Search results for: Air classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1124

Search results for: Air classification

584 Hacking's 'Between Goffman and Foucault': A Theoretical Frame for Criminology

Authors: Tomás Speziale

Abstract:

This paper aims to analyse how Ian Hacking states the theoretical basis of his research on the classification of people. Although all his early philosophical education had been based in Foucault, it is also true that Erving Goffman’s perspective provided him with epistemological and methodological tools for understanding face-to-face relationships. Hence, all his works must be thought of as social science texts that combine the research on how the individuals are constituted ‘top-down’ (as in Foucault), with the inquiry into how people renegotiate ‘bottom-up’ the classifications about them. Thus, Hacking´s proposal constitutes a middle ground between the French Philosopher and the American Sociologist. Placing himself between both authors allows Hacking to build a frame that is expected to adjust to Social Sciences’ main particularity: the fact that they study interactive kinds. These are kinds of people, which imply that those who are classified can change in certain ways that prompt the need for changing previous classifications themselves. It is all about the interaction between the labelling of people and the people who are classified. Consequently, understanding the way in which Hacking uses Foucault’s and Goffman’s theories is essential to fully comprehend the social dynamic between individuals and concepts, what Bert Hansen had called dialectical realism. His theoretical proposal, therefore, is not only valuable because it combines diverse perspectives, but also because it constitutes an utterly original and relevant framework for Sociological theory and particularly for Criminology.

Keywords: Classification of people, Foucault`s archaeology, Goffman`s interpersonal sociology, interactive kinds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
583 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments

Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein

Abstract:

Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.

Keywords: Virtual Reality, effective computing, effective VR, emotion-based effective physiological database.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994
582 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: Computational social science, movie preference, machine learning, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
581 Technologic Information about Photovoltaic Applied in Urban Residences

Authors: Stephanie Fabris Russo, Daiane Costa Guimarães, Jonas Pedro Fabris, Maria Emilia Camargo, Suzana Leitão Russo, José Augusto Andrade Filho

Abstract:

Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban residences. The patent search was based on ESPACENET, associating the keywords photovoltaic and home, where we found 136 patent documents in the period of 1994-2015 in the fields title and abstract. Note that the years 2009, 2010, 2011, 2012, 2013 and 2014 had the highest number of applicants, with respectively, 11, 13, 23, 29, 15 and 21. Regarding the country that deposited about this technology, it is clear that China leads with 67 patent deposits, followed by Japan with 38 patents applications. It is important to note that most depositors, 50% are companies, 44% are individual inventors and only 6% are universities. On the International Patent classification (IPC) codes, we noted that the most present classification in results was H02J3/38, which represents provisions in parallel to feed a single network by two or more generators, converters or transformers. Among all categories, there is the H session, which means Electricity, with 70% of the patents.

Keywords: Prospecting, technology forecasting, photovoltaic, urban residences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
580 Identifying Quality Islamic Content in Community Question Answering Sites

Authors: Rabia Bibi, Muhammad Shahzad Faisal, Khalid Iqbal, Atif Inayat

Abstract:

Internet is growing rapidly and new community-based content is added by people every second. With this fast-growing community-based content, if a user requires answers of particular questions, then reviews are required from experts or community. However, it is difficult to get quality answers. The Muslim community all over the world is seeking help to get their questions and issues discussed to get answers. Online web portals of religious schools and community-based question answering sites are two big platforms to solve the issues of users. In the case of religious schools, there are experts and qualified religious scholars (mufti) who can give the expert opinion. However, the quality of community-based content cannot be guaranteed as it may not be an answer that satisfies the question of a user. Users on CQA sites may include spammers or individual criticizing the questioner instead of providing useful answers. In this paper, we research strategies to naturally distinguish the right content. As an experiment, we concentrate on Yahoo! Answers, and Quora, popular online QA sites, where questions are asked, answered, edited, and organized by a large community of users. We present the classification of data to categorize both relevant and irrelevant answers. Specifically, we demonstrate that the proposed framework can isolate quality answers from the rest with an exactness near that of people.

Keywords: Community-based question and answering, evaluation and prediction of quality answer, answer classification, Islamic content, answer ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80
579 Customer Need Type Classification Model using Data Mining Techniques for Recommender Systems

Authors: Kyoung-jae Kim

Abstract:

Recommender systems are usually regarded as an important marketing tool in the e-commerce. They use important information about users to facilitate accurate recommendation. The information includes user context such as location, time and interest for personalization of mobile users. We can easily collect information about location and time because mobile devices communicate with the base station of the service provider. However, information about user interest can-t be easily collected because user interest can not be captured automatically without user-s approval process. User interest usually represented as a need. In this study, we classify needs into two types according to prior research. This study investigates the usefulness of data mining techniques for classifying user need type for recommendation systems. We employ several data mining techniques including artificial neural networks, decision trees, case-based reasoning, and multivariate discriminant analysis. Experimental results show that CHAID algorithm outperforms other models for classifying user need type. This study performs McNemar test to examine the statistical significance of the differences of classification results. The results of McNemar test also show that CHAID performs better than the other models with statistical significance.

Keywords: Customer need type, Data mining techniques, Recommender system, Personalization, Mobile user.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
578 Breast Cancer Survivability Prediction via Classifier Ensemble

Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia

Abstract:

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
577 Fetal and Infant Mortality in Botucatu City, São Paulo State, Brazil: Evaluation of Maternal - Infant Health Care

Authors: Noda L. M., Salvador I. C, C. M. L. G. Parada, Fonseca C. R. B.

Abstract:

In Brazil, neonatal mortality rate is considered incompatible with the country development conditions, and has been a Public Health concern. Reduction in infant mortality rates has also been part of the Millennium Development Goals, a commitment made by countries, members of the Organization of United Nations (OUN), including Brazil. Fetal mortality rate is considered a highly sensitive indicator of health care quality. Suitable actions, such as good quality and access to health services may contribute positively towards reduction in these fetal and neonatal rates. With appropriate antenatal follow-up and health care during gestation and delivery, some death causes could be reduced or even prevented by means of early diagnosis and intervention, as well as changes in risk factors and interventions. Objectives: To study the quality of maternal and infant health care based on fetal and neonatal mortality, as well as the possible actions to prevent those deaths in Botucatu (Brazil). Methods: Classification of prevention according to the International Classification of Diseases and the modified Wigglesworth´s classification. In order to evaluate adequacy, indicators of quality of antenatal and delivery care were established by the authors. Results: Considering fetal deaths, 56.7% of them occurred before delivery, which reveals possible shortcomings in antenatal care, and 38.2% of them were a result of intra- labor changes, which could be prevented or reduced by adequate obstetric management. These findings were different from those in the group of early neonatal deaths which were also studied. Adequacy of health services showed that antenatal and childbirth care was appropriate for 24% and 33.3% of pregnant women, respectively, which corroborates the results of prevention. These results revealed that shortcomings in obstetric and antenatal care could be the causes of deaths in the study. Early and late neonatal deaths have similar characteristics: 76% could be prevented or reduced mainly by adequate newborn care (52.9%) and adequate health care for gestational women (11.7%). When adequacy of care was evaluated, childbirth and newborn care was adequate in 25.8% and antenatal care was adequate in 16.1%. In conclusion, direct relationship was found between adequacy and quality of care rendered to pregnant women and newborns, and fetal and infant mortality. Moreover, our findings highlight that deaths could be prevented by an adequate obstetric and neonatal management.

Keywords: Fetal Mortality, Infant Mortality, Maternal-Child Health Services, Program Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5069
576 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.

As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
575 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.

Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188
574 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
573 Cheiloscopy and Dactylography in Relation to ABO Blood Groups: Egyptian vs. Malay Populations

Authors: Manal Hassan Abdel Aziz, Fatma Mohamed Magdy Badr El Dine, Nourhan Mohamed Mohamed Saeed

Abstract:

Establishing association between lip print patterns and those of fingerprints as well as blood groups is of fundamental importance in the forensic identification domain. The first aim of the current study was to determine the prevalent types of ABO blood groups, lip prints and fingerprints patterns in both studied populations. Secondly, to analyze any relation found between the different print patterns and the blood groups, which would be valuable in identification purposes. The present study was conducted on 60 healthy volunteers, (30 males and 30 females) from each of the studied population. Lip prints and fingerprints were obtained and classified according to Tsuchihashi's classification and Michael Kuchen’s classification, respectively. The results show that the ulnar loop was the most frequent among both populations. Blood group A was the most frequent among Egyptians, while blood groups O and B were the predominant among Malaysians. Significant relations were observed between lip print patterns and fingerprint (in the second quadrant for Egyptian males and the first one for Malaysian). For Malaysian females, a statistically significant association was proved in the fourth quadrant. Regarding the blood groups, 89.5% of ulnar loops were significantly related to blood group A among Egyptian males. The results proved an association between the fingerprint pattern and the lip prints, as well as between the ABO blood group and the pattern of fingerprints. However, further researches with larger sample sizes need to be directed to approve the current results.

Keywords: ABO, cheiloscopy, dactylography, Egyptians, Malaysians.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884
572 An Automatic Bayesian Classification System for File Format Selection

Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan

Abstract:

This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.

Keywords: Data mining, digital libraries, digital preservation, file format.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
571 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques

Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson

Abstract:

Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).

Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
570 sEMG Interface Design for Locomotion Identification

Authors: Rohit Gupta, Ravinder Agarwal

Abstract:

Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.

Keywords: Classifiers, feature selection, locomotion, sEMG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
569 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices

Authors: Mst Ilme Faridatul, Bo Wu

Abstract:

Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.

Keywords: Land cover, mapping, multi-temporal, spectral indices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
568 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: Classification, fuzzy, inspection system, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
567 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images

Authors: Meenal Surawar, Rajashree Kotharkar

Abstract:

Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.

Keywords: Land use, land cover, land surface temperature, remote sensing, urban heat island.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
566 Government of Ghana’s Budget: Its Functions, Coverage, Classification, and Integration with Chart of Accounts

Authors: Mohammed Sani Abdulai

Abstract:

Government budgets are the primary instruments for formulating and implementing a country’s fiscal policy objectives, development priorities, and the overall socio-economic aspirations of its people. Thus, in this paper, the author examined the Government of Ghana’s budgets with respect to their functions, coverage, classifications, and integration with the country’s chart of accounts. The author did so by amalgamating the research findings of extant literature with (a) the operational and procedural guidelines underpinning the formulation and execution of the government’s budgets; (b) the recommendations made by various development partners and thinktanks on reforming the country’s budgeting processes and procedures; and (c) the lessons Ghana could learn from the budget reform efforts of other countries. By way of research findings, the paper showed that the Government of Ghana’s budgets in terms of function are both eclectic and multidimensional. On coverage, the paper showed that the country’s budgets duly cover the revenues and expenditures of the general government (i.e., both the central and sub-national governments). Finally, on classifications, the paper noted with delight the Government of Ghana’s effort in providing classificatory codes to both its national development agenda and such international development goals as the AU’s Agenda 2063 and the UN’s Sustainable Development Goals. However, the paper found some significant lapses that require a complete overhaul and structuring on the integrations of its budget classifications with its chart of accounts. Thus, the paper concluded with a detailed examination of the challenges confronting the country’s current chart of accounts and recommendations for addressing them.

Keywords: Budget, budgetary transactions, budgetary governance, Chart of Accounts, classification, composition, coverage, Public Financial Management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
565 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images

Authors: Mehrnoosh Omati, Mahmod Reza Sahebi

Abstract:

The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.

Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
564 Identification of Spam Keywords Using Hierarchical Category in C2C E-commerce

Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park

Abstract:

Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like ebay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C E-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C E-commerce.

Keywords: Spam Keyword, E-commerce, keyword features, spam filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
563 Classifying Students for E-Learning in Information Technology Course Using ANN

Authors: S. Areerachakul, N. Ployong, S. Na Songkla

Abstract:

This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.

Keywords: Artificial neural network, classification, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
562 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: Data mining, ensemble, radial basis function, support vector machine, accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
561 Predictors of Social Participation of Children with Cerebral Palsy in Primary Schools in Czech Republic

Authors: Marija Zulić, Vanda Hájková, Nina Brkić-Jovanović, Linda Rathousová, Sanja Tomić

Abstract:

Cerebral palsy is primarily reflected in the disorder of the development of movement and posture, which may be accompanied by sensory disturbances, disturbances of perception, cognition and communication, behavioural disorders and epilepsy. According to current inclusive attitudes towards people with disabilities implies that full social participation of children with cerebral palsy means inclusion in all activities in family, peer, school and leisure environments in the same scope and to the same extent as is the case with the children of proper development and without physical difficulties. Due to the fact that it has been established that the quality of children's participation in primary school is directly related to their social inclusion in future life, the aim of the paper is to identify predictors of social participation, respectively, and in particular, factors that could to improve the quality of social participation of children with cerebral palsy, in the primary school environment in Czech Republic. The study includes children with cerebral palsy (n = 75) in the Czech Republic, aged between six and 12 years who attend mainstream or special primary schools to the sixth grade. The main instrument used was the first and third part of the School function assessment questionnaire. It will also take into account the type of damage assessed according to a scale the Gross motor function classification system, five–level classification system for cerebral palsy. The research results will provide detailed insight into the degree of social participation of children with cerebral palsy and the factors that would be a potential cause of their levels of participation, in regular and special primary schools, in different socioeconomic environments in Czech Republic.

Keywords: Cerebral palsy, social participation, Czech Republic, school function assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
560 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties

Authors: G. Martino, F. Silva, E. Marchal

Abstract:

The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.

Keywords: Clusterization and classification algorithms, integrated planning, optimization, mathematical modeling, penalty minimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
559 Information Retrieval: Improving Question Answering Systems by Query Reformulation and Answer Validation

Authors: Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour

Abstract:

Question answering (QA) aims at retrieving precise information from a large collection of documents. Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems to reformulate questions. Moreover answer processing module is an emerging topic in QA systems, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic relations and co-occurrence keywords. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing which both affect on the evaluation of the system operations. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. The objective of an Answer Validation task is thus to judge the correctness of an answer returned by a QA system, according to the text snippet given to support it. For validating answers we apply candidate answer filtering, candidate answer ranking and also it has a final validation section by user voting. Also this paper described new architecture of question and answer processing modules with modeling, implementing and evaluating the system. The system differs from most question answering systems in its answer validation model. This module makes it more suitable to find exact answer. Results show that, from total 50 asked questions, evaluation of the model, show 92% improving the decision of the system.

Keywords: Answer processing, answer validation, classification, question answering, query reformulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847
558 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process

Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast

Abstract:

Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.

Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
557 A Robust Method for Finding Nearest-Neighbor using Hexagon Cells

Authors: Ahmad Attiq Al-Ogaibi, Ahmad Sharieh, Moh’d Belal Al-Zoubi, R. Bremananth

Abstract:

In pattern clustering, nearest neighborhood point computation is a challenging issue for many applications in the area of research such as Remote Sensing, Computer Vision, Pattern Recognition and Statistical Imaging. Nearest neighborhood computation is an essential computation for providing sufficient classification among the volume of pixels (voxels) in order to localize the active-region-of-interests (AROI). Furthermore, it is needed to compute spatial metric relationships of diverse area of imaging based on the applications of pattern recognition. In this paper, we propose a new methodology for finding the nearest neighbor point, depending on making a virtually grid of a hexagon cells, then locate every point beneath them. An algorithm is suggested for minimizing the computation and increasing the turnaround time of the process. The nearest neighbor query points Φ are fetched by seeking fashion of hexagon holistic. Seeking will be repeated until an AROI Φ is to be expected. If any point Υ is located then searching starts in the nearest hexagons in a circular way. The First hexagon is considered be level 0 (L0) and the surrounded hexagons is level 1 (L1). If Υ is located in L1, then search starts in the next level (L2) to ensure that Υ is the nearest neighbor for Φ. Based on the result and experimental results, we found that the proposed method has an advantage over the traditional methods in terms of minimizing the time complexity required for searching the neighbors, in turn, efficiency of classification will be improved sufficiently.

Keywords: Hexagon cells, k-nearest neighbors, Nearest Neighbor, Pattern recognition, Query pattern, Virtually grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2802
556 Implementation of the Personal Emergency Response System

Authors: Ah-young Jeon, In-cheol Kim, Jae-hee Jung, Soo-young Ye, Jae-hyung Kim, Ki-gon Nam, Seoung-wan Baik, Jung-hoon Ro, Gye-rok Jeon

Abstract:

The aged are faced with increasing risk for falls. The aged have the easily fragile bones than others. When falls have occurred, it is important to detect this emergency state because such events often lead to more serious illness or even death. A implementation of PDA system, for detection of emergency situation, was developed using 3-axis accelerometer in this paper as follows. The signals were acquired from the 3-axis accelerometer, and then transmitted to the PDA through Bluetooth module. This system can classify the human activity, and also detect the emergency state like falls. When the fall occurs, the system generates the alarm on the PDA. If a subject does not respond to the alarm, the system determines whether the current situation is an emergency state or not, and then sends some information to the emergency center in the case of urgent situation. Three different studies were conducted on 12 experimental subjects, with results indicating a good accuracy. The first study was performed to detect the posture change of human daily activity. The second study was performed to detect the correct direction of fall. The third study was conducted to check the classification of the daily physical activity. Each test was lasted at least 1 min. in third study. The output of acceleration signal was compared and evaluated by changing a various posture after attaching a 3-axis accelerometer module on the chest. The newly developed system has some important features such as portability, convenience and low cost. One of the main advantages of this system is that it is available at home healthcare environment. Another important feature lies in low cost to manufacture device. The implemented system can detect the fall accurately, so will be widely used in emergency situation.

Keywords: Alarm System, Ambulatory monitoring, Emergency detection, Classification of activity, and 3-axis accelerometer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
555 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: B. Golchin, N. Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665