Search results for: reaction time.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6945

Search results for: reaction time.

6435 Comparison of Artificial Neural Network Architectures in the Task of Tourism Time Series Forecast

Authors: João Paulo Teixeira, Paula Odete Fernandes

Abstract:

The authors have been developing several models based on artificial neural networks, linear regression models, Box- Jenkins methodology and ARIMA models to predict the time series of tourism. The time series consist in the “Monthly Number of Guest Nights in the Hotels" of one region. Several comparisons between the different type models have been experimented as well as the features used at the entrance of the models. The Artificial Neural Network (ANN) models have always had their performance at the top of the best models. Usually the feed-forward architecture was used due to their huge application and results. In this paper the author made a comparison between different architectures of the ANNs using simply the same input. Therefore, the traditional feed-forward architecture, the cascade forwards, a recurrent Elman architecture and a radial based architecture were discussed and compared based on the task of predicting the mentioned time series.

Keywords: Artificial Neural Network Architectures, time series forecast, tourism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
6434 Diagnostic Investigation of Liftoff Time of Solid Propellant Rockets

Authors: Vignesh Rangaraj, Jerin John, N. Naveen, M. Karuppasamy Pandian, P. Sathyan, V. R. Sanal Kumar

Abstract:

In this paper parametric analytical studies have been carried out to examine the intrinsic flow physics pertaining to the liftoff time of solid propellant rockets. Idealized inert simulators of solid rockets are selected for numerical studies to examining the preignition chamber dynamics. Detailed diagnostic investigations have been carried out using an unsteady two-dimensional k-omega turbulence model. We conjectured from the numerical results that the altered variations of the igniter jet impingement angle, turbulence level, time and location of the first ignition, flame spread characteristics, the overall chamber dynamics including the boundary layer growth history are having bearing on the time for nozzle flow chocking for establishing the required thrust for the rocket liftoff. We concluded that the altered flow choking time of strap-on motors with the pre-determined identical ignition time at the lift off phase will lead to the malfunctioning of the rocket. We also concluded that, in the light of the space debris, an error in predicting the liftoff time can lead to an unfavorable launch window amounts the satellite injection errors and/or the mission failures.

Keywords: Liftoff, Nozzle Choking, Solid Rocket, Takeoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
6433 Stability Verification for Bilateral Teleoperation System with Variable Time Delay

Authors: M. Sallam, A. Ramadan, M. Fanni, M. Abdellatif

Abstract:

Time delay in bilateral teleoperation system was introduced as a sufficient reason to make the system unstable or certainly degrade the system performance. In this paper, simulations and experimental results of implementing p-like control scheme, under different ranges of variable time delay, will be presented to verify a certain criteria, which guarantee the system stability and position tracking. The system consists of two Phantom premium 1.5A devices. One of them acts as a master and the other acts as a slave. The study includes deriving the Phantom kinematic and dynamic model, establishing the link between the two Phantoms over Simulink in Matlab, and verifying the stability criteria with simulations and real experiments.

Keywords: bilateral teleoperation, Phantom premium 1.5, varying time delay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
6432 Evolving Knowledge Extraction from Online Resources

Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao

Abstract:

In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.

Keywords: Evolving learning, knowledge extraction, knowledge graph, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
6431 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
6430 A Technique for Reachability Graph Generation for the Petri Net Models of Parallel Processes

Authors: Farooq Ahmad, Hejiao Huang, Xiaolong Wang

Abstract:

Reachability graph (RG) generation suffers from the problem of exponential space and time complexity. To alleviate the more critical problem of time complexity, this paper presents the new approach for RG generation for the Petri net (PN) models of parallel processes. Independent RGs for each parallel process in the PN structure are generated in parallel and cross-product of these RGs turns into the exhaustive state space from which the RG of given parallel system is determined. The complexity analysis of the presented algorithm illuminates significant decrease in the time complexity cost of RG generation. The proposed technique is applicable to parallel programs having multiple threads with the synchronization problem.

Keywords: Parallel processes, Petri net, reachability graph, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
6429 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion

Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina

Abstract:

The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.

Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1533
6428 Synchronization for Impulsive Fuzzy Cohen-Grossberg Neural Networks with Time Delays under Noise Perturbation

Authors: Changzhao Li, Juan Zhang

Abstract:

In this paper, we investigate a class of fuzzy Cohen- Grossberg neural networks with time delays and impulsive effects. By virtue of stochastic analysis, Halanay inequality for stochastic differential equations, we find sufficient conditions for the global exponential square-mean synchronization of the FCGNNs under noise perturbation. In particular, the traditional assumption on the differentiability of the time-varying delays is no longer needed. Finally, a numerical example is given to show the effectiveness of the results in this paper.

Keywords: Fuzzy Cohen-Grossberg neural networks (FCGNNs), complete synchronization, time delays, impulsive, noise perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
6427 On a Discrete-Time GIX/Geo/1/N Queue with Single Working Vacation and Partial Batch Rejection

Authors: Shan Gao

Abstract:

This paper treats a discrete-time finite buffer batch arrival queue with a single working vacation and partial batch rejection in which the inter-arrival and service times are, respectively, arbitrary and geometrically distributed. The queue is analyzed by using the supplementary variable and the imbedded Markov-chain techniques. We obtain steady-state system length distributions at prearrival, arbitrary and outside observer-s observation epochs. We also present probability generation function (p.g.f.) of actual waiting-time distribution in the system and some performance measures.

Keywords: Discrete-time, finite buffer, single working vacation, batch arrival, partial rejection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
6426 A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations

Authors: Joe Imae, Kenjiro Shinagawa, Tomoaki Kobayashi, Guisheng Zhai

Abstract:

We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.

Keywords: Nonlinear Control, Optimal Control, Hamilton-Jacobi Equation, Virtual-Time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
6425 Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography

Authors: M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song

Abstract:

Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.

Keywords: Photoacoustic tomography, inflammation detection, rat, kidney, contrast agent, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1367
6424 Feedback-Controlled Server for Scheduling Aperiodic Tasks

Authors: Shinpei Kato, Nobuyuki Yamasaki

Abstract:

This paper proposes a scheduling scheme using feedback control to reduce the response time of aperiodic tasks with soft real-time constraints. We design an algorithm based on the proposed scheduling scheme and Total Bandwidth Server (TBS) that is a conventional server technique for scheduling aperiodic tasks. We then describe the feedback controller of the algorithm and give the control parameter tuning methods. The simulation study demonstrates that the algorithm can reduce the mean response time up to 26% compared to TBS in exchange for slight deadline misses.

Keywords: Real-Time Systems, Aperiodic Task Scheduling, Feedback-Control Scheduling, Total Bandwidth Server.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
6423 Delay Analysis of Sampled-Data Systems in Hard RTOS

Authors: A. M. Azad, M. Alam, C. M. Hussain

Abstract:

In this paper, we have presented the effect of varying time-delays on performance and stability in the single-channel multirate sampled-data system in hard real-time (RT-Linux) environment. The sampling task require response time that might exceed the capacity of RT-Linux. So a straight implementation with RT-Linux is not feasible, because of the latency of the systems and hence, sampling period should be less to handle this task. The best sampling rate is chosen for the sampled-data system, which is the slowest rate meets all performance requirements. RT-Linux is consistent with its specifications and the resolution of the real-time is considered 0.01 seconds to achieve an efficient result. The test results of our laboratory experiment shows that the multi-rate control technique in hard real-time operating system (RTOS) can improve the stability problem caused by the random access delays and asynchronization.

Keywords: Multi-rate, PID, RT-Linux, Sampled-data, Servo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
6422 Efficient Time Synchronization in Wireless Sensor Networks

Authors: Shehzad Ashraf Ch., Aftab Ahmed Khan, Zahid Mehmood, Muhammad Ahsan Habib, Qasim Mehmood

Abstract:

Energy efficiency is the key requirement in wireless sensor network as sensors are small, cheap and are deployed in very large number in a large geographical area, so there is no question of replacing the batteries of the sensors once deployed. Different ways can be used for efficient energy transmission including Multi-Hop algorithms, collaborative communication, cooperativecommunication, Beam- forming, routing algorithm, phase, frequency and time synchronization. The paper reviews the need for time synchronization and proposed a BFS based synchronization algorithm to achieve energy efficiency. The efficiency of our protocol has been tested and verified by simulation

Keywords: time synchronization, sensor networks, energy efficiency, breadth first search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
6421 In Silico Analysis of Quinoxaline Ligand Conformations on 1ZIP: Adenylate Kinase

Authors: Arun Kumar V.A., Keshav Mohan

Abstract:

Adenylate kinase (AK) catalyse the phosphotransferase reaction plays an important role in cellular energy homeostasis. The inhibitors of bacterial AK are useful in the treatment of several bacterial infections. To the novel inhibitors of AK, docking studies performed by using the 3D structure of Bacillus stearothermophilus adenylate kinase from protein data bank (IZIP). 46 Quinoxaline analogues were docked in 1ZIP and selected the highly interacting compounds based on their binding energies, for further studies

Keywords: Kinase, quinoxaline, homeostasis, inhibitor, nucleotide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
6420 A General Framework for Modeling Replicated Real-Time Database

Authors: Hala Abdel hameed, Hazem M. El-Bakry, Torky Sultan

Abstract:

There are many issues that affect modeling and designing real-time databases. One of those issues is maintaining consistency between the actual state of the real-time object of the external environment and its images as reflected by all its replicas distributed over multiple nodes. The need to improve the scalability is another important issue. In this paper, we present a general framework to design a replicated real-time database for small to medium scale systems and maintain all timing constrains. In order to extend the idea for modeling a large scale database, we present a general outline that consider improving the scalability by using an existing static segmentation algorithm applied on the whole database, with the intent to lower the degree of replication, enables segments to have individual degrees of replication with the purpose of avoiding excessive resource usage, which all together contribute in solving the scalability problem for DRTDBS.

Keywords: Database modeling, Distributed database, Real time databases, Replication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
6419 Nonstationarity Modeling of Economic and Financial Time Series

Authors: C. Slim

Abstract:

Traditional techniques for analyzing time series are based on the notion of stationarity of phenomena under study, but in reality most economic and financial series do not verify this hypothesis, which implies the implementation of specific tools for the detection of such behavior. In this paper, we study nonstationary non-seasonal time series tests in a non-exhaustive manner. We formalize the problem of nonstationary processes with numerical simulations and take stock of their statistical characteristics. The theoretical aspects of some of the most common unit root tests will be discussed. We detail the specification of the tests, showing the advantages and disadvantages of each. The empirical study focuses on the application of these tests to the exchange rate (USD/TND) and the Consumer Price Index (CPI) in Tunisia, in order to compare the Power of these tests with the characteristics of the series.

Keywords: Stationarity, unit root tests, economic time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
6418 Assessment of Time-Lapse in Visible and Thermal Face Recognition

Authors: Sajad Farokhi, Siti Mariyam Shamsuddin, Jan Flusser, Usman Ullah Sheikh

Abstract:

Although face recognition seems as an easy task for human, automatic face recognition is a much more challenging task due to variations in time, illumination and pose. In this paper, the influence of time-lapse on visible and thermal images is examined. Orthogonal moment invariants are used as a feature extractor to analyze the effect of time-lapse on thermal and visible images and the results are compared with conventional Principal Component Analysis (PCA). A new triangle square ratio criterion is employed instead of Euclidean distance to enhance the performance of nearest neighbor classifier. The results of this study indicate that the ideal feature vectors can be represented with high discrimination power due to the global characteristic of orthogonal moment invariants. Moreover, the effect of time-lapse has been decreasing and enhancing the accuracy of face recognition considerably in comparison with PCA. Furthermore, our experimental results based on moment invariant and triangle square ratio criterion show that the proposed approach achieves on average 13.6% higher in recognition rate than PCA.

Keywords: Infrared Face recognition, Time-lapse, Zernike moment invariants

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
6417 Hybrid Adaptive Modeling to Enhance Robustness of Real-Time Optimization

Authors: Hussain Syed Asad, Richard Kwok Kit Yuen, Gongsheng Huang

Abstract:

Real-time optimization has been considered an effective approach for improving energy efficient operation of heating, ventilation, and air-conditioning (HVAC) systems. In model-based real-time optimization, model mismatches cannot be avoided. When model mismatches are significant, the performance of the real-time optimization will be impaired and hence the expected energy saving will be reduced. In this paper, the model mismatches for chiller plant on real-time optimization are considered. In the real-time optimization of the chiller plant, simplified semi-physical or grey box model of chiller is always used, which should be identified using available operation data. To overcome the model mismatches associated with the chiller model, hybrid Genetic Algorithms (HGAs) method is used for online real-time training of the chiller model. HGAs combines Genetic Algorithms (GAs) method (for global search) and traditional optimization method (i.e. faster and more efficient for local search) to avoid conventional hit and trial process of GAs. The identification of model parameters is synthesized as an optimization problem; and the objective function is the Least Square Error between the output from the model and the actual output from the chiller plant. A case study is used to illustrate the implementation of the proposed method. It has been shown that the proposed approach is able to provide reliability in decision making, enhance the robustness of the real-time optimization strategy and improve on energy performance.

Keywords: Energy performance, hybrid adaptive modeling, hybrid genetic algorithms, real-time optimization, heating, ventilation, and air-conditioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
6416 Arterial CO2 Pressure Drives Ventilation with a Time Delay during Recovery from an Impulse-like Exercise without Metabolic Acidosis

Authors: R. Afroundeh, T. Arimitsu, R. Yamanaka, C. S. Lian, T. Yunoki, T. Yano, K. Shirakawa

Abstract:

We investigated this hypothesis that arterial CO2 pressure (PaCO2) drives ventilation (V.E) with a time delay duringrecovery from short impulse-like exercise (10 s) with work load of 200 watts. V.E and end tidal CO2 pressure (PETCO2) were measured continuously during rest, warming up, exercise and recovery periods. PaCO2 was predicted (PaCO2 pre) from PETCO2 and tidal volume (VT). PETCO2 and PaCO2 pre peaked at 20 s of recovery. V.E increased and peaked at the end of exercise and then decreased during recovery; however, it peaked again at 30 s of recovery, which was 10 s later than the peak of PaCO2 pre. The relationship between V. E and PaCO2pre was not significant by using data of them obtained at the same time but was significant by using data of V.E obtained 10 s later for data of PaCO2 pre. The results support our hypothesis that PaCO2 drives V.E with a time delay.

Keywords: Arterial CO2 pressure, impulse-like exercise, time delay, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
6415 Finding Pareto Optimal Front for the Multi-Mode Time, Cost Quality Trade-off in Project Scheduling

Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo

Abstract:

Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.

Keywords: FastPGA, Multi-Execution Activity Mode, ParetoOptimality, Project Scheduling, Time-Cost-Quality Trade-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
6414 Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose

Authors: J. Chumee, D. Seeburin

Abstract:

The cellulose was extracted from pomelo peel and an etherification reaction used for converting cellulose to carboxymethyl cellulose (CMC). The pomelo peel was refluxed with 0.5 M HCl and 1 M NaOH solution at 90°C for 1 h and 2 h, respectively. The cellulose was bleached with calcium hypochlorite and used as precursor. The precursor was soaked in mixed solution between isopropyl alcohol and 40%w/v NaOH for 12 h. After that, chloroacetic acid was added and reacted at 55°C for 6 h. The optimum condition was 5 g of cellulose: 0.25 mole of NaOH : 0.07 mole of ClCH2COOH with 78.00% of yield. Moreover, the product had 0.54 of degree of substitution (DS).

Keywords: Pomelo peel, Carboxymethyl cellulose, Cellulose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4305
6413 Solution Approaches for Some Scheduling Problems with Learning Effect and Job Dependent Delivery Times

Authors: M. Duran Toksarı, B. Uçarkuş

Abstract:

In this paper, we propose two algorithms to optimally solve makespan and total completion time scheduling problems with learning effect and job dependent delivery times in a single machine environment. The delivery time is the extra time to eliminate adverse effect between the main processing and delivery to the customer. In this paper, we introduce the job dependent delivery times for some single machine scheduling problems with position dependent learning effect, which are makespan are total completion. The results with respect to two algorithms proposed for solving of the each problem are compared with LINGO solutions for 50-jobs, 100-jobs and 150- jobs problems. The proposed algorithms can find the same results in shorter time.

Keywords: Delivery times, learning effect, makespan, scheduling, total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
6412 Soft Real-Time Fuzzy Task Scheduling for Multiprocessor Systems

Authors: Mahdi Hamzeh, Sied Mehdi Fakhraie, Caro Lucas

Abstract:

All practical real-time scheduling algorithms in multiprocessor systems present a trade-off between their computational complexity and performance. In real-time systems, tasks have to be performed correctly and timely. Finding minimal schedule in multiprocessor systems with real-time constraints is shown to be NP-hard. Although some optimal algorithms have been employed in uni-processor systems, they fail when they are applied in multiprocessor systems. The practical scheduling algorithms in real-time systems have not deterministic response time. Deterministic timing behavior is an important parameter for system robustness analysis. The intrinsic uncertainty in dynamic real-time systems increases the difficulties of scheduling problem. To alleviate these difficulties, we have proposed a fuzzy scheduling approach to arrange real-time periodic and non-periodic tasks in multiprocessor systems. Static and dynamic optimal scheduling algorithms fail with non-critical overload. In contrast, our approach balances task loads of the processors successfully while consider starvation prevention and fairness which cause higher priority tasks have higher running probability. A simulation is conducted to evaluate the performance of the proposed approach. Experimental results have shown that the proposed fuzzy scheduler creates feasible schedules for homogeneous and heterogeneous tasks. It also and considers tasks priorities which cause higher system utilization and lowers deadline miss time. According to the results, it performs very close to optimal schedule of uni-processor systems.

Keywords: Computational complexity, Deadline, Feasible scheduling, Fuzzy scheduling, Priority, Real-time multiprocessor systems, Robustness, System utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
6411 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1055
6410 Multi-Context Recurrent Neural Network for Time Series Applications

Authors: B. Q. Huang, Tarik Rashid, M-T. Kechadi

Abstract:

this paper presents a multi-context recurrent network for time series analysis. While simple recurrent network (SRN) are very popular among recurrent neural networks, they still have some shortcomings in terms of learning speed and accuracy that need to be addressed. To solve these problems, we proposed a multi-context recurrent network (MCRN) with three different learning algorithms. The performance of this network is evaluated on some real-world application such as handwriting recognition and energy load forecasting. We study the performance of this network and we compared it to a very well established SRN. The experimental results showed that MCRN is very efficient and very well suited to time series analysis and its applications.

Keywords: Gradient descent method, recurrent neural network, learning algorithms, time series, BP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3039
6409 Exponential Passivity Criteria for BAM Neural Networks with Time-Varying Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper,the exponential passivity criteria for BAM neural networks with time-varying delays is studied.By constructing new Lyapunov-Krasovskii functional and dividing the delay interval into multiple segments,a novel sufficient condition is established to guarantee the exponential stability of the considered system.Finally,a numerical example is provided to illustrate the usefulness of the proposed main results

Keywords: BAM neural networks, Exponential passivity, LMI approach, Time-varying delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
6408 Analytical Prediction of Seismic Response of Steel Frames with Superelastic Shape Memory Alloy

Authors: Mohamed Omar

Abstract:

Superelastic Shape Memory Alloy (SMA) is accepted when it used as connection in steel structures. The seismic behaviour of steel frames with SMA is being assessed in this study. Three eightstorey steel frames with different SMA systems are suggested, the first one of which is braced with diagonal bracing system, the second one is braced with nee bracing system while the last one is which the SMA is used as connection at the plastic hinge regions of beams. Nonlinear time history analyses of steel frames with SMA subjected to two different ground motion records have been performed using Seismostruct software. To evaluate the efficiency of suggested systems, the dynamic responses of the frames were compared. From the comparison results, it can be concluded that using SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement. The shape memory alloy is effective in reducing the maximum displacement at the frame top and it provides a large elastic deformation range. SMA connections are very effective in dissipating energy and reducing the total input energy of the whole frame under severe seismic ground motion. Using of the SMA connection system is more effective in controlling the reaction forces at the base frame than other bracing systems. Using SMA as bracing is more effective in reducing the displacements. The efficiency of SMA is dependant on the input wave motions and the construction system as well.

Keywords: Finite element analysis, seismic response, shapesmemory alloy, steel frame, superelasticity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
6407 Applying a Noise Reduction Method to Reveal Chaos in the River Flow Time Series

Authors: Mohammad H. Fattahi

Abstract:

Chaotic analysis has been performed on the river flow time series before and after applying the wavelet based de-noising techniques in order to investigate the noise content effects on chaotic nature of flow series. In this study, 38 years of monthly runoff data of three gauging stations were used. Gauging stations were located in Ghar-e-Aghaj river basin, Fars province, Iran. Noise level of time series was estimated with the aid of Gaussian kernel algorithm. This step was found to be crucial in preventing removal of the vital data such as memory, correlation and trend from the time series in addition to the noise during de-noising process.

Keywords: Chaotic behavior, wavelet, noise reduction, river flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
6406 Finding Pareto Optimal Front for the Multi- Mode Time, Cost Quality Trade-off in Project Scheduling

Authors: H. Iranmanesh, M. R. Skandari, M. Allahverdiloo

Abstract:

Project managers are the ultimate responsible for the overall characteristics of a project, i.e. they should deliver the project on time with minimum cost and with maximum quality. It is vital for any manager to decide a trade-off between these conflicting objectives and they will be benefited of any scientific decision support tool. Our work will try to determine optimal solutions (rather than a single optimal solution) from which the project manager will select his desirable choice to run the project. In this paper, the problem in project scheduling notated as (1,T|cpm,disc,mu|curve:quality,time,cost) will be studied. The problem is multi-objective and the purpose is finding the Pareto optimal front of time, cost and quality of a project (curve:quality,time,cost), whose activities belong to a start to finish activity relationship network (cpm) and they can be done in different possible modes (mu) which are non-continuous or discrete (disc), and each mode has a different cost, time and quality . The project is constrained to a non-renewable resource i.e. money (1,T). Because the problem is NP-Hard, to solve the problem, a meta-heuristic is developed based on a version of genetic algorithm specially adapted to solve multi-objective problems namely FastPGA. A sample project with 30 activities is generated and then solved by the proposed method.

Keywords: FastPGA, Multi-Execution Activity Mode, Pareto Optimality, Project Scheduling, Time-Cost-Quality Trade-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806