Search results for: data contents search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8326

Search results for: data contents search

7786 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: Data mining, data analysis, prediction, optimization, building operational performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3709
7785 Query Algebra for Semistuctured Data

Authors: Ei Ei Myat, Ni Lar Thein

Abstract:

With the tremendous growth of World Wide Web (WWW) data, there is an emerging need for effective information retrieval at the document level. Several query languages such as XML-QL, XPath, XQL, Quilt and XQuery are proposed in recent years to provide faster way of querying XML data, but they still lack of generality and efficiency. Our approach towards evolving a framework for querying semistructured documents is based on formal query algebra. Two elements are introduced in the proposed framework: first, a generic and flexible data model for logical representation of semistructured data and second, a set of operators for the manipulation of objects defined in the data model. In additional to accommodating several peculiarities of semistructured data, our model offers novel features such as bidirectional paths for navigational querying and partitions for data transformation that are not available in other proposals.

Keywords: Algebra, Semistructured data, Query Algebra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
7784 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García

Abstract:

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
7783 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: Simulation data, data summarization, spatial histograms, exploration and visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
7782 Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis

Authors: Reza Nadimi, Fariborz Jolai

Abstract:

This article combines two techniques: data envelopment analysis (DEA) and Factor analysis (FA) to data reduction in decision making units (DMU). Data envelopment analysis (DEA), a popular linear programming technique is useful to rate comparatively operational efficiency of decision making units (DMU) based on their deterministic (not necessarily stochastic) input–output data and factor analysis techniques, have been proposed as data reduction and classification technique, which can be applied in data envelopment analysis (DEA) technique for reduction input – output data. Numerical results reveal that the new approach shows a good consistency in ranking with DEA.

Keywords: Effectiveness, Decision Making, Data EnvelopmentAnalysis, Factor Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
7781 The Effects of Mountain Biking as Psychomotor Instrument in Physical Education: Balance’s Evaluation

Authors: Péricles Maia Andrade, Temístocles Damasceno Silva, Hector Luiz Rodrigues Munaro

Abstract:

The school physical education is going through several changes over the years, and diversification of its content from specific interests is one of the reasons for these changes, soon, the formality in education do not have to stay out, but needs to open up the possibilities offered by the world, so the Mountain Bike, an adventure sport, offers several opportunities for intervention Its application in the school allows diverse interventions in front of the psychomotor development, besides opening possibilities for other contents, respecting the previous experiences of the students in their common environment. The choice of theme was due to affinity with the practice and experience of the Mountain Bike at different levels. Both competitive as recreational, professional standard and amateur, focus as principle the bases of the Cycling, coupled with the inclusion in the Centre for Studies in Management of Sport and Leisure and of the Southwest Bahia State University and the preview of the modality's potential to help the children’s psychomotor development. The goal of this research was to demonstrate like a pilot project the effects of the Mountain Bike as psychomotor instrument in physical education at one of the psychomotor valences, Balance, evaluating Immobility, Static Balance and Dynamic Balance. The methodology used Fonseca’s Psychomotor Battery in 10 students (n=10) of a brazilian public primary’s school, with ages between 9 and 11 years old to use the Mountain Biking contents. The balance’s skills dichotomized in Regular and Good. Regarding the variable Immobility, in the initial test, regardless of gender, 70% (n = 7) were considered Regular. After four months of activity, the Good profile, which had only 30% (n = 3) of the sample, evolved to 60% (n = 6). As in Static and Dynamic Balance there was an increase of 30% (n = 3) and 50% (n = 5) respectively for Good. Between genders, female evolution was better for Good in Immobility and in Static Equilibrium. Already the male evolution was better observed in the Dynamic Equilibrium, with 66.7% (n = 4) for Good. Respecting the particularities of the motor development, an indication of the positive effects of the MTB for the evolution in the balance perceived, necessitating studies with greater sampling.

Keywords: Psychomotricity, balance, mountain biking, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
7780 Assessing and Evaluating the Course Outcomes of Control Systems Course Mapping Complex Engineering Problem Solving Issues and Associated Knowledge Profiles with the Program Outcomes

Authors: Muhibul Haque Bhuyan

Abstract:

In the current context, the engineering program educators need to think about how to develop the concepts and complex engineering problem-solving skills through various complex engineering activities by the undergraduate engineering students in various engineering courses. But most of them are facing challenges to assess and evaluate these skills of their students. In this study, detailed assessment and evaluation methods for the undergraduate Electrical and Electronic Engineering (EEE) program are stated using the Outcome-Based Education (OBE) approach. For this purpose, a final year course titled control systems has been selected. The assessment and evaluation approach, course contents, course objectives, course outcomes (COs), and their mapping to the program outcomes (POs) with complex engineering problems and activities via the knowledge profiles, performance indicators, rubrics of assessment, CO and PO attainment data, and other statistics, are reported for a student-cohort of control systems course registered by the students of BSc in EEE program in Spring 2021 Semester at the EEE Department of Southeast University (SEU). It is found that the target benchmark was achieved by the students of that course. Several recommendations for the continuous quality improvement (CQI) process are also provided.

Keywords: Complex engineering problem, knowledge profiles, OBE, control systems course, COs, PIs, POs, assessment rubrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
7779 The Design of Picture Books for Children from Tales of Amphawa Fireflies

Authors: Marut Pichetvit

Abstract:

The research objective aims to search information about storytelling and fable associated with fireflies in Amphawa community, in order to design and create a story book which is appropriate for the interests of children in early childhood. This book should help building the development of learning about the natural environment, imagination, and creativity among children, which then, brings about the promotion of the development, conservation and dissemination of cultural values and uniqueness of the Amphawa community. The population used in this study were 30 students in early childhood aged between 6-8 years-old, grade 1-3 from the Demonstration School of Suan Sunandha Rajabhat University. The method used for this study was purposive sampling and the research conducted by the query and analysis of data from both the document and the narrative field tales and fable associated with the fireflies of Amphawa community. Then, using the results to synthesize and create a conceptual design in a form of 8 visual images which were later applied to 1 illustrated children’s book and presented to the experts to evaluate and test this media.

Keywords: Children’s illustrated book, Fireflies, Amphawa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
7778 Quality of Life: Expectations and Achievements of Middle Class in Kazakhstan

Authors: Nazym Shedenova, Aigul Beimisheva

Abstract:

The improvement of quality of life is the main visible integrated indicator of state well-being. More and more states pay attention to define and to achieve social standards of quality of life as social-economic strategy of development. These standards are determinate by state features, complex of needs and interests of individual, family and society. It still remains in open question: “What is middle class" in contemporary Kazakhstan. Appearance of new social standards of quality of life is important indicator of its successful establishment. The middle class as agent of social, politic and economic reforms promotes to improve the quality of life of the country. But if consider a low and a middle stratums of middle class, we can see that high social expectations and real achievements are still significantly different. The article relies on the sociological data, collected during of search of household-s standards of living in Almaty city and Almaty region, and case-study of cottage city “Jana Kuat".

Keywords: the quality of life, the social standards of life, the middle class of Kazakhstan, the economic behavior of households.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2735
7777 Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data

Authors: Cristina G. Dascâlu, Corina Dima Cozma, Elena Carmen Cotrutz

Abstract:

The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.

Keywords: Data clustering, medical data, principal components analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
7776 Trajectory-Based Modified Policy Iteration

Authors: R. Sharma, M. Gopal

Abstract:

This paper presents a new problem solving approach that is able to generate optimal policy solution for finite-state stochastic sequential decision-making problems with high data efficiency. The proposed algorithm iteratively builds and improves an approximate Markov Decision Process (MDP) model along with cost-to-go value approximates by generating finite length trajectories through the state-space. The approach creates a synergy between an approximate evolving model and approximate cost-to-go values to produce a sequence of improving policies finally converging to the optimal policy through an intelligent and structured search of the policy space. The approach modifies the policy update step of the policy iteration so as to result in a speedy and stable convergence to the optimal policy. We apply the algorithm to a non-holonomic mobile robot control problem and compare its performance with other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, b) Watkins Q(λ), c) SARSA(λ).

Keywords: Markov Decision Process (MDP), Mobile robot, Policy iteration, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
7775 The Effect of Acute Toxicity and Thyroid Hormone Treatments on Hormonal Changes during Embryogenesis of Acipenser persicus

Authors: Samaneh Nazeri, Bagher Mojazi Amiri, Hamid Farahmand

Abstract:

Production of high quality fish eggs with reasonable hatching rate makes a success in aquaculture industries. It is influenced by the environmental stimulators and inhibitors. Diazinon is a widely-used pesticide in Golestan province (Southern Caspian Sea, North of Iran) which is washed to the aquatic environment (3 mg/L in the river). It is little known about the effect of this pesticide on the embryogenesis of sturgeon fish, the valuable species of the Caspian Sea. Hormonal content of the egg is an important factor to guaranty the successful passes of embryonic stages. In this study, the fate of Persian sturgeon embryo to 24, 48, 72, and 96-hours exposure of diazinon (LC50 dose) was tested. Also, the effect of thyroid hormones (T3 and T4) on these embryos was tested concurrently or separately with diazinon LC 50 dose. Fertilized eggs are exposed to T3 (low dose: 1 ng/ml, high dose: 10 ng/ml), T4 (low dose: 1 ng/ml, high dose: 10 ng/ml). Six eggs were randomly selected from each treatment (with three replicates) in five developmental stages (two cell- division, neural, heart present, heart beaten, and hatched larvae). The possibility of changing T3, T4, and cortisol contents of the embryos were determined in all treated groups and in every mentioned embryonic stage. The hatching rate in treated groups was assayed at the end of the embryogenesis to clarify the effect of thyroid hormones and diazinon. The results indicated significant differences in thyroid hormone contents, but no significant differences were recognized in cortisol levels at various early life stages of embryos. There was also significant difference in thyroid hormones in (T3, T4) + diazinon treated embryos (P˂0.05), while no significant difference between control and treatments in cortisol levels was observed. The highest hatching rate was recorded in HT3 treatment, while the lowest hatching rate was recorded for diazinon LC50 treatment. The result confirmed that Persian sturgeon embryo is less sensitive to diazinon compared to teleost embryos, and thyroid hormones may increase hatching rate even in the presence of diazinon.

Keywords: Persian sturgeon, diazinon, thyroid hormones, cortisol, embryo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
7774 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
7773 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: Data Estimation, link data, machine learning, road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
7772 Photo Mosaic Smartphone Application in Client-Server Based Large-Scale Image Databases

Authors: Sang-Hun Lee, Bum-Soo Kim, Yang-Sae Moon, Jinho Kim

Abstract:

In this paper we present a photo mosaic smartphone application in client-server based large-scale image databases. Photo mosaic is not a new concept, but there are very few smartphone applications especially for a huge number of images in the client-server environment. To support large-scale image databases, we first propose an overall framework working as a client-server model. We then present a concept of image-PAA features to efficiently handle a huge number of images and discuss its lower bounding property. We also present a best-match algorithm that exploits the lower bounding property of image-PAA. We finally implement an efficient Android-based application and demonstrate its feasibility.

Keywords: smartphone applications; photo mosaic; similarity search; data mining; large-scale image databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
7771 CNet Module Design of IMCS

Authors: Youkyung Park, SeungYup Kang, SungHo Kim, SimKyun Yook

Abstract:

IMCS is Integrated Monitoring and Control System for thermal power plant. This system consists of mainly two parts; controllers and OIS (Operator Interface System). These two parts are connected by Ethernet-based communication. The controller side of communication is managed by CNet module and OIS side is managed by data server of OIS. CNet module sends the data of controller to data server and receives commend data from data server. To minimizes or balance the load of data server, this module buffers data created by controller at every cycle and send buffered data to data server on request of data server. For multiple data server, this module manages the connection line with each data server and response for each request from multiple data server. CNet module is included in each controller of redundant system. When controller fail-over happens on redundant system, this module can provide data of controller to data sever without loss. This paper presents three main features – separation of get task, usage of ring buffer and monitoring communication status –of CNet module to carry out these functions.

Keywords: Ethernet communication, DCS, power plant, ring buffer, data integrity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1563
7770 Big Data: Concepts, Technologies and Applications in the Public Sector

Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora

Abstract:

Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.

Keywords: Big data, big data Analytics, Hadoop framework, cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
7769 Voices and Pictures from an Online Course and a Face to Face Course

Authors: Eti Gilad, Shosh Millet

Abstract:

In light of the technological development and its introduction into the field of education, an online course was designed in parallel to the 'conventional' course for teaching the ''Qualitative Research Methods''. This course aimed to characterize learning-teaching processes in a 'Qualitative Research Methods' course studied in two different frameworks. Moreover, its objective was to explore the difference between the culture of a physical learning environment and that of online learning. The research monitored four learner groups, a total of 72 students, for two years, two groups from the two course frameworks each year. The courses were obligatory for M.Ed. students at an academic college of education and were given by one female-lecturer. The research was conducted in the qualitative method as a case study in order to attain insights about occurrences in the actual contexts and sites in which they transpire. The research tools were open-ended questionnaire and reflections in the form of vignettes (meaningful short pictures) to all students as well as an interview with the lecturer. The tools facilitated not only triangulation but also collecting data consisting of voices and pictures of teaching and learning. The most prominent findings are: differences between the two courses in the change features of the learning environment culture for the acquisition of contents and qualitative research tools. They were manifested by teaching methods, illustration aids, lecturer's profile and students' profile.

Keywords: Face to face course, online course, qualitative research, vignettes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
7768 Innovation Trends in Latin America Countries

Authors: José Carlos Rodríguez, Mario Gómez

Abstract:

This paper analyzes innovation trends in Latin America countries by means of the number of patent applications filed by residents and non residents during the period 1965 to 2012. Making use of patent data released by the World Intellectual Property Organization (WIPO), we search for the presence of multiple structural changes in patent application series in Argentina, Brazil Chile, and Mexico. These changes may suggest that firms’ innovative activity has been modified as a result of implementing a particular science, technology and innovation (STI) policy. Accordingly, the new regulations implemented in these countries during 1980s and 1990s have influenced their intellectual property regimes. The question conducting this research is thus how STI policies in these countries have affected their innovation activity? The results achieved in this research confirm the existence of multiple structural changes in the series of patent applications resulting from STI policies implemented in these countries.

Keywords: Econometric methods, innovation activity, Latin America countries, patents, science, technology and innovation (STI) policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
7767 Strengthening Legal Protection of Personal Data through Technical Protection Regulation in Line with Human Rights

Authors: Tomy Prihananto, Damar Apri Sudarmadi

Abstract:

Indonesia recognizes the right to privacy as a human right. Indonesia provides legal protection against data management activities because the protection of personal data is a part of human rights. This paper aims to describe the arrangement of data management and data management in Indonesia. This paper is a descriptive research with qualitative approach and collecting data from literature study. Results of this paper are comprehensive arrangement of data that have been set up as a technical requirement of data protection by encryption methods. Arrangements on encryption and protection of personal data are mutually reinforcing arrangements in the protection of personal data. Indonesia has two important and immediately enacted laws that provide protection for the privacy of information that is part of human rights.

Keywords: Indonesia, protection, personal data, privacy, human rights, encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 986
7766 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: Decision tree, water quality, water pollution, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260
7765 Big Brain: A Single Database System for a Federated Data Warehouse Architecture

Authors: X. Gumara Rigol, I. Martínez de Apellaniz Anzuola, A. Garcia Serrano, A. Franzi Cros, O. Vidal Calbet, A. Al Maruf

Abstract:

Traditional federated architectures for data warehousing work well when corporations have existing regional data warehouses and there is a need to aggregate data at a global level. Schibsted Media Group has been maturing from a decentralised organisation into a more globalised one and needed to build both some of the regional data warehouses for some brands at the same time as the global one. In this paper, we present the architectural alternatives studied and why a custom federated approach was the notable recommendation to go further with the implementation. Although the data warehouses are logically federated, the implementation uses a single database system which presented many advantages like: cost reduction and improved data access to global users allowing consumers of the data to have a common data model for detailed analysis across different geographies and a flexible layer for local specific needs in the same place.

Keywords: Data integration, data warehousing, federated architecture, online analytical processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
7764 An In-Depth Analysis of Open Data Portals as an Emerging Public E-Service

Authors: Martin Lnenicka

Abstract:

Governments collect and produce large amounts of data. Increasingly, governments worldwide have started to implement open data initiatives and also launch open data portals to enable the release of these data in open and reusable formats. Therefore, a large number of open data repositories, catalogues and portals have been emerging in the world. The greater availability of interoperable and linkable open government data catalyzes secondary use of such data, so they can be used for building useful applications which leverage their value, allow insight, provide access to government services, and support transparency. The efficient development of successful open data portals makes it necessary to evaluate them systematic, in order to understand them better and assess the various types of value they generate, and identify the required improvements for increasing this value. Thus, the attention of this paper is directed particularly to the field of open data portals. The main aim of this paper is to compare the selected open data portals on the national level using content analysis and propose a new evaluation framework, which further improves the quality of these portals. It also establishes a set of considerations for involving businesses and citizens to create eservices and applications that leverage on the datasets available from these portals.

Keywords: Big data, content analysis, criteria comparison, data quality, open data, open data portals, public sector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3082
7763 ATM Service Analysis Using Predictive Data Mining

Authors: S. Madhavi, S. Abirami, C. Bharathi, B. Ekambaram, T. Krishna Sankar, A. Nattudurai, N. Vijayarangan

Abstract:

The high utilization rate of Automated Teller Machine (ATM) has inevitably caused the phenomena of waiting for a long time in the queue. This in turn has increased the out of stock situations. The ATM utilization helps to determine the usage level and states the necessity of the ATM based on the utilization of the ATM system. The time in which the ATM used more frequently (peak time) and based on the predicted solution the necessary actions are taken by the bank management. The analysis can be done by using the concept of Data Mining and the major part are analyzed based on the predictive data mining. The results are predicted from the historical data (past data) and track the relevant solution which is required. Weka tool is used for the analysis of data based on predictive data mining.

Keywords: ATM, Bank Management, Data Mining, Historical data, Predictive Data Mining, Weka tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5613
7762 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting

Authors: Gangmin Li, Fan Yang

Abstract:

Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behavior data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.

Keywords: Personalized recommendation, generative user modeling, user intention identification, large language models, chain-of-thought prompting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87
7761 File System-Based Data Protection Approach

Authors: Jaechun No

Abstract:

As data to be stored in storage subsystems tremendously increases, data protection techniques have become more important than ever, to provide data availability and reliability. In this paper, we present the file system-based data protection (WOWSnap) that has been implemented using WORM (Write-Once-Read-Many) scheme. In the WOWSnap, once WORM files have been created, only the privileged read requests to them are allowed to protect data against any intentional/accidental intrusions. Furthermore, all WORM files are related to their protection cycle that is a time period during which WORM files should securely be protected. Once their protection cycle is expired, the WORM files are automatically moved to the general-purpose data section without any user interference. This prevents the WORM data section from being consumed by unnecessary files. We evaluated the performance of WOWSnap on Linux cluster.

Keywords: Data protection, Protection cycle, WORM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
7760 Machine Learning in Production Systems Design Using Genetic Algorithms

Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli

Abstract:

To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.

Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
7759 Towards an Integrated Proposal for Performance Measurement Indicators (Financial and Operational) in Advanced Production Practices

Authors: José A. D. Machuca, Bernabé Escobar-Pérez, Pedro Garrido Vega, Darkys E. Lujan García

Abstract:

Starting with an analysis of the financial and operational indicators that can be found in the specialised literature, this study aims to contribute to improvements in the performance measurement systems used when the unit of analysis is the manufacturing plant. For this a search was done in the highest impact Journals of Production and Operations Management and Management Accounting , with the aim of determining the financial and operational indicators used to evaluate performance when Advanced Production Practices have been implemented, more specifically when the practices implemented are Total Quality Management, JIT/Lean Manufacturing and Total Productive Maintenance. This has enabled us to obtain a classification of the two types of indicators based on how much each is used. For the financial indicators we have also prepared a proposal that can be adapted to manufacturing plants- accounting features. In the near future we will propose a model that links practices implementation with financial and operational indicators and these two last with each other. We aim to will test this model empirically with the data obtained in the High Performance Manufacturing Project.

Keywords: Advanced Production Practices, Financial Indicators, Non-Financial Indicators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
7758 The Data Mining usage in Production System Management

Authors: Pavel Vazan, Pavol Tanuska, Michal Kebisek

Abstract:

The paper gives the pilot results of the project that is oriented on the use of data mining techniques and knowledge discoveries from production systems through them. They have been used in the management of these systems. The simulation models of manufacturing systems have been developed to obtain the necessary data about production. The authors have developed the way of storing data obtained from the simulation models in the data warehouse. Data mining model has been created by using specific methods and selected techniques for defined problems of production system management. The new knowledge has been applied to production management system. Gained knowledge has been tested on simulation models of the production system. An important benefit of the project has been proposal of the new methodology. This methodology is focused on data mining from the databases that store operational data about the production process.

Keywords: data mining, data warehousing, management of production system, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3476
7757 A Review: Comparative Study of Diverse Collection of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi, S. Vidhya, M. Sharmila

Abstract:

There have been a lot of efforts and researches undertaken in developing efficient tools for performing several tasks in data mining. Due to the massive amount of information embedded in huge data warehouses maintained in several domains, the extraction of meaningful pattern is no longer feasible. This issue turns to be more obligatory for developing several tools in data mining. Furthermore the major aspire of data mining software is to build a resourceful predictive or descriptive model for handling large amount of information more efficiently and user friendly. Data mining mainly contracts with excessive collection of data that inflicts huge rigorous computational constraints. These out coming challenges lead to the emergence of powerful data mining technologies. In this survey a diverse collection of data mining tools are exemplified and also contrasted with the salient features and performance behavior of each tool.

Keywords: Business Analytics, Data Mining, Data Analysis, Machine Learning, Text Mining, Predictive Analytics, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3364