Search results for: strategy classification system.
9502 Fall Avoidance Control of Wheeled Inverted Pendulum Type Robotic Wheelchair While Climbing Stairs
Authors: Nan Ding, Motoki Shino, Nobuyasu Tomokuni, Genki Murata
Abstract:
The wheelchair is the major means of transport for physically disabled people. However, it cannot overcome architectural barriers such as curbs and stairs. In this paper, the authors proposed a method to avoid falling down of a wheeled inverted pendulum type robotic wheelchair for climbing stairs. The problem of this system is that the feedback gain of the wheels cannot be set high due to modeling errors and gear backlash, which results in the movement of wheels. Therefore, the wheels slide down the stairs or collide with the side of the stairs, and finally the wheelchair falls down. To avoid falling down, the authors proposed a slider control strategy based on skyhook model in order to decrease the movement of wheels, and a rotary link control strategy based on the staircase dimensions in order to avoid collision or slide down. The effectiveness of the proposed fall avoidance control strategy was validated by ODE simulations and the prototype wheelchair.Keywords: EPW, fall avoidance control, skyhook, wheeled inverted pendulum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11989501 Series-Parallel Systems Reliability Optimization Using Genetic Algorithm and Statistical Analysis
Authors: Essa Abrahim Abdulgader Saleem, Thien-My Dao
Abstract:
The main objective of this paper is to optimize series-parallel system reliability using Genetic Algorithm (GA) and statistical analysis; considering system reliability constraints which involve the redundant numbers of selected components, total cost, and total weight. To perform this work, firstly the mathematical model which maximizes system reliability subject to maximum system cost and maximum system weight constraints is presented; secondly, a statistical analysis is used to optimize GA parameters, and thirdly GA is used to optimize series-parallel systems reliability. The objective is to determine the strategy choosing the redundancy level for each subsystem to maximize the overall system reliability subject to total cost and total weight constraints. Finally, the series-parallel system case study reliability optimization results are showed, and comparisons with the other previous results are presented to demonstrate the performance of our GA.
Keywords: Genetic algorithm, optimization, reliability, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11569500 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.
Keywords: Classification algorithms; data mining; tourism; knowledge discovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25469499 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other artificial intelligence (AI)-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.
Keywords: Machine learning, text classification, NLP techniques, semantic representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409498 Public Financial Management in Ghana: A Move beyond Reforms to Consolidation and Sustainability
Authors: Mohammed Sani Abdulai
Abstract:
Ghana’s Public Financial Management reforms have been going on for some two decades now (1997/98 to 2017/18). Given this long period of reforms, Ghana in 2019 is putting together both a Public Financial Management (PFM) strategy and a Ghana Integrated Financial Management Information System (GIFMIS) strategy for the next 5-years (2020-2024). The primary aim of these dual strategies is assisting the country in moving beyond reforms to consolidation and sustainability. In this paper we, first, examined the evolution of Ghana’s PFM reforms. We, secondly, reviewed the legal and institutional reforms undertaken to strengthen the country’s key PFM institutions. Thirdly, we summarized the strengths and weaknesses identified by the 2018 Public Expenditure and Financial Accountability (PEFA) assessment of Ghana’s PFM system relating to its macro-fiscal framework, budget preparation and approval, budget execution, accounting and fiscal reporting as well as external scrutiny and audit. We, finally, considered what the country should be doing to achieve its intended goal of PFM consolidation and sustainability. Using a qualitative method of review and analysis of existing documents, we, through this paper, brought to the fore the lessons that could be learnt by other developing countries from Ghana’s PFM reforms experiences. These lessons included the need to: (a) undergird any PFM reform with a comprehensive PFM reform strategy; (b) undertake a legal and institutional reforms of the key PFM institutions; (c) assess the strengths and weaknesses of those reforms using PFM performance evaluation tools such as PEFA framework; and (d) move beyond reforms to consolidation and sustainability.
Keywords: Public financial management, public expenditure and financial accountability (PEFA), reforms, consolidation, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10859497 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.
Keywords: Multivariate control chart, statistical process control, one-class classification method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22699496 Development of Performance Indicators in Operational Level for Pre-hospital EMS in Thailand
Authors: Napisporn Memongkol, Runchana Sinthavalai, Nattapong Seneeratanaprayune Weerawat Ounsaneha, Chanisada Choosuk
Abstract:
The objective of this research is to develop the performance indicators (PIs) in operational level for the Pre-hospital Emergency Medical Service (EMS) system employing in Thailand. This research started with ascertaining the current pre-hospital care system. The team analyzed the strategies of Narerthorn, a government unit under the ministry of public health, and the existing PIs of the pre-hospital care. Afterwards, the current National Strategic Plan of EMS development (2008-2012) of the Emergency Medical Institute of Thailand (EMIT) was considered using strategic analysis to developed Strategy Map (SM) and identified the Success Factors (SFs). The analysis results from strategy map and SFs were used to develop the Performance Indicators (PIs). To verify the set of PIs, the team has interviewed with the relevant practitioners for the possibilities to implement the PIs. To this paper, it was to ascertain that all the developed PIs support the objectives of the strategic plan. Nevertheless, the results showed that the operational level PIs suited only with the first dimension of National Strategic Plan (infrastructure and information technology development). Besides, the SF was the infrastructure development (to contribute the EMS system to people throughout with standard and efficiency both in normally and disaster conditions). Finally, twenty-nine indicators were developed from the analysis results of SM and SFs.Keywords: Emergency Medical Service, Performance Indicator, Success Factor, Thailand
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22729495 Availability Strategy of Medical Information for Telemedicine Services
Authors: Rozo D. Juan Felipe, Ramírez L. Leonardo Juan, Puerta A. Gabriel Alberto
Abstract:
The telemedicine services require correct computing resource management to guarantee productivity and efficiency for medical and non-medical staff. The aim of this study was to examine web management strategies to ensure the availability of resources and services in telemedicine so as to provide medical information management with an accessible strategy. In addition, to evaluate the quality-of-service parameters, the followings were measured: delays, throughput, jitter, latency, available bandwidth, percent of access and denial of services based of web management performance map with profiles permissions and database management. Through 24 different test scenarios, the results show 100% in availability of medical information, in relation to access of medical staff to web services, and quality of service (QoS) of 99% because of network delay and performance of computer network. The findings of this study suggest that the proposed strategy of web management is an ideal solution to guarantee the availability, reliability, and accessibility of medical information. Finally, this strategy offers seven user profile used at telemedicine center of Bogota-Colombia keeping QoS parameters suitable to telemedicine services.Keywords: Availability, medical information, QoS, strategy, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13059494 DIFFER: A Propositionalization approach for Learning from Structured Data
Authors: Thashmee Karunaratne, Henrik Böstrom
Abstract:
Logic based methods for learning from structured data is limited w.r.t. handling large search spaces, preventing large-sized substructures from being considered by the resulting classifiers. A novel approach to learning from structured data is introduced that employs a structure transformation method, called finger printing, for addressing these limitations. The method, which generates features corresponding to arbitrarily complex substructures, is implemented in a system, called DIFFER. The method is demonstrated to perform comparably to an existing state-of-art method on some benchmark data sets without requiring restrictions on the search space. Furthermore, learning from the union of features generated by finger printing and the previous method outperforms learning from each individual set of features on all benchmark data sets, demonstrating the benefit of developing complementary, rather than competing, methods for structure classification.Keywords: Machine learning, Structure classification, Propositionalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12239493 Classification of the Bachet Elliptic Curves y2 = x3 + a3 in Fp, where p ≡ 1 (mod 6) is Prime
Authors: Nazli Yildiz İkikardes, Gokhan Soydan, Musa Demirci, Ismail Naci Cangul
Abstract:
In this work, we first give in what fields Fp, the cubic root of unity lies in F*p, in Qp and in K*p where Qp and K*p denote the sets of quadratic and non-zero cubic residues modulo p. Then we use these to obtain some results on the classification of the Bachet elliptic curves y2 ≡ x3 +a3 modulo p, for p ≡ 1 (mod 6) is prime.Keywords: Elliptic curves over finite fields, quadratic residue, cubic residue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18569492 Application of Argumentation for Improving the Classification Accuracy in Inductive Concept Formation
Authors: Vadim Vagin, Marina Fomina, Oleg Morosin
Abstract:
This paper contains the description of argumentation approach for the problem of inductive concept formation. It is proposed to use argumentation, based on defeasible reasoning with justification degrees, to improve the quality of classification models, obtained by generalization algorithms. The experiment’s results on both clear and noisy data are also presented.Keywords: Argumentation, justification degrees, inductive concept formation, noise, generalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16179491 Performance Comparison between Sliding Mode Control (SMC) and PD-PID Controllers for a Nonlinear Inverted Pendulum System
Authors: A. N. K. Nasir, R. M. T. Raja Ismail, M. A. Ahmad
Abstract:
The objective of this paper is to compare the time specification performance between conventional controller PID and modern controller SMC for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum-s angle and cart-s position. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. Two controllers are presented such as Sliding Mode Control (SMC) and Proportional- Integral-Derivatives (PID) controllers for controlling the highly nonlinear system of inverted pendulum model. Simulation study has been done in Matlab Mfile and simulink environment shows that both controllers are capable to control multi output inverted pendulum system successfully. The result shows that Sliding Mode Control (SMC) produced better response compared to PID control strategies and the responses are presented in time domain with the details analysis.Keywords: SMC, PID, Inverted Pendulum System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47999490 A method for Music Classification Based On Perceived Mood Detection for Indian Bollywood Music
Authors: Vallabha Hampiholi
Abstract:
A lot of research has been done in the past decade in the field of audio content analysis for extracting various information from audio signal. One such significant information is the "perceived mood" or the "emotions" related to a music or audio clip. This information is extremely useful in applications like creating or adapting the play-list based on the mood of the listener. This information could also be helpful in better classification of the music database. In this paper we have presented a method to classify music not just based on the meta-data of the audio clip but also include the "mood" factor to help improve the music classification. We propose an automated and efficient way of classifying music samples based on the mood detection from the audio data. We in particular try to classify the music based on mood for Indian bollywood music. The proposed method tries to address the following problem statement: Genre information (usually part of the audio meta-data) alone does not help in better music classification. For example the acoustic version of the song "nothing else matters by Metallica" can be classified as melody music and thereby a person in relaxing or chill out mood might want to listen to this track. But more often than not this track is associated with metal / heavy rock genre and if a listener classified his play-list based on the genre information alone for his current mood, the user shall miss out on listening to this track. Currently methods exist to detect mood in western or similar kind of music. Our paper tries to solve the issue for Indian bollywood music from an Indian cultural context
Keywords: Mood, music classification, music genre, rhythm, music analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34769489 A Strategy for Address Coding from HouseHold Registry Database
Authors: Yungchien Cheng, Chienmin Chu
Abstract:
Address Matching is an important application of Geographic Information System (GIS). Prior to Address Matching working, obtaining X,Y coordinates is necessary, which process is calling Address Geocoding. This study will illustrate the effective address geocoding process of using household registry database, and the check system for geocoded address.Keywords: GIS, Address Geocoding, HouseHold Registry Database
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14789488 Seismic Response Reduction of Structures using Smart Base Isolation System
Authors: H.S. Kim
Abstract:
In this study, control performance of a smart base isolation system consisting of a friction pendulum system (FPS) and a magnetorheological (MR) damper has been investigated. A fuzzy logic controller (FLC) is used to modulate the MR damper so as to minimize structural acceleration while maintaining acceptable base displacement levels. To this end, a multi-objective optimization scheme is used to optimize parameters of membership functions and find appropriate fuzzy rules. To demonstrate effectiveness of the proposed multi-objective genetic algorithm for FLC, a numerical study of a smart base isolation system is conducted using several historical earthquakes. It is shown that the proposed method can find optimal fuzzy rules and that the optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semi-active control algorithm.Keywords: Fuzzy logic controller, genetic algorithm, MR damper, smart base isolation system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22009487 EHW from Consumer Point of View: Consumer-Triggered Evolution
Authors: Yerbol Sapargaliyev, Tatiana Kalganova
Abstract:
Evolvable Hardware (EHW) has been regarded as adaptive system acquired by wide application market. Consumer market of any good requires diversity to satisfy consumers- preferences. Adaptation of EHW is a key technology that could provide individual approach to every particular user. This situation raises a question: how to set target for evolutionary algorithm? The existing techniques do not allow consumer to influence evolutionary process. Only designer at the moment is capable to influence the evolution. The proposed consumer-triggered evolution overcomes this problem by introducing new features to EHW that help adaptive system to obtain targets during consumer stage. Classification of EHW is given according to responsiveness, imitation of human behavior and target circuit response. Home intelligent water heating system is considered as an example.
Keywords: Actuators, consumer-triggered evolution, evolvable hardware, sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14869486 Integration of Acceleration Feedback Control with Automatic Generation Control in Intelligent Load Frequency Control
Authors: H. Zainuddin, F. Hanafi, M. H. Hairi, A. Aman, M.H.N. Talib
Abstract:
This paper investigates the effects of knowledge-based acceleration feedback control integrated with Automatic Generation Control (AGC) to enhance the quality of frequency control of governing system. The Intelligent Acceleration Feedback Controller (IAFC) is proposed to counter the over and under frequency occurrences due to major load change in power system network. Therefore, generator tripping and load shedding operations can be reduced. Meanwhile, the integration of IAFC with AGC, a well known Load-Frequency Control (LFC) is essential to ensure the system frequency is restored to the nominal value. Computer simulations of frequency response of governing system are used to optimize the parameters of IAFC. As a result, there is substantial improvement on the LFC of governing system that employing the proposed control strategy.
Keywords: Knowledge-based Supplementary Control, Acceleration Feedback, Load Frequency Control, Automatic Generation Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17029485 Model of Optimal Centroids Approach for Multivariate Data Classification
Authors: Pham Van Nha, Le Cam Binh
Abstract:
Particle swarm optimization (PSO) is a population-based stochastic optimization algorithm. PSO was inspired by the natural behavior of birds and fish in migration and foraging for food. PSO is considered as a multidisciplinary optimization model that can be applied in various optimization problems. PSO’s ideas are simple and easy to understand but PSO is only applied in simple model problems. We think that in order to expand the applicability of PSO in complex problems, PSO should be described more explicitly in the form of a mathematical model. In this paper, we represent PSO in a mathematical model and apply in the multivariate data classification. First, PSOs general mathematical model (MPSO) is analyzed as a universal optimization model. Then, Model of Optimal Centroids (MOC) is proposed for the multivariate data classification. Experiments were conducted on some benchmark data sets to prove the effectiveness of MOC compared with several proposed schemes.Keywords: Analysis of optimization, artificial intelligence-based optimization, optimization for learning and data analysis, global optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9129484 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm
Authors: M. Analoui, M. Fadavi Amiri
Abstract:
The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17689483 Pattern Recognition as an Internalized Motor Programme
Authors: M. Jändel
Abstract:
A new conceptual architecture for low-level neural pattern recognition is presented. The key ideas are that the brain implements support vector machines and that support vectors are represented as memory patterns in competitive queuing memories. A binary classifier is built from two competitive queuing memories holding positive and negative valence training examples respectively. The support vector machine classification function is calculated in synchronized evaluation cycles. The kernel is computed by bisymmetric feed-forward networks feed by sensory input and by competitive queuing memories traversing the complete sequence of support vectors. Temporary summation generates the output classification. It is speculated that perception apparatus in the brain reuses structures that have evolved for enabling fluent execution of prepared action sequences so that pattern recognition is built on internalized motor programmes.Keywords: Competitive queuing model, Olfactory system, Pattern recognition, Support vector machine, Thalamus
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13699482 Ensembling Classifiers – An Application toImage Data Classification from Cherenkov Telescope Experiment
Authors: Praveen Boinee, Alessandro De Angelis, Gian Luca Foresti
Abstract:
Ensemble learning algorithms such as AdaBoost and Bagging have been in active research and shown improvements in classification results for several benchmarking data sets with mainly decision trees as their base classifiers. In this paper we experiment to apply these Meta learning techniques with classifiers such as random forests, neural networks and support vector machines. The data sets are from MAGIC, a Cherenkov telescope experiment. The task is to classify gamma signals from overwhelmingly hadron and muon signals representing a rare class classification problem. We compare the individual classifiers with their ensemble counterparts and discuss the results. WEKA a wonderful tool for machine learning has been used for making the experiments.Keywords: Ensembles, WEKA, Neural networks [NN], SupportVector Machines [SVM], Random Forests [RF].
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17659481 Dialogue Journals as an EFL Learning Strategy in the Preparatory Year Program: Learners' Attitudes and Perceptions
Authors: Asma Alyahya
Abstract:
This study attempts to elicit the perceptions and attitudes of EFL learners of the Preparatory Year Program at KSU towards dialogue journal writing as an EFL learning strategy. The descriptive research design used incorporated both qualitative and quantitative instruments to accomplish the objectives of the study. A learners’ attitude questionnaire and follow-up interviewswith learners from a randomly selected representative sample of the participants were employed. The participants were 55 female Saudi university students in the Preparatory Year Program at King Saud University. The analysis of the results indicated that the PYP learners had highly positive attitudes towards dialogue journal writing in their EFL classes and positive perceptions of the benefits of the use of dialogue journal writing as an EFL learning strategy. The results also revealed that dialogue journals are considered an effective EFL learning strategy since they fulfill various needs for both learners and instructors. Interestingly, the analysis of the results also revealed that Saudi university level students tend to write about personal topics in their dialogue journals more than academic ones.
Keywords: Dialogue journals, EFL, learning strategy, writing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20679480 Self Organizing Analysis Platform for Wear Particle
Authors: Qurban A. Memon, Mohammad S. Laghari
Abstract:
Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear particle analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear particle. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.Keywords: Neural Network, Relationship Measurement, Selforganizing Clusters, Wear Particle Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22149479 Efficient Dimensionality Reduction of Directional Overcurrent Relays Optimal Coordination Problem
Authors: Fouad Salha , X. Guillaud
Abstract:
Directional over current relays (DOCR) are commonly used in power system protection as a primary protection in distribution and sub-transmission electrical systems and as a secondary protection in transmission systems. Coordination of protective relays is necessary to obtain selective tripping. In this paper, an approach for efficiency reduction of DOCRs nonlinear optimum coordination (OC) is proposed. This was achieved by modifying the objective function and relaxing several constraints depending on the four constraints classification, non-valid, redundant, pre-obtained and valid constraints. According to this classification, the far end fault effect on the objective function and constraints, and in consequently on relay operating time, was studied. The study was carried out, firstly by taking into account the near-end and far-end faults in DOCRs coordination problem formulation; and then faults very close to the primary relays (nearend faults). The optimal coordination (OC) was achieved by simultaneously optimizing all variables (TDS and Ip) in nonlinear environment by using of Genetic algorithm nonlinear programming techniques. The results application of the above two approaches on 6-bus and 26-bus system verify that the far-end faults consideration on OC problem formulation don-t lose the optimality.
Keywords: Backup/Primary relay, Coordination time interval (CTI), directional over current relays, Genetic algorithm, time dial setting (TDS), pickup current setting (Ip), nonlinear programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15849478 Multilevel Classifiers in Recognition of Handwritten Kannada Numerals
Authors: Dinesh Acharya U., N. V. Subba Reddy, Krishnamoorthi Makkithaya
Abstract:
The recognition of handwritten numeral is an important area of research for its applications in post office, banks and other organizations. This paper presents automatic recognition of handwritten Kannada numerals based on structural features. Five different types of features, namely, profile based 10-segment string, water reservoir; vertical and horizontal strokes, end points and average boundary length from the minimal bounding box are used in the recognition of numeral. The effect of each feature and their combination in the numeral classification is analyzed using nearest neighbor classifiers. It is common to combine multiple categories of features into a single feature vector for the classification. Instead, separate classifiers can be used to classify based on each visual feature individually and the final classification can be obtained based on the combination of separate base classification results. One popular approach is to combine the classifier results into a feature vector and leaving the decision to next level classifier. This method is extended to extract a better information, possibility distribution, from the base classifiers in resolving the conflicts among the classification results. Here, we use fuzzy k Nearest Neighbor (fuzzy k-NN) as base classifier for individual feature sets, the results of which together forms the feature vector for the final k Nearest Neighbor (k-NN) classifier. Testing is done, using different features, individually and in combination, on a database containing 1600 samples of different numerals and the results are compared with the results of different existing methods.Keywords: Fuzzy k Nearest Neighbor, Multiple Classifiers, Numeral Recognition, Structural features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17519477 Empirical Mode Decomposition with Wavelet Transform Based Analytic Signal for Power Quality Assessment
Authors: Sudipta Majumdar, Amarendra Kumar Mishra
Abstract:
This paper proposes empirical mode decomposition (EMD) together with wavelet transform (WT) based analytic signal for power quality (PQ) events assessment. EMD decomposes the complex signals into several intrinsic mode functions (IMF). As the PQ events are non stationary, instantaneous parameters have been calculated from these IMFs using analytic signal obtained form WT. We obtained three parameters from IMFs and then used KNN classifier for classification of PQ disturbance. We compared the classification of proposed method for PQ events by obtaining the features using Hilbert transform (HT) method. The classification efficiency using WT based analytic method is 97.5% and using HT based analytic signal is 95.5%.Keywords: Empirical mode decomposition, Hilbert transform, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12889476 Dynamic Clustering using Particle Swarm Optimization with Application in Unsupervised Image Classification
Authors: Mahamed G.H. Omran, Andries P Engelbrecht, Ayed Salman
Abstract:
A new dynamic clustering approach (DCPSO), based on Particle Swarm Optimization, is proposed. This approach is applied to unsupervised image classification. The proposed approach automatically determines the "optimum" number of clusters and simultaneously clusters the data set with minimal user interference. The algorithm starts by partitioning the data set into a relatively large number of clusters to reduce the effects of initial conditions. Using binary particle swarm optimization the "best" number of clusters is selected. The centers of the chosen clusters is then refined via the Kmeans clustering algorithm. The experiments conducted show that the proposed approach generally found the "optimum" number of clusters on the tested images.Keywords: Clustering Validation, Particle Swarm Optimization, Unsupervised Clustering, Unsupervised Image Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24549475 The Strategy for Increasing the Competitiveness of Georgia
Authors: G. Erkomaishvili
Abstract:
The paper discusses economic policy of Georgia aiming to increase national competitiveness as well as the tools and means which will help to improve the competitiveness of the country. The sectors of the economy, in which the country can achieve the competitive advantage, are studied. It is noted that the country’s economic policy plays an important role in obtaining and maintaining the competitive advantage - authority should take measures to ensure high level of education; scientific and research activities should be funded by the state; foreign direct investments should be attracted mainly in science-intensive industries; adaptation with the latest scientific achievements of the modern world and deepening of scientific and technical cooperation. Stable business environment and export oriented strategy is the basis for the country’s economic growth. As the outcome of the research, the paper suggests the strategy for improving competitiveness in Georgia; recommendations are provided based on relevant conclusions.
Keywords: Competitive advantage, competitiveness, competitiveness improvement strategy, competitiveness of Georgia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18949474 Digital Manufacturing: Evolution and a Process Oriented Approach to Align with Business Strategy
Authors: Abhimanyu Pati, Prabir K. Bandyopadhyay
Abstract:
The paper intends to highlight the significance of Digital Manufacturing (DM) strategy in support and achievement of business strategy and goals of any manufacturing organization. Towards this end, DM initiatives have been given a process perspective, while not undermining its technological significance, with a view to link its benefits directly with fulfilment of customer needs and expectations in a responsive and cost-effective manner. A digital process model has been proposed to categorize digitally enabled organizational processes with a view to create synergistic groups, which adopt and use digital tools having similar characteristics and functionalities. This will throw future opportunities for researchers and developers to create a unified technology environment for integration and orchestration of processes. Secondly, an effort has been made to apply “what” and “how” features of Quality Function Deployment (QFD) framework to establish the relationship between customers’ needs – both for external and internal customers, and the features of various digital processes, which support for the achievement of these customer expectations. The paper finally concludes that in the present highly competitive environment, business organizations cannot thrive to sustain unless they understand the significance of digital strategy and integrate it with their business strategy with a clearly defined implementation roadmap. A process-oriented approach to DM strategy will help business executives and leaders to appreciate its value propositions and its direct link to organization’s competitiveness.
Keywords: Digital manufacturing, digital process model, quality function deployment, business strategy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13179473 Heuristic for Accelerating Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs
Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina, A. Kumar, P. Boulet
Abstract:
In this paper, we propose a new packing strategy to find a free resource for run-time mapping of application tasks to NoC-based Heterogeneous MPSoC. The proposed strategy minimizes the task mapping time in addition to placing the communicating tasks close to each other. To evaluate our approach, a comparative study is carried out for a platform containing single task supported PEs. Experiments show that our strategy provides better results when compared to latest dynamic mapping strategies reported in the literature.
Keywords: Multi-Processor Systems-on-Chip (MPSoCs), Network-on-Chip (NoC), Heterogeneous architectures, Dynamic mapping heuristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259