Search results for: Data mining andInformation Extraction
7651 Operational risks Classification for Information Systems with Service-Oriented Architecture (Including Loss Calculation Example)
Authors: Irina Pyrlina
Abstract:
This article presents the results of a study conducted to identify operational risks for information systems (IS) with service-oriented architecture (SOA). Analysis of current approaches to risk and system error classifications revealed that the system error classes were never used for SOA risk estimation. Additionally system error classes are not normallyexperimentally supported with realenterprise error data. Through the study several categories of various existing error classifications systems are applied and three new error categories with sub-categories are identified. As a part of operational risks a new error classification scheme is proposed for SOA applications. It is based on errors of real information systems which are service providers for application with service-oriented architecture. The proposed classification approach has been used to classify SOA system errors for two different enterprises (oil and gas industry, metal and mining industry). In addition we have conducted a research to identify possible losses from operational risks.
Keywords: Enterprise architecture, Error classification, Oil&Gas and Metal&Mining industries, Operational risks, Serviceoriented architecture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16047650 An Edge-based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation
Authors: Jagath Samarabandu, Xiaoqing Liu
Abstract:
Using bottom-up image processing algorithms to predict human eye fixations and extract the relevant embedded information in images has been widely applied in the design of active machine vision systems. Scene text is an important feature to be extracted, especially in vision-based mobile robot navigation as many potential landmarks such as nameplates and information signs contain text. This paper proposes an edge-based text region extraction algorithm, which is robust with respect to font sizes, styles, color/intensity, orientations, and effects of illumination, reflections, shadows, perspective distortion, and the complexity of image backgrounds. Performance of the proposed algorithm is compared against a number of widely used text localization algorithms and the results show that this method can quickly and effectively localize and extract text regions from real scenes and can be used in mobile robot navigation under an indoor environment to detect text based landmarks.
Keywords: Landmarks, mobile robot navigation, scene text, text localization and extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29247649 Join and Meet Block Based Default Definite Decision Rule Mining from IDT and an Incremental Algorithm
Authors: Chen Wu, Jingyu Yang
Abstract:
Using maximal consistent blocks of tolerance relation on the universe in incomplete decision table, the concepts of join block and meet block are introduced and studied. Including tolerance class, other blocks such as tolerant kernel and compatible kernel of an object are also discussed at the same time. Upper and lower approximations based on those blocks are also defined. Default definite decision rules acquired from incomplete decision table are proposed in the paper. An incremental algorithm to update default definite decision rules is suggested for effective mining tasks from incomplete decision table into which data is appended. Through an example, we demonstrate how default definite decision rules based on maximal consistent blocks, join blocks and meet blocks are acquired and how optimization is done in support of discernibility matrix and discernibility function in the incomplete decision table.Keywords: rough set, incomplete decision table, maximalconsistent block, default definite decision rule, join and meet block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12887648 Plant Varieties Selection System
Authors: Kitti Koonsanit, Chuleerat Jaruskulchai, Poonsak Miphokasap, Apisit Eiumnoh
Abstract:
In the end of the day, meteorological data and environmental data becomes widely used such as plant varieties selection system. Variety plant selection for planted area is of almost importance for all crops, including varieties of sugarcane. Since sugarcane have many varieties. Variety plant non selection for planting may not be adapted to the climate or soil conditions for planted area. Poor growth, bloom drop, poor fruit, and low price are to be from varieties which were not recommended for those planted area. This paper presents plant varieties selection system for planted areas in Thailand from meteorological data and environmental data by the use of decision tree techniques. With this software developed as an environmental data analysis tool, it can analyze resulting easier and faster. Our software is a front end of WEKA that provides fundamental data mining functions such as classify, clustering, and analysis functions. It also supports pre-processing, analysis, and decision tree output with exporting result. After that, our software can export and display data result to Google maps API in order to display result and plot plant icons effectively.
Keywords: Plant varieties selection system, decision tree, expert recommendation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17937647 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19197646 Automated Knowledge Engineering
Authors: Sandeep Chandana, Rene V. Mayorga, Christine W. Chan
Abstract:
This article outlines conceptualization and implementation of an intelligent system capable of extracting knowledge from databases. Use of hybridized features of both the Rough and Fuzzy Set theory render the developed system flexibility in dealing with discreet as well as continuous datasets. A raw data set provided to the system, is initially transformed in a computer legible format followed by pruning of the data set. The refined data set is then processed through various Rough Set operators which enable discovery of parameter relationships and interdependencies. The discovered knowledge is automatically transformed into a rule base expressed in Fuzzy terms. Two exemplary cancer repository datasets (for Breast and Lung Cancer) have been used to test and implement the proposed framework.Keywords: Knowledge Extraction, Fuzzy Sets, Rough Sets, Neuro–Fuzzy Systems, Databases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17877645 Finding an Optimized Discriminate Function for Internet Application Recognition
Authors: E. Khorram, S.M. Mirzababaei
Abstract:
Everyday the usages of the Internet increase and simply a world of the data become accessible. Network providers do not want to let the provided services to be used in harmful or terrorist affairs, so they used a variety of methods to protect the special regions from the harmful data. One of the most important methods is supposed to be the firewall. Firewall stops the transfer of such packets through several ways, but in some cases they do not use firewall because of its blind packet stopping, high process power needed and expensive prices. Here we have proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. So an administrator can alarm to the user. This method is very fast and can be used simply in adjacent with the Internet routers.
Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14087644 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: Data mining, digital libraries, digital preservation, file format.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16607643 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.
Keywords: Anomaly detection, autoencoder, data centers, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7427642 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater
Authors: Farooq A. Al-Sheikh, Carol Moralejo, Mark Pritzker, William A. Anderson, Ali Elkamel
Abstract:
Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.
Keywords: AZLB-Na zeolite, continuous adsorption, LEWATIT resin, models, regeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12367641 Motor Imaginary Signal Classification Using Adaptive Recursive Bandpass Filter and Adaptive Autoregressive Models for Brain Machine Interface Designs
Authors: Vickneswaran Jeyabalan, Andrews Samraj, Loo Chu Kiong
Abstract:
The noteworthy point in the advancement of Brain Machine Interface (BMI) research is the ability to accurately extract features of the brain signals and to classify them into targeted control action with the easiest procedures since the expected beneficiaries are of disabled. In this paper, a new feature extraction method using the combination of adaptive band pass filters and adaptive autoregressive (AAR) modelling is proposed and applied to the classification of right and left motor imagery signals extracted from the brain. The introduction of the adaptive bandpass filter improves the characterization process of the autocorrelation functions of the AAR models, as it enhances and strengthens the EEG signal, which is noisy and stochastic in nature. The experimental results on the Graz BCI data set have shown that by implementing the proposed feature extraction method, a LDA and SVM classifier outperforms other AAR approaches of the BCI 2003 competition in terms of the mutual information, the competition criterion, or misclassification rate.
Keywords: Adaptive autoregressive, adaptive bandpass filter, brain machine Interface, EEG, motor imaginary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29017640 Statistical Feature Extraction Method for Wood Species Recognition System
Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof
Abstract:
Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.Keywords: Classification, fuzzy, inspection system, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17437639 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18347638 Customer Churn Prediction: A Cognitive Approach
Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka
Abstract:
Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.
Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25597637 A Bayesian Classification System for Facilitating an Institutional Risk Profile Definition
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for easy creation and classification of institutional risk profiles supporting endangerment analysis of file formats. The main contribution of this work is the employment of data mining techniques to support set up of the most important risk factors. Subsequently, risk profiles employ risk factors classifier and associated configurations to support digital preservation experts with a semi-automatic estimation of endangerment group for file format risk profiles. Our goal is to make use of an expert knowledge base, accuired through a digital preservation survey in order to detect preservation risks for a particular institution. Another contribution is support for visualisation of risk factors for a requried dimension for analysis. Using the naive Bayes method, the decision support system recommends to an expert the matching risk profile group for the previously selected institutional risk profile. The proposed methods improve the visibility of risk factor values and the quality of a digital preservation process. The presented approach is designed to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and values of file format risk profiles. To facilitate decision-making, the aggregated information about the risk factors is presented as a multidimensional vector. The goal is to visualise particular dimensions of this vector for analysis by an expert and to define its profile group. The sample risk profile calculation and the visualisation of some risk factor dimensions is presented in the evaluation section.Keywords: linked open data, information integration, digital libraries, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7307636 Network Anomaly Detection using Soft Computing
Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee
Abstract:
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19557635 A Comparative Study of GTC and PSP Algorithms for Mining Sequential Patterns Embedded in Database with Time Constraints
Authors: Safa Adi
Abstract:
This paper will consider the problem of sequential mining patterns embedded in a database by handling the time constraints as defined in the GSP algorithm (level wise algorithms). We will compare two previous approaches GTC and PSP, that resumes the general principles of GSP. Furthermore this paper will discuss PG-hybrid algorithm, that using PSP and GTC. The results show that PSP and GTC are more efficient than GSP. On the other hand, the GTC algorithm performs better than PSP. The PG-hybrid algorithm use PSP algorithm for the two first passes on the database, and GTC approach for the following scans. Experiments show that the hybrid approach is very efficient for short, frequent sequences.Keywords: Database, GTC algorithm, PSP algorithm, sequential patterns, time constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6997634 Response of the Residential Building Structureon Load Technical Seismicity due to Mining Activities
Authors: V. Salajka, Z. Kaláb, J. Kala, P. Hradil
Abstract:
In the territories where high-intensity earthquakes are frequent is paid attention to the solving of the seismic problems. In the paper are described two computational model variants based on finite element method of the construction with different subsoil simulation (rigid or elastic subsoil) is used. For simulation and calculations program system based on method final elements ANSYS was used. Seismic responses calculations of residential building structure were effected on loading characterized by accelerogram for comparing with the responses spectra method.Keywords: Accelerogram, ANSYS, mining induced seismic, residential building structure, spectra, subsoil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15387633 Speech Recognition Using Scaly Neural Networks
Authors: Akram M. Othman, May H. Riadh
Abstract:
This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17377632 A 3D Approach for Extraction of the Coronaryartery and Quantification of the Stenosis
Authors: Mahdi Mazinani, S. D. Qanadli, Rahil Hosseini, Tim Ellis, Jamshid Dehmeshki
Abstract:
Segmentation and quantification of stenosis is an important task in assessing coronary artery disease. One of the main challenges is measuring the real diameter of curved vessels. Moreover, uncertainty in segmentation of different tissues in the narrow vessel is an important issue that affects accuracy. This paper proposes an algorithm to extract coronary arteries and measure the degree of stenosis. Markovian fuzzy clustering method is applied to model uncertainty arises from partial volume effect problem. The algorithm employs: segmentation, centreline extraction, estimation of orthogonal plane to centreline, measurement of the degree of stenosis. To evaluate the accuracy and reproducibility, the approach has been applied to a vascular phantom and the results are compared with real diameter. The results of 10 patient datasets have been visually judged by a qualified radiologist. The results reveal the superiority of the proposed method compared to the Conventional thresholding Method (CTM) on both datasets.Keywords: 3D coronary artery tree extraction, segmentation, quantification, fuzzy clustering, and Markov random field
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15827631 Parallelization and Optimization of SIFT Feature Extraction on Cluster System
Authors: Mingling Zheng, Zhenlong Song, Ke Xu, Hengzhu Liu
Abstract:
Scale Invariant Feature Transform (SIFT) has been widely applied, but extracting SIFT feature is complicated and time-consuming. In this paper, to meet the demand of the real-time applications, SIFT is parallelized and optimized on cluster system, which is named pSIFT. Redundancy storage and communication are used for boundary data to improve the performance, and before representation of feature descriptor, data reallocation is adopted to keep load balance in pSIFT. Experimental results show that pSIFT achieves good speedup and scalability.Keywords: cluster, image matching, parallelization and optimization, SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18637630 Improving Classification in Bayesian Networks using Structural Learning
Authors: Hong Choon Ong
Abstract:
Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25997629 Topic Modeling Using Latent Dirichlet Allocation and Latent Semantic Indexing on South African Telco Twitter Data
Authors: Phumelele P. Kubheka, Pius A. Owolawi, Gbolahan Aiyetoro
Abstract:
Twitter is one of the most popular social media platforms where users share their opinions on different subjects. Twitter can be considered a great source for mining text due to the high volumes of data generated through the platform daily. Many industries such as telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model in this experiment. A higher topic coherence score indicates better performance of the model.
Keywords: Big data, latent Dirichlet allocation, latent semantic indexing, Telco, topic modeling, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4597628 Cumulative Learning based on Dynamic Clustering of Hierarchical Production Rules(HPRs)
Authors: Kamal K.Bharadwaj, Rekha Kandwal
Abstract:
An important structuring mechanism for knowledge bases is building clusters based on the content of their knowledge objects. The objects are clustered based on the principle of maximizing the intraclass similarity and minimizing the interclass similarity. Clustering can also facilitate taxonomy formation, that is, the organization of observations into a hierarchy of classes that group similar events together. Hierarchical representation allows us to easily manage the complexity of knowledge, to view the knowledge at different levels of details, and to focus our attention on the interesting aspects only. One of such efficient and easy to understand systems is Hierarchical Production rule (HPRs) system. A HPR, a standard production rule augmented with generality and specificity information, is of the following form Decision If < condition> Generality
Keywords: Cumulative learning, clustering, data mining, hierarchical production rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14387627 Ottoman Script Recognition Using Hidden Markov Model
Authors: Ayşe Onat, Ferruh Yildiz, Mesut Gündüz
Abstract:
In this study, an OCR system for segmentation, feature extraction and recognition of Ottoman Scripts has been developed using handwritten characters. Detection of handwritten characters written by humans is a difficult process. Segmentation and feature extraction stages are based on geometrical feature analysis, followed by the chain code transformation of the main strokes of each character. The output of segmentation is well-defined segments that can be fed into any classification approach. The classes of main strokes are identified through left-right Hidden Markov Model (HMM).Keywords: Chain Code, HMM, Ottoman Script Recognition, OCR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23197626 Multi-Temporal Mapping of Built-up Areas Using Daytime and Nighttime Satellite Images Based on Google Earth Engine Platform
Authors: S. Hutasavi, D. Chen
Abstract:
The built-up area is a significant proxy to measure regional economic growth and reflects the Gross Provincial Product (GPP). However, an up-to-date and reliable database of built-up areas is not always available, especially in developing countries. The cloud-based geospatial analysis platform such as Google Earth Engine (GEE) provides an opportunity with accessibility and computational power for those countries to generate the built-up data. Therefore, this study aims to extract the built-up areas in Eastern Economic Corridor (EEC), Thailand using day and nighttime satellite imagery based on GEE facilities. The normalized indices were generated from Landsat 8 surface reflectance dataset, including Normalized Difference Built-up Index (NDBI), Built-up Index (BUI), and Modified Built-up Index (MBUI). These indices were applied to identify built-up areas in EEC. The result shows that MBUI performs better than BUI and NDBI, with the highest accuracy of 0.85 and Kappa of 0.82. Moreover, the overall accuracy of classification was improved from 79% to 90%, and error of total built-up area was decreased from 29% to 0.7%, after night-time light data from the Visible and Infrared Imaging Suite (VIIRS) Day Night Band (DNB). The results suggest that MBUI with night-time light imagery is appropriate for built-up area extraction and be utilize for further study of socioeconomic impacts of regional development policy over the EEC region.
Keywords: Built-up area extraction, Google earth engine, adaptive thresholding method, rapid mapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6107625 Increasing the Capacity of Plant Bottlenecks by Using of Improving the Ratio of Mean Time between Failures to Mean Time to Repair
Authors: Jalal Soleimannejad, Mohammad Asadizeidabadi, Mahmoud Koorki, Mojtaba Azarpira
Abstract:
A significant percentage of production costs is the maintenance costs, and analysis of maintenance costs could to achieve greater productivity and competitiveness. With this is mind, the maintenance of machines and installations is considered as an essential part of organizational functions and applying effective strategies causes significant added value in manufacturing activities. Organizations are trying to achieve performance levels on a global scale with emphasis on creating competitive advantage by different methods consist of RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance) etc. In this study, increasing the capacity of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GEG) was examined by using of reliability and maintainability analyses. The results of this research showed that instead of increasing the number of machines (in order to solve the bottleneck problems), the improving of reliability and maintainability would solve bottleneck problems in the best way. It should be mention that in the abovementioned study, the data set of Concentration Plant of GEG as a case study, was applied and analyzed.
Keywords: Bottleneck, Golgohar Iron Ore Mining and Industrial Company, maintainability, maintenance costs, reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9567624 Normalization Discriminant Independent Component Analysis
Authors: Liew Yee Ping, Pang Ying Han, Lau Siong Hoe, Ooi Shih Yin, Housam Khalifa Bashier Babiker
Abstract:
In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from the data and processed using Independent Component Analysis (ICA). The proposed method is evaluated on three face databases, Olivetti Research Ltd (ORL), Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC). NDICA showed it effectiveness compared with other unsupervised and supervised techniques.
Keywords: Face recognition, small sample size, regularization, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19547623 Field Trial of Resin-Based Composite Materials for the Treatment of Surface Collapses Associated with Former Shallow Coal Mining
Authors: Philip T. Broughton, Mark P. Bettney, Isla L. Smail
Abstract:
Effective treatment of ground instability is essential when managing the impacts associated with historic mining. A field trial was undertaken by the Coal Authority to investigate the geotechnical performance and potential use of composite materials comprising resin and fill or stone to safely treat surface collapses, such as crown-holes, associated with shallow mining. Test pits were loosely filled with various granular fill materials. The fill material was injected with commercially available silicate and polyurethane resin foam products. In situ and laboratory testing was undertaken to assess the geotechnical properties of the resultant composite materials. The test pits were subsequently excavated to assess resin permeation. Drilling and resin injection was easiest through clean limestone fill materials. Recycled building waste fill material proved difficult to inject with resin; this material is thus considered unsuitable for use in resin composites. Incomplete resin permeation in several of the test pits created irregular ‘blocks’ of composite. Injected resin foams significantly improve the stiffness and resistance (strength) of the un-compacted fill material. The stiffness of the treated fill material appears to be a function of the stone particle size, its associated compaction characteristics (under loose tipping) and the proportion of resin foam matrix. The type of fill material is more critical than the type of resin to the geotechnical properties of the composite materials. Resin composites can effectively support typical design imposed loads. Compared to other traditional treatment options, such as cement grouting, the use of resin composites is potentially less disruptive, particularly for sites with limited access, and thus likely to achieve significant reinstatement cost savings. The use of resin composites is considered a suitable option for the future treatment of shallow mining collapses.
Keywords: Composite material, ground improvement, mining legacy, resin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15417622 Web Search Engine Based Naming Procedure for Independent Topic
Authors: Takahiro Nishigaki, Takashi Onoda
Abstract:
In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {"scor", "game", "lead", "quarter", "rebound"}. This Topic 1 is considered to represent the topic of "SPORTS". This topic name "SPORTS" has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness.Keywords: Independent topic analysis, topic extraction, topic naming, web search engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500