Search results for: rescue robot
19 SIFT Accordion: A Space-Time Descriptor Applied to Human Action Recognition
Authors: Olfa.Ben Ahmed, Mahmoud. Mejdoub, Chokri. Ben Amar
Abstract:
Recognizing human action from videos is an active field of research in computer vision and pattern recognition. Human activity recognition has many potential applications such as video surveillance, human machine interaction, sport videos retrieval and robot navigation. Actually, local descriptors and bag of visuals words models achieve state-of-the-art performance for human action recognition. The main challenge in features description is how to represent efficiently the local motion information. Most of the previous works focus on the extension of 2D local descriptors on 3D ones to describe local information around every interest point. In this paper, we propose a new spatio-temporal descriptor based on a spacetime description of moving points. Our description is focused on an Accordion representation of video which is well-suited to recognize human action from 2D local descriptors without the need to 3D extensions. We use the bag of words approach to represent videos. We quantify 2D local descriptor describing both temporal and spatial features with a good compromise between computational complexity and action recognition rates. We have reached impressive results on publicly available action data setKeywords: Accordion, Bag of Features, Human action, Motion, Moving point, Space-Time Descriptor, SIFT, Video.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210818 Navigation of Multiple Mobile Robots using Rule-based-Neuro-Fuzzy Technique
Authors: Saroj Kumar Pradhan, Dayal Ramakrushna Parhi, Anup Kumar Panda
Abstract:
This paper deals with motion planning of multiple mobile robots. Mobile robots working together to achieve several objectives have many advantages over single robot system. However, the planning and coordination between the mobile robots is extremely difficult. In the present investigation rule-based and rulebased- neuro-fuzzy techniques are analyzed for multiple mobile robots navigation in an unknown or partially known environment. The final aims of the robots are to reach some pre-defined goals. Based upon a reference motion, direction; distances between the robots and obstacles; and distances between the robots and targets; different types of rules are taken heuristically and refined later to find the steering angle. The control system combines a repelling influence related to the distance between robots and nearby obstacles and with an attracting influence between the robots and targets. Then a hybrid rule-based-neuro-fuzzy technique is analysed to find the steering angle of the robots. Simulation results show that the proposed rulebased- neuro-fuzzy technique can improve navigation performance in complex and unknown environments compared to this simple rulebased technique.Keywords: Mobile robots, Navigation, Neuro-fuzzy, Obstacle avoidance, Rule-based, Target seeking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179317 A Model Driven Based Method for Scheduling Analysis and HW/SW Partitioning
Authors: Yessine Hadj Kacem, Adel Mahfoudhi, Hedi Tmar, Mohamed Abid
Abstract:
Unified Modeling Language (UML) extensions for real time embedded systems (RTES) co-design, are taking a growing interest by a great number of industrial and research communities. The extension mechanism is provided by UML profiles for RTES. It aims at improving an easily-understood method of system design for non-experts. On the other hand, one of the key items of the co- design methods is the Hardware/Software partitioning and scheduling tasks. Indeed, it is mandatory to define where and when tasks are implemented and run. Unfortunately the main goals of co-design are not included in the usual practice of UML profiles. So, there exists a need for mapping used models to an execution platform for both schedulability test and HW/SW partitioning. In the present work, test schedulability and design space exploration are performed at an early stage. The proposed approach adopts Model Driven Engineering MDE. It starts from UML specification annotated with the recent profile for the Modeling and Analysis of Real Time Embedded systems MARTE. Following refinement strategy, transformation rules allow to find a feasible schedule that satisfies timing constraints and to define where tasks will be implemented. The overall approach is experimented for the design of a football player robot application.
Keywords: MDE, UML profile, scheduling analysis, HW/SW partitioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143416 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-zahraa El-taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions is critical to decisions such as crossing roads or selecting safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset are examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of detection of intersections in satellite images is evaluated.
Keywords: Satellite images, remote sensing images, data acquisition, autonomous vehicles, robot navigation, route planning, road intersections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75715 Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications
Authors: Atef. A. Ata, Sohair F. Rezeka, Ahmed El-Shenawy, Mohammed Diab
Abstract:
Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronic color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to act as the main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam fixed at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works accurately under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%.
Keywords: Robotics manipulator, 5-DOF manipulator, image processing, Color sorting, Pick-and-place.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421914 Chose the Right Mutation Rate for Better Evolve Combinational Logic Circuits
Authors: Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert
Abstract:
Evolvable hardware (EHW) is a developing field that applies evolutionary algorithm (EA) to automatically design circuits, antennas, robot controllers etc. A lot of research has been done in this area and several different EAs have been introduced to tackle numerous problems, as scalability, evolvability etc. However every time a specific EA is chosen for solving a particular task, all its components, such as population size, initialization, selection mechanism, mutation rate, and genetic operators, should be selected in order to achieve the best results. In the last three decade the selection of the right parameters for the EA-s components for solving different “test-problems" has been investigated. In this paper the behaviour of mutation rate for designing logic circuits, which has not been done before, has been deeply analyzed. The mutation rate for an EHW system modifies the number of inputs of each logic gates, the functionality (for example from AND to NOR) and the connectivity between logic gates. The behaviour of the mutation has been analyzed based on the number of generations, genotype redundancy and number of logic gates for the evolved circuits. The experimental results found provide the behaviour of the mutation rate during evolution for the design and optimization of simple logic circuits. The experimental results propose the best mutation rate to be used for designing combinational logic circuits. The research presented is particular important for those who would like to implement a dynamic mutation rate inside the evolutionary algorithm for evolving digital circuits. The researches on the mutation rate during the last 40 years are also summarized.Keywords: Design of logic circuit, evolutionary computation, evolvable hardware, mutation rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169313 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping
Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting
Abstract:
Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.
Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109412 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions
Authors: Alireza Gholami, Amir H. D. Markazi
Abstract:
In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.
Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77911 Mathematical Description of Functional Motion and Application as a Feeding Mode for General Purpose Assistive Robots
Authors: Martin Leroux, Sylvain Brisebois
Abstract:
Eating a meal is among the Activities of Daily Living, but it takes a lot of time and effort for people with physical or functional limitations. Dedicated technologies are cumbersome and not portable, while general-purpose assistive robots such as wheelchair-based manipulators are too hard to control for elaborate continuous motion like eating. Eating with such devices has not previously been automated, since there existed no description of a feeding motion for uncontrolled environments. In this paper, we introduce a feeding mode for assistive manipulators, including a mathematical description of trajectories for motions that are difficult to perform manually such as gathering and scooping food at a defined/desired pace. We implement these trajectories in a sequence of movements for a semi-automated feeding mode which can be controlled with a very simple 3-button interface, allowing the user to have control over the feeding pace. Finally, we demonstrate the feeding mode with a JACO robotic arm and compare the eating speed, measured in bites per minute of three eating methods: a healthy person eating unaided, a person with upper limb limitations or disability using JACO with manual control, and a person with limitations using JACO with the feeding mode. We found that the feeding mode allows eating about 5 bites per minute, which should be sufficient to eat a meal under 30min.Keywords: Assistive robotics, Automated feeding, Elderly care, Trajectory design, Human-Robot Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 111710 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy
Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan
Abstract:
Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.
Keywords: Biomechanical energy management, gait rehabilitation, knee exosuit, wearable robotics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11659 Wind Energy Development in the African Great Lakes Region to Supplement the Hydroelectricity in the Locality: A Case Study from Tanzania
Authors: R.M. Kainkwa
Abstract:
The African Great Lakes Region refers to the zone around lakes Victoria, Tanganyika, Albert, Edward, Kivu, and Malawi. The main source of electricity in this region is hydropower whose systems are generally characterized by relatively weak, isolated power schemes, poor maintenance and technical deficiencies with limited electricity infrastructures. Most of the hydro sources are rain fed, and as such there is normally a deficiency of water during the dry seasons and extended droughts. In such calamities fossil fuels sources, in particular petroleum products and natural gas, are normally used to rescue the situation but apart from them being nonrenewable, they also release huge amount of green house gases to our environment which in turn accelerates the global warming that has at present reached an amazing stage. Wind power is ample, renewable, widely distributed, clean, and free energy source that does not consume or pollute water. Wind generated electricity is one of the most practical and commercially viable option for grid quality and utility scale electricity production. However, the main shortcoming associated with electric wind power generation is fluctuation in its output both in space and time. Before making a decision to establish a wind park at a site, the wind speed features there should therefore be known thoroughly as well as local demand or transmission capacity. The main objective of this paper is to utilise monthly average wind speed data collected from one prospective site within the African Great Lakes Region to demonstrate that the available wind power there is high enough to generate electricity. The mean monthly values were calculated from records gathered on hourly basis for a period of 5 years (2001 to 2005) from a site in Tanzania. The documentations that were collected at a height of 2 m were projected to a height of 50 m which is the standard hub height of wind turbines. The overall monthly average wind speed was found to be 12.11 m/s whereas June to November was established to be the windy season as the wind speed during the session is above the overall monthly wind speed. The available wind power density corresponding to the overall mean monthly wind speed was evaluated to be 1072 W/m2, a potential that is worthwhile harvesting for the purpose of electric generation.Keywords: Hydro power, windy season, available wind powerdensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16328 A Study on Algorithm Fusion for Recognition and Tracking of Moving Robot
Authors: Jungho Choi, Youngwan Cho
Abstract:
This paper presents an algorithm for the recognition and tracking of moving objects, 1/10 scale model car is used to verify performance of the algorithm. Presented algorithm for the recognition and tracking of moving objects in the paper is as follows. SURF algorithm is merged with Lucas-Kanade algorithm. SURF algorithm has strong performance on contrast, size, rotation changes and it recognizes objects but it is slow due to many computational complexities. Processing speed of Lucas-Kanade algorithm is fast but the recognition of objects is impossible. Its optical flow compares the previous and current frames so that can track the movement of a pixel. The fusion algorithm is created in order to solve problems which occurred using the Kalman Filter to estimate the position and the accumulated error compensation algorithm was implemented. Kalman filter is used to create presented algorithm to complement problems that is occurred when fusion two algorithms. Kalman filter is used to estimate next location, compensate for the accumulated error. The resolution of the camera (Vision Sensor) is fixed to be 640x480. To verify the performance of the fusion algorithm, test is compared to SURF algorithm under three situations, driving straight, curve, and recognizing cars behind the obstacles. Situation similar to the actual is possible using a model vehicle. Proposed fusion algorithm showed superior performance and accuracy than the existing object recognition and tracking algorithms. We will improve the performance of the algorithm, so that you can experiment with the images of the actual road environment.Keywords: SURF, Optical Flow Lucas-Kanade, Kalman Filter, object recognition, object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22927 A Pilot Study of Robot Reminiscence in Dementia Care
Authors: Ryuji Yamazaki, Masahiro Kochi, Weiran Zhu, Hiroko Kase
Abstract:
In care for older adults, behavioral and psychological symptoms of dementia (BPSD) like agitation and aggression are distressing for patients and their caretakers, often resulting in premature institutionalization with increased costs of care. To improve mood and mitigate symptoms, as a non-pharmaceutical approach, emotion-oriented therapy like reminiscence work is adopted in face-to-face communication. Telecommunication support is expected to be provided by robotic media as a bridge for digital divide for those with dementia and facilitate social interaction both verbally and nonverbally. The purpose of this case study is to explore the conditions in which robotic media can effectively attract attention from older adults with dementia and promote their well-being. As a pilot study, we introduced the pillow-phone Hugvie®, a huggable humanly shaped communication medium to five residents with dementia at a care facility, to investigate how the following conditions work for the elderly when they use the medium; 1) no sound, 2) radio, non-interactive, 3) daily conversation, and 4) reminiscence work. As a result, under condition 4, reminiscence work, the five participants kept concentration in interacting with the medium for a longer duration than other conditions. In condition 4, they also showed larger amount of utterances than under other conditions. These results indicate that providing topics related to personal histories through robotic media could affect communication positively and should, therefore, be further investigated. In addition, the issue of ethical implications by using persuasive technology that affects emotions and behaviors of older adults is also discussed.
Keywords: BPSD, reminiscence, tactile telecommunication, utterances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11586 A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion
Authors: Arash Taheri, Meysam Mohammadi-Amin, Seyed Hossein Moosavy
Abstract:
Medical applications are among the most impactful areas of microrobotics. The ultimate goal of medical microrobots is to reach currently inaccessible areas of the human body and carry out a host of complex operations such as minimally invasive surgery (MIS), highly localized drug delivery, and screening for diseases at their very early stages. Miniature, safe and efficient propulsion systems hold the key to maturing this technology but they pose significant challenges. A new type of propulsion developed recently, uses multi-flagella architecture inspired by the motility mechanism of prokaryotic microorganisms. There is a lack of efficient methods for designing this type of propulsion system. The goal of this paper is to overcome the lack and this way, a numerical strategy is proposed to design multi-flagella propulsion systems. The strategy is based on the implementation of the regularized stokeslet and rotlet theory, RFT theory and new approach of “local corrected velocity". The effects of shape parameters and angular velocities of each flagellum on overall flow field and on the robot net forces and moments are considered. Then a multi-layer perceptron artificial neural network is designed and employed to adjust the angular velocities of the motors for propulsion control. The proposed method applied successfully on a sample configuration and useful demonstrative results is obtained.Keywords: Artificial Neural Network, Biomimetic Microrobots, Flagellar Propulsion, Swimming Robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19105 The Ballistics Case Study of the Enrica Lexie Incident
Authors: Diego Abbo
Abstract:
On February 15, 2012 off the Indian coast of Kerala, in position 091702N-0760180E by the oil tanker Enrica Lexie, flying the Italian flag, bursts of 5.56 x45 caliber shots were fired from assault rifles AR/70 Italian-made Beretta towards the Indian fisher boat St. Anthony. The shots that hit the St. Anthony fishing boat were six, of which two killed the Indian fishermen Ajesh Pink and Valentine Jelestine. From the analysis concerning the kinematic engagement of the two ships and from the autopsy and ballistic results of the Indian judicial authorities it is possible to reconstruct the trajectories of the six aforementioned shots. This essay reconstructs the trajectories of the six shots that cannot be of direct shooting but have undergone a rebound on the water. The investigation carried out scientifically demonstrates the rebound of the blows on the water, the gyrostatic deviation due to the rebound and the tumbling effect always due to the rebound as regards intermediate ballistics. In consideration of the four shots that directly impacted the fishing vessel, the current examination proves, with scientific value, that the trajectories could not be downwards but upwards. Also, the trajectory of two shots that hit to death the two fishermen could not be downwards but only upwards. In fact, this paper demonstrates, with scientific value: The loss of speed of the projectiles due to the rebound on the water; The tumbling effect in the ballistic medium within the two victims; The permanent cavities subject to the injury ballistics and the related ballistic trauma that prevented homeostasis causing bleeding in one case; The thermo-hardening deformation of the bullet found in Valentine Jelestine's skull; The upward and non-downward trajectories. The paper constitutes a tool in forensic ballistics in that it manages to reconstruct, from the final spot of the projectiles fired, all phases of ballistics like the internal one of the weapons that fired, the intermediate one, the terminal one and the penetrative structural one. In general terms the ballistics reconstruction is based on measurable parameters whose entity is contained with certainty within a lower and upper limit. Therefore, quantities that refer to angles, speed, impact energy and firing position of the shooter can be identified within the aforementioned limits. Finally, the investigation into the internal bullet track, obtained from any autopsy examination, offers a significant “lesson learned” but overall a starting point to contain or mitigate bleeding as a rescue from future gunshot wounds.
Keywords: Impact physics, intermediate ballistics, terminal ballistics, tumbling effect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8404 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured Global Navigation Satellite System Denied Environments
Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis
Abstract:
In global navigation satellite system (GNSS) denied settings, such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.
Keywords: Autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7203 Ethically Integrating Robots in Elder Care
Authors: Suresh Lokiah, Samarth Suresh, Yashaswini Vismaya, Sudha Jamthe
Abstract:
The emerging trend of integrating robots into elderly care, particularly for assisting patients with dementia, holds the potential to greatly transform the sector. Assisted living facilities, which house a significant number of elderly individuals and dementia patients, constantly strive to engage their residents in stimulating activities. However, due to staffing shortages, they often rely on volunteers to introduce new activities. Despite the availability of social interaction, the residents are in desperate need of additional support. Robots designed for elder care are categorized based on their design and functionality. These categories include Companion Robots, Telepresence Robots, Health Monitoring Robots, and Rehab Robots. However, the integration of such robots raises significant ethical concerns, notably regarding privacy, autonomy, and the risk of dehumanization. Privacy issues arise when robots need to continually monitor patient activities. There is also a risk of patients becoming overly dependent on these robots, potentially undermining patients’ autonomy. Furthermore, the replacement of human touch with robotic interaction can lead to the dehumanization of care. This positional paper delves into the ethical considerations of incorporating robotic assistance in eldercare. It proposes a series of guidelines and strategies to ensure the ethical deployment of these robots. These guidelines suggest involving patients in the design and development process of robots and emphasize the critical need for human oversight to respect the dignity and rights of elderly and dementia patients. The paper also recommends implementing robust privacy measures, including secure data transmission and data anonymization. In conclusion, this paper offers a thorough examination of the ethical implications of using robotic assistance in elder care. It provides a strategic roadmap to ensure this technology is utilized ethically, thereby maximizing its potential benefits and minimizing any potential harm.
Keywords: Robots for eldercare, ethics, human-robot interaction, assisted living.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 302 Banking Union: A New Step towards Completing the Economic and Monetary Union
Authors: Marijana Ivanov, Roman Šubić
Abstract:
This study analyzes the critical gaps in the architecture of European stability and the expected role of the banking union as the new important step towards completing the Economic and Monetary Union that should enable the creation of safe and sound financial sector for the euro area market. The single rulebook together with the Single Supervisory Mechanism and the Single Resolution Mechanism - as two main pillars of the banking union, should provide a consistent application of common rules and administrative standards for supervision, recovery and resolution of banks – with the final aim of replacing the former bail-out practice with the bail-in system through which possible future bank failures would be resolved by their own funds, i.e. with minimal costs for taxpayers and real economy. In this way, the vicious circle between banks and sovereigns would be broken. It would also reduce the financial fragmentation recorded in the years of crisis as the result of divergent behaviors in risk premium, lending activities and interest rates between the core and the periphery. In addition, it should strengthen the effectiveness of monetary transmission channels, in particular the credit channels and overflows of liquidity on the money market which, due to the fragmentation of the common financial market, has been significantly disabled in period of crisis. However, contrary to all the positive expectations related to the future functioning of the banking union, major findings of this study indicate that characteristics of the economic system in which the banking union will operate should not be ignored. The euro area is an integration of strong and weak entities with large differences in economic development, wealth, assets of banking systems, growth rates and accountability of fiscal policy. The analysis indicates that low and unbalanced economic growth remains a challenge for the maintenance of financial stability and this problem cannot be resolved just by a single supervision. In many countries bank assets exceed their GDP by several times and large banks are still a matter of concern, because of their systemic importance for individual countries and the euro zone as a whole. The creation of the Single Supervisory Mechanism and the Single Resolution Mechanism is a response to the European crisis, which has particularly affected peripheral countries and caused the associated loop between the banking crisis and the sovereign debt crisis, but has also influenced banks’ balance sheets in the core countries, as the result of crossborder capital flows. The creation of the SSM and the SRM should prevent the similar episodes to happen again and should also provide a new opportunity for strengthening of economic and financial systems of the peripheral countries. On the other hand, there is a potential threat that future focus of the ECB, resolution mechanism and other relevant institutions will be extremely oriented towards large and significant banks (whereby one half of them operate in the core and most important euro area countries), and therefore it remains questionable to what extent will the common resolution funds will be used for rescue of less important institutions. Recent geopolitical developments will be the optimal indicator to show whether the previously established mechanisms are sufficient enough to maintain the adequate financial stability in the euro area market.Keywords: Banking Union, financial integration, single supervisory mechanism (SSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.
Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537