Search results for: segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 326

Search results for: segmentation

296 Seed-Based Region Growing (SBRG) vs Adaptive Network-Based Inference System (ANFIS) vs Fuzzyc-Means (FCM): Brain Abnormalities Segmentation

Authors: Shafaf Ibrahim, Noor Elaiza Abdul Khalid, Mazani Manaf

Abstract:

Segmentation of Magnetic Resonance Imaging (MRI) images is the most challenging problems in medical imaging. This paper compares the performances of Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS) and Fuzzy c-Means (FCM) in brain abnormalities segmentation. Controlled experimental data is used, which designed in such a way that prior knowledge of the size of the abnormalities are known. This is done by cutting various sizes of abnormalities and pasting it onto normal brain tissues. The normal tissues or the background are divided into three different categories. The segmentation is done with fifty seven data of each category. The knowledge of the size of the abnormalities by the number of pixels are then compared with segmentation results of three techniques proposed. It was proven that the ANFIS returns the best segmentation performances in light abnormalities, whereas the SBRG on the other hand performed well in dark abnormalities segmentation.

Keywords: Seed-Based Region Growing (SBRG), Adaptive Network-Based Fuzzy Inference System (ANFIS), Fuzzy c-Means (FCM), Brain segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
295 Marketing Segmentation of Students Willing to Study Abroad based on Cluster Analysis

Authors: Kamila Tislerova, Marta Zambochova

Abstract:

Market segmentation is one of the most fundamental strategic marketing concepts. The better the segment which is chosen for targeting by a particular organisation, the more successful the organisation is assumed to be in the marketplace. Also higher education institutions have to improve their marketing tools for attracting foreign students, particularly when demanding tuition fees. This contribution aims at demonstrating the proper usage of the cluster analysis for segmentation (represented by students' willingness to study abroad) and also, based on large international survey, offers some practical marketing implications.

Keywords: Market Segmentation, Students' Preferences, Study Abroad, Cluster Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2213
294 A Neural Approach for Color-Textured Images Segmentation

Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui

Abstract:

In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.

Keywords: Segmentation, color-texture, neural networks, fractal, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
293 Manipulation of Image Segmentation Using Cleverness Artificial Bee Colony Approach

Authors: Y. Harold Robinson, E. Golden Julie, P. Joyce Beryl Princess

Abstract:

Image segmentation is the concept of splitting the images into several images. Image Segmentation algorithm is used to manipulate the process of image segmentation. The advantage of ABC is that it conducts every worldwide exploration and inhabitant exploration for iteration. Particle Swarm Optimization (PSO) and Evolutionary Particle Swarm Optimization (EPSO) encompass a number of search problems. Cleverness Artificial Bee Colony algorithm has been imposed to increase the performance of a neighborhood search. The simulation results clearly show that the presented ABC methods outperform the existing methods. The result shows that the algorithms can be used to implement the manipulator for grasping of colored objects. The efficiency of the presented method is improved a lot by comparing to other methods.

Keywords: Color information, EPSO, ABC, image segmentation, particle swarm optimization, active contour, GMM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
292 A Novel Approach towards Segmentation of Breast Tumors from Screening Mammograms for Efficient Decision Support System

Authors: M.Suganthi, M.Madheswaran

Abstract:

This paper presents a novel approach to finding a priori interesting regions in mammograms. In order to delineate those regions of interest (ROI-s) in mammograms, which appear to be prominent, a topographic representation called the iso-level contour map consisting of iso-level contours at multiple intensity levels and region segmentation based-thresholding have been proposed. The simulation results indicate that the computed boundary gives the detection rate of 99.5% accuracy.

Keywords: Breast Cancer, Mammogram, and Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
291 The Influence of Audio on Perceived Quality of Segmentation

Authors: Silvio R. R. Sanches, Bianca C. Barbosa, Beatriz R. Brum, Cléber G.Corrêa

Abstract:

In order to evaluate the quality of a segmentation algorithm, the researchers use subjective or objective metrics. Although subjective metrics are more accurate than objective ones, objective metrics do not require user feedback to test an algorithm. Objective metrics require subjective experiments only during their development. Subjective experiments typically display to users some videos (generated from frames with segmentation errors) that simulate the environment of an application domain. This user feedback is crucial information for metric definition. In the subjective experiments applied to develop some state-of-the-art metrics used to test segmentation algorithms, the videos displayed during the experiments did not contain audio. Audio is an essential component in applications such as videoconference and augmented reality. If the audio influences the user’s perception, using only videos without audio in subjective experiments can compromise the efficiency of an objective metric generated using data from these experiments. This work aims to identify if the audio influences the user’s perception of segmentation quality in background substitution applications with audio. The proposed approach used a subjective method based on formal video quality assessment methods. The results showed that audio influences the quality of segmentation perceived by a user.

Keywords: Background substitution, influence of audio, segmentation evaluation, segmentation quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
290 Genetic-Based Multi Resolution Noisy Color Image Segmentation

Authors: Raghad Jawad Ahmed

Abstract:

Segmentation of a color image composed of different kinds of regions can be a hard problem, namely to compute for an exact texture fields. The decision of the optimum number of segmentation areas in an image when it contains similar and/or un stationary texture fields. A novel neighborhood-based segmentation approach is proposed. A genetic algorithm is used in the proposed segment-pass optimization process. In this pass, an energy function, which is defined based on Markov Random Fields, is minimized. In this paper we use an adaptive threshold estimation method for image thresholding in the wavelet domain based on the generalized Gaussian distribution (GGD) modeling of sub band coefficients. This method called Normal Shrink is computationally more efficient and adaptive because the parameters required for estimating the threshold depend on sub band data energy that used in the pre-stage of segmentation. A quad tree is employed to implement the multi resolution framework, which enables the use of different strategies at different resolution levels, and hence, the computation can be accelerated. The experimental results using the proposed segmentation approach are very encouraging.

Keywords: Color image segmentation, Genetic algorithm, Markov random field, Scale space filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
289 Common Carotid Artery Intima Media Thickness Segmentation Survey

Authors: L. Ashok Kumar, C. Nagarajan

Abstract:

The ultrasound imaging is very popular to diagnosis the disease because of its non-invasive nature. The ultrasound imaging slowly produces low quality images due to the presence of spackle noise and wave interferences. There are several algorithms to be proposed for the segmentation of ultrasound carotid artery images but it requires a certain limit of user interaction. The pixel in an image is highly correlated so the spatial information of surrounding pixels may be considered in the process of image segmentation which improves the results further. When data is highly correlated, one pixel may belong to more than one cluster with different degree of membership. There is an important step to computerize the evaluation of arterial disease severity using segmentation of carotid artery lumen in 2D and 3D ultrasonography and in finding vulnerable atherosclerotic plaques susceptible to rupture which can cause stroke.

Keywords: IMT measurement, Image Segmentation, common carotid artery, internal and external carotid arteries, ultrasound imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998
288 Maximum Entropy Based Image Segmentation of Human Skin Lesion

Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam

Abstract:

Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.

Keywords: Shannon, Maximum entropy, Renyi, Tsallis entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
287 Color Image Segmentation Using Competitive and Cooperative Learning Approach

Authors: Yinggan Tang, Xinping Guan

Abstract:

Color image segmentation can be considered as a cluster procedure in feature space. k-means and its adaptive version, i.e. competitive learning approach are powerful tools for data clustering. But k-means and competitive learning suffer from several drawbacks such as dead-unit problem and need to pre-specify number of cluster. In this paper, we will explore to use competitive and cooperative learning approach to perform color image segmentation. In competitive and cooperative learning approach, seed points not only compete each other, but also the winner will dynamically select several nearest competitors to form a cooperative team to adapt to the input together, finally it can automatically select the correct number of cluster and avoid the dead-units problem. Experimental results show that CCL can obtain better segmentation result.

Keywords: Color image segmentation, competitive learning, cluster, k-means algorithm, competitive and cooperative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
286 A New Approach for Image Segmentation using Pillar-Kmeans Algorithm

Authors: Ali Ridho Barakbah, Yasushi Kiyoki

Abstract:

This paper presents a new approach for image segmentation by applying Pillar-Kmeans algorithm. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after optimized by Pillar Algorithm. The Pillar algorithm considers the pillars- placement which should be located as far as possible from each other to withstand against the pressure distribution of a roof, as identical to the number of centroids amongst the data distribution. This algorithm is able to optimize the K-means clustering for image segmentation in aspects of precision and computation time. It designates the initial centroids- positions by calculating the accumulated distance metric between each data point and all previous centroids, and then selects data points which have the maximum distance as new initial centroids. This algorithm distributes all initial centroids according to the maximum accumulated distance metric. This paper evaluates the proposed approach for image segmentation by comparing with K-means and Gaussian Mixture Model algorithm and involving RGB, HSV, HSL and CIELAB color spaces. The experimental results clarify the effectiveness of our approach to improve the segmentation quality in aspects of precision and computational time.

Keywords: Image segmentation, K-means clustering, Pillaralgorithm, color spaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3372
285 Segmentation of Breast Lesions in Ultrasound Images Using Spatial Fuzzy Clustering and Structure Tensors

Authors: Yan Xu, Toshihiro Nishimura

Abstract:

Segmentation in ultrasound images is challenging due to the interference from speckle noise and fuzziness of boundaries. In this paper, a segmentation scheme using fuzzy c-means (FCM) clustering incorporating both intensity and texture information of images is proposed to extract breast lesions in ultrasound images. Firstly, the nonlinear structure tensor, which can facilitate to refine the edges detected by intensity, is used to extract speckle texture. And then, a spatial FCM clustering is applied on the image feature space for segmentation. In the experiments with simulated and clinical ultrasound images, the spatial FCM clustering with both intensity and texture information gets more accurate results than the conventional FCM or spatial FCM without texture information.

Keywords: fuzzy c-means, spatial information, structure tensor, ultrasound image segmentation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
284 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogenous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288
283 Level Set and Morphological Operation Techniques in Application of Dental Image Segmentation

Authors: Abdolvahab Ehsani Rad, Mohd Shafry Mohd Rahim, Alireza Norouzi

Abstract:

Medical image analysis is one of the great effects of computer image processing. There are several processes to analysis the medical images which the segmentation process is one of the challenging and most important step. In this paper the segmentation method proposed in order to segment the dental radiograph images. Thresholding method has been applied to simplify the images and to morphologically open binary image technique performed to eliminate the unnecessary regions on images. Furthermore, horizontal and vertical integral projection techniques used to extract the each individual tooth from radiograph images. Segmentation process has been done by applying the level set method on each extracted images. Nevertheless, the experiments results by 90% accuracy demonstrate that proposed method achieves high accuracy and promising result.

Keywords: Integral production, level set method, morphological operation, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4233
282 A New Approach to Image Segmentation via Fuzzification of Rènyi Entropy of Generalized Distributions

Authors: Samy Sadek, Ayoub Al-Hamadi, Axel Panning, Bernd Michaelis, Usama Sayed

Abstract:

In this paper, we propose a novel approach for image segmentation via fuzzification of Rènyi Entropy of Generalized Distributions (REGD). The fuzzy REGD is used to precisely measure the structural information of image and to locate the optimal threshold desired by segmentation. The proposed approach draws upon the postulation that the optimal threshold concurs with maximum information content of the distribution. The contributions in the paper are as follow: Initially, the fuzzy REGD as a measure of the spatial structure of image is introduced. Then, we propose an efficient entropic segmentation approach using fuzzy REGD. However the proposed approach belongs to entropic segmentation approaches (i.e. these approaches are commonly applied to grayscale images), it is adapted to be viable for segmenting color images. Lastly, diverse experiments on real images that show the superior performance of the proposed method are carried out.

Keywords: Entropy of generalized distributions, entropy fuzzification, entropic image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232
281 Automatic Segmentation of Dermoscopy Images Using Histogram Thresholding on Optimal Color Channels

Authors: Rahil Garnavi, Mohammad Aldeen, M. Emre Celebi, Alauddin Bhuiyan, Constantinos Dolianitis, George Varigos

Abstract:

Automatic segmentation of skin lesions is the first step towards development of a computer-aided diagnosis of melanoma. Although numerous segmentation methods have been developed, few studies have focused on determining the most discriminative and effective color space for melanoma application. This paper proposes a novel automatic segmentation algorithm using color space analysis and clustering-based histogram thresholding, which is able to determine the optimal color channel for segmentation of skin lesions. To demonstrate the validity of the algorithm, it is tested on a set of 30 high resolution dermoscopy images and a comprehensive evaluation of the results is provided, where borders manually drawn by four dermatologists, are compared to automated borders detected by the proposed algorithm. The evaluation is carried out by applying three previously used metrics of accuracy, sensitivity, and specificity and a new metric of similarity. Through ROC analysis and ranking the metrics, it is shown that the best results are obtained with the X and XoYoR color channels which results in an accuracy of approximately 97%. The proposed method is also compared with two state-ofthe- art skin lesion segmentation methods, which demonstrates the effectiveness and superiority of the proposed segmentation method.

Keywords: Border detection, Color space analysis, Dermoscopy, Histogram thresholding, Melanoma, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
280 MTSSM - A Framework for Multi-Track Segmentation of Symbolic Music

Authors: Brigitte Rafael, Stefan M. Oertl

Abstract:

Music segmentation is a key issue in music information retrieval (MIR) as it provides an insight into the internal structure of a composition. Structural information about a composition can improve several tasks related to MIR such as searching and browsing large music collections, visualizing musical structure, lyric alignment, and music summarization. The authors of this paper present the MTSSM framework, a twolayer framework for the multi-track segmentation of symbolic music. The strength of this framework lies in the combination of existing methods for local track segmentation and the application of global structure information spanning via multiple tracks. The first layer of the MTSSM uses various string matching techniques to detect the best candidate segmentations for each track of a multi-track composition independently. The second layer combines all single track results and determines the best segmentation for each track in respect to the global structure of the composition.

Keywords: Pattern Recognition, Music Information Retrieval, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
279 Generating Normally Distributed Clusters by Means of a Self-organizing Growing Neural Network– An Application to Market Segmentation –

Authors: Reinhold Decker, Christian Holsing, Sascha Lerke

Abstract:

This paper presents a new growing neural network for cluster analysis and market segmentation, which optimizes the size and structure of clusters by iteratively checking them for multivariate normality. We combine the recently published SGNN approach [8] with the basic principle underlying the Gaussian-means algorithm [13] and the Mardia test for multivariate normality [18, 19]. The new approach distinguishes from existing ones by its holistic design and its great autonomy regarding the clustering process as a whole. Its performance is demonstrated by means of synthetic 2D data and by real lifestyle survey data usable for market segmentation.

Keywords: Artificial neural network, clustering, multivariatenormality, market segmentation, self-organization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
278 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The MP is based on making the product of the speech wavelet transform coefficients (WTC). We have estimated our method on the Keele database. The results show the effectiveness of our method. It indicates that the two features can find word boundaries, and extracted the segments of the clean speech.

Keywords: Speech segmentation, Multi-scale product, Spectral centroid, Zero crossings rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
277 Component-based Segmentation of Words from Handwritten Arabic Text

Authors: Jawad H AlKhateeb, Jianmin Jiang, Jinchang Ren, Stan S Ipson

Abstract:

Efficient preprocessing is very essential for automatic recognition of handwritten documents. In this paper, techniques on segmenting words in handwritten Arabic text are presented. Firstly, connected components (ccs) are extracted, and distances among different components are analyzed. The statistical distribution of this distance is then obtained to determine an optimal threshold for words segmentation. Meanwhile, an improved projection based method is also employed for baseline detection. The proposed method has been successfully tested on IFN/ENIT database consisting of 26459 Arabic words handwritten by 411 different writers, and the results were promising and very encouraging in more accurate detection of the baseline and segmentation of words for further recognition.

Keywords: Arabic OCR, off-line recognition, Baseline estimation, Word segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
276 Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Mohammad Hassan Moradi, Sohrab Saberi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG-s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna-s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna-s method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise DerivativeDynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
275 Image Segmentation Using the K-means Algorithm for Texture Features

Authors: Wan-Ting Lin, Chuen-Horng Lin, Tsung-Ho Wu, Yung-Kuan Chan

Abstract:

This study aims to segment objects using the K-means algorithm for texture features. Firstly, the algorithm transforms color images into gray images. This paper describes a novel technique for the extraction of texture features in an image. Then, in a group of similar features, objects and backgrounds are differentiated by using the K-means algorithm. Finally, this paper proposes a new object segmentation algorithm using the morphological technique. The experiments described include the segmentation of single and multiple objects featured in this paper. The region of an object can be accurately segmented out. The results can help to perform image retrieval and analyze features of an object, as are shown in this paper.

Keywords: k-mean, multiple objects, segmentation, texturefeatures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823
274 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394
273 Sequential Partitioning Brainbow Image Segmentation Using Bayesian

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate crosstalk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds, since biological information is inherently included inside the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: Brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
272 Hot-Spot Blob Merging for Real-Time Image Segmentation

Authors: K. Kraus, M. Uiberacker, O. Martikainen, R. Reda

Abstract:

One of the major, difficult tasks in automated video surveillance is the segmentation of relevant objects in the scene. Current implementations often yield inconsistent results on average from frame to frame when trying to differentiate partly occluding objects. This paper presents an efficient block-based segmentation algorithm which is capable of separating partly occluding objects and detecting shadows. It has been proven to perform in real time with a maximum duration of 47.48 ms per frame (for 8x8 blocks on a 720x576 image) with a true positive rate of 89.2%. The flexible structure of the algorithm enables adaptations and improvements with little effort. Most of the parameters correspond to relative differences between quantities extracted from the image and should therefore not depend on scene and lighting conditions. Thus presenting a performance oriented segmentation algorithm which is applicable in all critical real time scenarios.

Keywords: Image segmentation, Model-based, Region growing, Blob Analysis, Occlusion, Shadow detection, Intelligent videosurveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
271 An Improved C-Means Model for MRI Segmentation

Authors: Ying Shen, Weihua Zhu

Abstract:

Medical images are important to help identifying different diseases, for example, Magnetic resonance imaging (MRI) can be used to investigate the brain, spinal cord, bones, joints, breasts, blood vessels, and heart. Image segmentation, in medical image analysis, is usually the first step to find out some characteristics with similar color, intensity or texture so that the diagnosis could be further carried out based on these features. This paper introduces an improved C-means model to segment the MRI images. The model is based on information entropy to evaluate the segmentation results by achieving global optimization. Several contributions are significant. Firstly, Genetic Algorithm (GA) is used for achieving global optimization in this model where fuzzy C-means clustering algorithm (FCMA) is not capable of doing that. Secondly, the information entropy after segmentation is used for measuring the effectiveness of MRI image processing. Experimental results show the outperformance of the proposed model by comparing with traditional approaches.

Keywords: Magnetic Resonance Image, C-means model, image segmentation, information entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
270 An Efficient Segmentation Method Based on Local Entropy Characteristics of Iris Biometrics

Authors: Ali Shojaee Bakhtiari, Ali Asghar Beheshti Shirazi, Amir Sepasi Zahmati

Abstract:

An efficient iris segmentation method based on analyzing the local entropy characteristic of the iris image, is proposed in this paper and the strength and weaknesses of the method are analyzed for practical purposes. The method shows special strength in providing designers with an adequate degree of freedom in choosing the proper sections of the iris for their application purposes.

Keywords: Iris segmentation, entropy, biocryptosystem, biometric identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
269 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries

Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi

Abstract:

Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.

Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
268 Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation

Authors: Thejaswi H. Raya, Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.

Keywords: Automatic Selection of PCNN Parameters, Image Segmentation, Neural Networks, Pulse Coupled Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
267 Edge Segmentation of Satellite Image using Phase Congruency Model

Authors: Ahmed Zaafouri, Mounir Sayadi, Farhat Fnaiech

Abstract:

In this paper, we present a method for edge segmentation of satellite images based on 2-D Phase Congruency (PC) model. The proposed approach is composed by two steps: The contextual non linear smoothing algorithm (CNLS) is used to smooth the input images. Then, the 2D stretched Gabor filter (S-G filter) based on proposed angular variation is developed in order to avoid the multiple responses in the previous work. An assessment of our proposed method performance is provided in terms of accuracy of satellite image edge segmentation. The proposed method is compared with others known approaches.

Keywords: Edge segmentation, Phase congruency model, Satellite images, Stretched Gabor filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667