Salman
Abstract:
The convergence rate of the least-mean-square (LMS) algorithm deteriorates if the input signal to the filter is correlated. In a system identification problem, this convergence rate can be improved if the signal is white and/or if the system is sparse. We recently proposed a sparse transform domain LMS-type algorithm that uses a variable step-size for a sparse system identification. The proposed algorithm provided high performance even if the input signal is highly correlated. In this work, we investigate the performance of the proposed TD-LMS algorithm for a large number of filter tap which is also a critical issue for standard LMS algorithm. Additionally, the optimum value of the most important parameter is calculated for all experiments. Moreover, the convergence analysis of the proposed algorithm is provided. The performance of the proposed algorithm has been compared to different algorithms in a sparse system identification setting of different sparsity levels and different number of filter taps. Simulations have shown that the proposed algorithm has prominent performance compared to the other algorithms.Keywords: Adaptive filtering, sparse system identification, VSSLMS algorithm, TD-LMS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10001877 Cascaded ANN for Evaluation of Frequency and Air-gap Voltage of Self-Excited Induction Generator
Authors: Raja Singh Khela, R. K. Bansal, K. S. Sandhu, A. K. Goel
Abstract:
Self-Excited Induction Generator (SEIG) builds up voltage while it enters in its magnetic saturation region. Due to non-linear magnetic characteristics, the performance analysis of SEIG involves cumbersome mathematical computations. The dependence of air-gap voltage on saturated magnetizing reactance can only be established at rated frequency by conducting a laboratory test commonly known as synchronous run test. But, there is no laboratory method to determine saturated magnetizing reactance and air-gap voltage of SEIG at varying speed, terminal capacitance and other loading conditions. For overall analysis of SEIG, prior information of magnetizing reactance, generated frequency and air-gap voltage is essentially required. Thus, analytical methods are the only alternative to determine these variables. Non-existence of direct mathematical relationship of these variables for different terminal conditions has forced the researchers to evolve new computational techniques. Artificial Neural Networks (ANNs) are very useful for solution of such complex problems, as they do not require any a priori information about the system. In this paper, an attempt is made to use cascaded neural networks to first determine the generated frequency and magnetizing reactance with varying terminal conditions and then air-gap voltage of SEIG. The results obtained from the ANN model are used to evaluate the overall performance of SEIG and are found to be in good agreement with experimental results. Hence, it is concluded that analysis of SEIG can be carried out effectively using ANNs.Keywords: Self-Excited Induction Generator, Artificial NeuralNetworks, Exciting Capacitance and Saturated magnetizingreactance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16901876 Thin Bed Reservoir Delineation Using Spectral Decomposition and Instantaneous Seismic Attributes, Pohokura Field, Taranaki Basin, New Zealand
Authors: P. Sophon, M. Kruachanta, S. Chaisri, G. Leaungvongpaisan, P. Wongpornchai
Abstract:
The thick bed hydrocarbon reservoirs are primarily interested because of the more prolific production. When the amount of petroleum in the thick bed starts decreasing, the thin bed reservoirs are the alternative targets to maintain the reserves. The conventional interpretation of seismic data cannot delineate the thin bed having thickness less than the vertical seismic resolution. Therefore, spectral decomposition and instantaneous seismic attributes were used to delineate the thin bed in this study. Short Window Discrete Fourier Transform (SWDFT) spectral decomposition and instantaneous frequency attributes were used to reveal the thin bed reservoir, while Continuous Wavelet Transform (CWT) spectral decomposition and envelope (instantaneous amplitude) attributes were used to indicate hydrocarbon bearing zone. The study area is located in the Pohokura Field, Taranaki Basin, New Zealand. The thin bed target is the uppermost part of Mangahewa Formation, the most productive in the gas-condensate production in the Pohokura Field. According to the time-frequency analysis, SWDFT spectral decomposition can reveal the thin bed using a 72 Hz SWDFT isofrequency section and map, and that is confirmed by the instantaneous frequency attribute. The envelope attribute showing the high anomaly indicates the hydrocarbon accumulation area at the thin bed target. Moreover, the CWT spectral decomposition shows the low-frequency shadow zone and abnormal seismic attenuation in the higher isofrequencies below the thin bed confirms that the thin bed can be a prospective hydrocarbon zone.
Keywords: Hydrocarbon indication, instantaneous seismic attribute, spectral decomposition, thin bed delineation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6401875 Modeling of Dielectric Heating in Radio- Frequency Applicator Optimized for Uniform Temperature by Means of Genetic Algorithms
Authors: Camelia Petrescu, Lavinia Ferariu
Abstract:
The paper presents an optimization study based on genetic algorithms (GA-s) for a radio-frequency applicator used in heating dielectric band products. The weakly coupled electro-thermal problem is analyzed using 2D-FEM. The design variables in the optimization process are: the voltage of a supplementary “guard" electrode and six geometric parameters of the applicator. Two objective functions are used: temperature uniformity and total active power absorbed by the dielectric. Both mono-objective and multiobjective formulations are implemented in GA optimization.Keywords: Dielectric heating, genetic algorithms, optimization, RF applicators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19311874 Time Effective Structural Frequency Response Testing with Oblique Impact
Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi
Abstract:
Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.Keywords: Frequency response function, impact testing, modal analysis, oblique angle, oblique impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9321873 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies
Authors: Sambit Prasad Kar, P.Palanisamy
Abstract:
In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.
Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17311872 On the Numerical Simulation of Flow Past an Oscillating Circular Cylinder in a Circular Path: Oscillation Amplitude Effect
Authors: Qasem M. Al-Mdallal
Abstract:
This paper presents results obtained from the numerical solution for the flow past an oscillating circular cylinder at Reynolds number of 200. The frequency of oscillation was fixed to the vortex shedding frequency from a fixed cylinder, f0, while the amplitudes of oscillations were varied from to 1.1a, where a represents the radius of the cylinder. The response of the flow through the fluid forces acting on the surface of the cylinder are investigated. The lock-on phenomenon is captured at low oscillation amplitudes.Keywords: Lock-on; streamwise oscillation; transverse oscillation; fluid forces, combined motion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16931871 An Artificial Neural Network Model Based Study of Seismic Wave
Authors: Hemant Kumar, Nilendu Das
Abstract:
A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity.
Keywords: ANN, Bayesian class, earthquakes, IMD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6981870 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.
Keywords: Water inflow, Tunnel, Discontinues rock, Numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25091869 RASPE – Risk Advisory Smart System for Pipeline Projects in Egypt
Authors: Nael Y. Zabel, Maged E. Georgy, Moheeb E. Ibrahim
Abstract:
A knowledge-based expert system with the acronym RASPE is developed as an application tool to help decision makers in construction companies make informed decisions about managing risks in pipeline construction projects. Choosing to use expert systems from all available artificial intelligence techniques is due to the fact that an expert system is more suited to representing a domain’s knowledge and the reasoning behind domain-specific decisions. The knowledge-based expert system can capture the knowledge in the form of conditional rules which represent various project scenarios and potential risk mitigation/response actions. The built knowledge in RASPE is utilized through the underlying inference engine that allows the firing of rules relevant to a project scenario into consideration. Paper provides an overview of the knowledge acquisition process and goes about describing the knowledge structure which is divided up into four major modules. The paper shows one module in full detail for illustration purposes and concludes with insightful remarks.
Keywords: Expert System, Knowledge Management, Pipeline Projects, Risk Mismanagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22971868 Identification of Outliers in Flood Frequency Analysis: Comparison of Original and Multiple Grubbs-Beck Test
Authors: Ayesha S. Rahman, Khaled Haddad, Ataur Rahman
Abstract:
At-site flood frequency analysis is used to estimate flood quantiles when at-site record length is reasonably long. In Australia, FLIKE software has been introduced for at-site flood frequency analysis. The advantage of FLIKE is that, for a given application, the user can compare a number of most commonly adopted probability distributions and parameter estimation methods relatively quickly using a windows interface. The new version of FLIKE has been incorporated with the multiple Grubbs and Beck test which can identify multiple numbers of potentially influential low flows. This paper presents a case study considering six catchments in eastern Australia which compares two outlier identification tests (original Grubbs and Beck test and multiple Grubbs and Beck test) and two commonly applied probability distributions (Generalized Extreme Value (GEV) and Log Pearson type 3 (LP3)) using FLIKE software. It has been found that the multiple Grubbs and Beck test when used with LP3 distribution provides more accurate flood quantile estimates than when LP3 distribution is used with the original Grubbs and Beck test. Between these two methods, the differences in flood quantile estimates have been found to be up to 61% for the six study catchments. It has also been found that GEV distribution (with L moments) and LP3 distribution with the multiple Grubbs and Beck test provide quite similar results in most of the cases; however, a difference up to 38% has been noted for flood quantiles for annual exceedance probability (AEP) of 1 in 100 for one catchment. This finding needs to be confirmed with a greater number of stations across other Australian states.
Keywords: Floods, FLIKE, probability distributions, flood frequency, outlier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33111867 A Black-box Approach for Response Quality Evaluation of Conversational Agent Systems
Authors: Ong Sing Goh, C. Ardil, Wilson Wong, Chun Che Fung
Abstract:
The evaluation of conversational agents or chatterbots question answering systems is a major research area that needs much attention. Before the rise of domain-oriented conversational agents based on natural language understanding and reasoning, evaluation is never a problem as information retrieval-based metrics are readily available for use. However, when chatterbots began to become more domain specific, evaluation becomes a real issue. This is especially true when understanding and reasoning is required to cater for a wider variety of questions and at the same time to achieve high quality responses. This paper discusses the inappropriateness of the existing measures for response quality evaluation and the call for new standard measures and related considerations are brought forward. As a short-term solution for evaluating response quality of conversational agents, and to demonstrate the challenges in evaluating systems of different nature, this research proposes a blackbox approach using observation, classification scheme and a scoring mechanism to assess and rank three example systems, AnswerBus, START and AINI.
Keywords: Evaluation, conversational agents, Response Quality, chatterbots
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927