Search results for: Representation Learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2554

Search results for: Representation Learning.

2134 e-Collaborative Learning Circles

Authors: C. Ardil

Abstract:

In this paper, we introduce an e-collaborative learning circles methodology which utilizes the information and communication technologies (ICTs) in e-educational processes. In e-collaborative learning circles methodology, the teachers and students announce their research projects on various mailing lists and discussion boards using available ICTs. The teachers & moderators and students who are already members of the e-forums, discuss the project proposals in their classrooms sent out by the potential global partner schools and return the requested feed back to the proposing school(s) about their level of the participation and contribution in the research. In general, an e-collaborative learning circle project is implemented with a small and diverse group (usually 8-10 participants) from around the world. The students meet regularly over a period of weeks/months through the ICTs during the ecollaborative learning process. When the project is completed, a project product (e-book / DVD) is prepared and sent to the circle members. In this research, when taking into account the interests and motivation of the participating students with the facilitating role of the teacher(s), the students in each circle do research to obtain new data and information, thus enabling them to have the opportunity to meet both different cultures and international understandings across the globe. However, while the participants communicate along with the members in the circle they also practice and develop their communication language skills. Finally, teachers and students find the possibility to develop their skills in using the ICTs as well.

Keywords: Distance Education, Online Learning, Web BasedLearning, Learning Circles, e-Collaborative Learning Circles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
2133 Developing a Sustainable Educational Portal for the D-Grid Community

Authors: Viktor Achter, Sebastian Breuers, Marc Seifert, Ulrich Lang, Joachim Götze, Bernd Reuther, Paul Müller

Abstract:

Within the last years, several technologies have been developed to help building e-learning portals. Most of them follow approaches that deliver a vast amount of functionalities, suitable for class-like learning. The SuGI project, as part of the D-Grid (funded by the BMBF), targets on delivering a highly scalable and sustainable learning solution to provide materials (e.g. learning modules, training systems, webcasts, tutorials, etc.) containing knowledge about Grid computing to the D-Grid community. In this article, the process of the development of an e-learning portal focused on the requirements of this special user group is described. Furthermore, it deals with the conceptual and technical design of an e-learning portal, addressing the special needs of heterogeneous target groups. The main focus lies on the quality management of the software development process, Web templates for uploading new contents, the rich search and filter functionalities which will be described from a conceptual as well as a technical point of view. Specifically, it points out best practices as well as concepts to provide a sustainable solution to a relatively unknown and highly heterogeneous community.

Keywords: D-Grid, e-learning, e-science, Grid computing, SuGI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
2132 Learning and Relationships in the Cyberspace

Authors: Gioacchino Lavanco, Viviana Catania, Anna Milio, Floriana Romano

Abstract:

The cyberspace is an instrument through which internet users could get new experiences. It could contribute to foster one-s own growth, widening cognitive, creative and communicative abilities and promoting relationships. In the cyberspace, in fact, it is possible to create virtual learning communities where internet users improve their interpersonal sphere, knowledge and skills. The main element of e-learning is the establishment of online relationships, that are often collaborative.

Keywords: Internet addiction, learner support, virtual relationships.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
2131 Students’ Perception of Using Dental e-Models in an Inquiry-Based Curriculum

Authors: Yanqi Yang, Chongshan Liao, Cheuk Hin Ho, Susan Bridges

Abstract:

Aim: To investigate students’ perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding students’ perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, students' preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline.

Keywords: E-models, inquiry-based curriculum, education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
2130 Effect of Incentives on Knowledge Sharing and Learning – Evidence from the Indian IT Sector

Authors: Asish O. Mathew, Lewlyn L. R. Rodrigues

Abstract:

The organizations in the knowledge economy era have recognized the importance of building knowledge assets for sustainable growth and development. In comparison to other industries, Information Technology (IT) enterprises, holds an edge in developing an effective Knowledge Management (KM) programmethanks to their in-house technological abilities. This paper tries to study the various knowledge based incentive programmes and its effect on Knowledge Sharing and Learning in the context of the Indian IT sector. A conceptual model is developed linking KM Incentives, Knowledge Sharing and Learning. A questionnaire study is conducted to collect primary data from the knowledge workers of the IT organizations located in India. The data was analysed using Structural Equation Modeling using Partial Least Square method. The results show a strong influence of knowledge management incentives on knowledge sharing and an indirect influence on learning.

Keywords: Knowledge Management, Knowledge Management Incentives, Knowledge Sharing, Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3687
2129 Academic Performance of Engineering Students: The Role of Abilities & Learning Style

Authors: Sumita Chowhan

Abstract:

Abilities are important for academic success. Yet, abilities cannot be the whole story. Styles might be one source of unexplained variation. A style is a preferred way of using ones abilities. Students are thought to be incompetent not because they are lacking in abilities, but because their styles do not match the academic course chosen. The purpose of the study was to determine the role of abilities and learning styles in prediction of academic performance and their adjustment. Participants were 272 engineering students. The tools used are Myers Briggs Type Indicator, Culture Fair Intelligence Test and Student Problem Checklist. The statistical procedures employed were t-test, correlations and stepwise regressions. The analyses of the data indicated that although abilities are better predictors of academic performance, learning styles also shown a significant relationship. The study also indicates that if students learning styles matches to their chosen academic course, they tend to show better performance and less adjustment problems.

Keywords: Abilities, Academic Performance, Adjustment, Learning Styles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
2128 Exploring Utility and Intrinsic Value among UAE Arabic Teachers in Integrating M-Learning

Authors: Dina Tareq Ismail, Alexandria A. Proff

Abstract:

The United Arab Emirates (UAE) is a nation seeking to advance in all fields, particularly education. One area of focus for UAE 2021 agenda is to restructure UAE schools and universities by equipping them with highly developed technology. The agenda also advises educational institutions to prepare students with applicable and transferrable Information and Communication Technology (ICT) skills. Despite the emphasis on ICT and computer literacy skills, there exists limited empirical data on the use of M-Learning in the literature. This qualitative study explores the motivation of higher primary Arabic teachers in private schools toward implementing and integrating M-Learning apps in their classrooms. This research employs a phenomenological approach through the use of semistructured interviews with nine purposefully selected Arabic teachers. The data were analyzed using a content analysis via multiple stages of coding: open, axial, and thematic. Findings reveal three primary themes: (1) Arabic teachers with high levels of procedural knowledge in ICT are more motivated to implement M-Learning; (2) Arabic teachers' perceptions of self-efficacy influence their motivation toward implementation of M-Learning; (3) Arabic teachers implement M-Learning when they possess high utility and/or intrinsic value in these applications. These findings indicate a strong need for further training, equipping, and creating buy-in among Arabic teachers to enhance their ICT skills in implementing M-Learning. Further, given the limited availability of M-Learning apps designed for use in the Arabic language on the market, it is imperative that developers consider designing M-Learning tools that Arabic teachers, and Arabic-speaking students, can use and access more readily. This study contributes to closing the knowledge gap on teacher-motivation for implementing M-Learning in their classrooms in the UAE.

Keywords: ICT Skills, M-Learning, self-efficacy, teachermotivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 480
2127 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
2126 Precombining Adaptive LMMSE Detection for DS-CDMA Systems in Time Varying Channels: Non Blind and Blind Approaches

Authors: M. D. Kokate, T. R. Sontakke, P. W. Wani

Abstract:

This paper deals with an adaptive multiuser detector for direct sequence code division multiple-access (DS-CDMA) systems. A modified receiver, precombinig LMMSE is considered under time varying channel environment. Detector updating is performed with two criterions, mean square estimation (MSE) and MOE optimization technique. The adaptive implementation issues of these two schemes are quite different. MSE criterion updates the filter weights by minimizing error between data vector and adaptive vector. MOE criterion together with canonical representation of the detector results in a constrained optimization problem. Even though the canonical representation is very complicated under time varying channels, it is analyzed with assumption of average power profile of multipath replicas of user of interest. The performance of both schemes is studied for practical SNR conditions. Results show that for poor SNR, MSE precombining LMMSE is better than the blind precombining LMMSE but for greater SNR, MOE scheme outperforms with better result.

Keywords: LMMSE, MOE, MUD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
2125 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: Public emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
2124 A Constructivist Approach and Tool for Autonomous Agent Bottom-up Sequential Learning

Authors: Jianyong Xue, Olivier L. Georgeon, Salima Hassas

Abstract:

During the initial phase of cognitive development, infants exhibit amazing abilities to generate novel behaviors in unfamiliar situations, and explore actively to learn the best while lacking extrinsic rewards from the environment. These abilities set them apart from even the most advanced autonomous robots. This work seeks to contribute to understand and replicate some of these abilities. We propose the Bottom-up hiErarchical sequential Learning algorithm with Constructivist pAradigm (BEL-CA) to design agents capable of learning autonomously and continuously through interactions. The algorithm implements no assumption about the semantics of input and output data. It does not rely upon a model of the world given a priori in the form of a set of states and transitions as well. Besides, we propose a toolkit to analyze the learning process at run time called GAIT (Generating and Analyzing Interaction Traces). We use GAIT to report and explain the detailed learning process and the structured behaviors that the agent has learned on each decision making. We report an experiment in which the agent learned to successfully interact with its environment and to avoid unfavorable interactions using regularities discovered through interaction.

Keywords: Cognitive development, constructivist learning, hierarchical sequential learning, self-adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 530
2123 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
2122 A Digital Media e-Learning Training Strategy for Healthcare Employees: Cost effective Distance Learning by Collaborative offline / online Engagement and Assessment

Authors: Lynn. J. MacFarlane. A

Abstract:

Within the healthcare system, training and continued professional development although essential, can be effected by cost and logistical restraints due to the nature of healthcare provision e.g employee shift patterns, access to expertise, cost factors in releasing staff to attend training etc. The use of multimedia technology for the development of e-learning applications is also a major cost consideration for healthcare management staff, and this type of media whether optical or on line requires careful planning in order to remain inclusive of all staff with potentially varied access to multimedia computing. This paper discusses a project in which the use of DVD authoring technology has been successfully implemented to meet the needs of distance learning and user considerations, and is based on film production techniques and reduced product turnaround deadlines.

Keywords: DVD, healthcare, distance learning, cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
2121 Discrimination of Seismic Signals Using Artificial Neural Networks

Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim

Abstract:

The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.

Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633
2120 Impacts of E-Learning on Educational Policy: Policy of Sensitization and Training in E-Learning in Saudi Arabia

Authors: Layla Albdr

Abstract:

Saudi Arabia instituted the policy of sensitizing and training stakeholders for e-learning and witnessed wide adoption in many institutions. However, it is at the infancy stage and needs time to develop to mirror the US and UK. The majority of the higher education institutions in Saudi Arabia have adopted e-learning as an alternative to traditional methods to advance education. Conversely, effective implementation of the policy of sensitization and training of stakeholders for e-learning implementation has not been attained because of various challenges. The objectives included determining the challenges and opportunities of the e-learning policy of sensitization and training of stakeholders in Saudi Arabia's higher education and examining if sensitization and training of stakeholder's policy will help promote the implementation of e-learning in institutions. The study employed a descriptive research design based on qualitative analysis. The researcher recruited 295 students and 60 academic staff from four Saudi Arabian universities to participate in the study. An online questionnaire was used to collect the data. The data were then analyzed and reported both quantitatively and qualitatively. The analysis provided an in-depth understanding of the opportunities and challenges of e-learning policy in Saudi Arabian universities. The main challenges identified as internal challenges were the lack of educators’ interest in adopting the policy, and external challenges entailed lack of ICT infrastructure and Internet connectivity. The study recommends encouraging, sensitizing, and training all stakeholders to address these challenges and adopt the policy.

Keywords: e-learning, educational policy, Saudi Arabian higher education, policy of sensitization and training

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 605
2119 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
2118 A New Method of Adaptation in Integrated Learning Environment

Authors: Ildar Galeev, Renat Mustaphin, C. Ardil

Abstract:

A new method of adaptation in a partially integrated learning environment that includes electronic textbook (ET) and integrated tutoring system (ITS) is described. The algorithm of adaptation is described in detail. It includes: establishment of Interconnections of operations and concepts; estimate of the concept mastering level (for all concepts); estimate of student-s non-mastering level on the current learning step of information on each page of ET; creation of a rank-order list of links to the e-manual pages containing information that require repeated work.

Keywords: Adaptation, Integrated Learning Environment, Integrated Tutoring System, Electronic Textbook.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
2117 A Modular On-line Profit Sharing Approach in Multiagent Domains

Authors: Pucheng Zhou, Bingrong Hong

Abstract:

How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.

Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445
2116 A Multi-Agent Simulation of Serious Games to Predict Their Impact on E-Learning Processes

Authors: Ibtissem Daoudi, Raoudha Chebil, Wided Lejouad Chaari

Abstract:

Serious games constitute actually a recent and attractive way supposed to replace the classical boring courses. However, the choice of the adapted serious game to a specific learning environment remains a challenging task that makes teachers unwilling to adopt this concept. To fill this gap, we present, in this paper, a multi-agent-based simulator allowing to predict the impact of a serious game integration in a learning environment given several game and players characteristics. As results, the presented tool gives intensities of several emotional aspects characterizing learners reactions to the serious game adoption. The presented simulator is tested to predict the effect of basing a coding course on the serious game ”CodeCombat”. The obtained results are compared with feedbacks of using the same serious game in a real learning process.

Keywords: Emotion, learning process, multi-agent simulation, serious games.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
2115 English Language Learning Strategies Used by University Students: A Case Study of English and Business English Major at Suan Sunandha Rajabhat in Bangkok

Authors: Pranee Pathomchaiwat

Abstract:

The purposes of this research are 1) to study English language learning strategies used by the fourth-year students majoring in English and Business English, 2) to study the English language learning strategies which have an affect on English learning achievement, and 3) to compare the English language learning strategies used by the students majoring in English and Business English. The population and sampling comprise of 139 university students of the Suan Sunandha Rajabhat University. Research instruments are language learning strategies questionnaire which was constructed by the researcher and improved on by three experts and the transcripts that show the results of English learning achievement. The questionnaire includes 1) Language Practice Strategy 2)Memory Strategy 3) Communication Strategy 4)Making an Intelligent Guess or Compensation Strategy 5) Self-discipline in Learning Management Strategy 6) Affective Strategy 7)Self-Monitoring Strategy 8) Self-studySkill Strategy. Statistics used in the study are mean, standard deviation, T-test and One Way ANOVA, Pearson product moment correlation coefficient and Regression Analysis. The results of the findings reveal that the English language learning strategies most frequently used by the students are affective strategy, making an intelligent guess or compensation strategy, self-studyskill strategy and self-monitoring strategy respectively. The aspect of making an intelligent guess or compensation strategy had the most significant affect on English learning achievement. It is found that the English language learning strategies mostly used by the Business English major students and moderately used by the English major students. Their language practice strategies uses were significantly different at the 0.05 level and their communication strategies uses were significantly different at the 0.01 level. In addition, it is found that the poor students and the fair ones most frequently used affective strategy while the good ones most frequently used making an intelligent guess or compensation strategy. KeywordsEnglish language, language learning strategies, English learning achievement, and students majoring in English, Business English. Pranee Pathomchaiwat is an Assistant Professor in Business English Program, Suan Sunandha Rajabhat University, Bangkok, Thailand (e-mail: [email protected]).

Keywords: English language, language learning strategies, English learning achievement, students majoring in English, Business English

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3818
2114 Digital Geomatics Trends for Production and Updating Topographic Map by Using Digital Generalization Procedures

Authors: O. Z. Jasim

Abstract:

An accuracy digital map must satisfy the users for two main requirements, first, map must be visually readable and second, all the map elements must be in a good representation. These two requirements hold especially true for map generalization which aims at simplifying the representation of cartographic data. Different scales of maps are very important for any decision in any maps with different scales such as master plan and all the infrastructures maps in civil engineering. Cartographer cannot project the data onto a piece of paper, but he has to worry about its readability. The map layout of any geodatabase is very important, this layout is help to read, analyze or extract information from the map. There are many principles and guidelines of generalization that can be find in the cartographic literature. A manual reduction method for generalization depends on experience of map maker and therefore produces incompatible results. Digital generalization, rooted from conventional cartography, has become an increasing concern in both Geographic Information System (GIS) and mapping fields. This project is intended to review the state of the art of the new technology and help to understand the needs and plans for the implementation of digital generalization capability as well as increase the knowledge of production topographic maps.

Keywords: Cartography, digital generalization, mapping, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
2113 An Evaluation of Kahoot Application and Its Environment as a Learning Tool

Authors: Muhammad Yasir Babar, Ebrahim Panah

Abstract:

Over the past 20 years, internet has seen continual advancement and with the advent of online technology, various types of web-based games have been developed. Games are frequently being used among different age groups from baby boomers to generation Z. Games are not only used for entertainment but also utilized as a learning approach transmitting education to a level that is more interesting and effective for students. One of the popular web-based education games is Kahoot with growing popularity and usage, which is being used in different fields of studies. However, little knowledge is available on university students’ perception of Kahoot environment and application for learning subjects. Hence, the objective of the current study is to investigate students’ perceptions of Kahoot application and environment as a learning tool. The study employed a survey approach by distributing Google Forms –created questionnaire, with high level of reliability index, to 62 students (11 males and 51 females). The findings show that students have positive attitudes towards Kahoot application and its environment for learning. Regarding Kahoot application, it was indicated that activities created using Kahoot are more interesting for students, Kahoot is useful for collaborative learning, and Kahoot enhances interest in learning lesson. In terms of Kahoot environment, it was found that using this application through mobile is easy for students, its design is simple and useful, Kahoot-created activities can easily be shared, and the application can easily be used on any platform. The findings of the study have implications for instructors, policymakers and curriculum developers.

Keywords: Application, environment, Kahoot, learning tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
2112 Data Mining Using Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).

Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
2111 Sound Instance: Art, Perception and Composition through Soundscapes

Authors: Ricardo Mestre

Abstract:

The soundscape stands out as an agglomeration of sounds available in the world, associated with different contexts and origins, being a theme studied by various areas of knowledge, seeking to guide their benefits and their consequences, contributing to the welfare of society and other ecosystems. With the objective for a greater recognition of sound reality, through the selection and differentiation of sounds, the soundscape studies focus on the contribution for a better tuning of the world and to the balance and well-being of humanity. Sound environment, produced and created in various ways, can provide various sources of information, contributing to the orientation of the human being, alerting and manipulating him during his daily journey, like small notifications received on a cell phone or other device with these features. In this way, it becomes possible to give sound its due importance in relation to the processes of individual representation, in manners of social, professional and emotional life. Ensuring an individual representation means providing the human being with new tools for the long process of reflection by recognizing his environment, the sounds that represent him, and his perspective on his respective function in it. In order to provide more information about the importance of the sound environment inherent to the individual reality, one introduces the term sound instance, in order to refer to the whole sound field existing in the individual's life, which is divided into four distinct subfields, but essential to the process of individual representation, called sound matrix, sound cycles, sound traces and sound interference. Alongside volunteers we were able to create six representations of sound instances, based on the individual perception of his/her life, focusing on the present, past and future. With this investigation it was possible to determine that sound instance has a tool for self-recognition, considering the statements of opinion about the experience from the volunteers, reflecting about the three time lines, based on memories, thoughts and wishes.

Keywords: Sound instance, soundscape, sound art, self-recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
2110 Information Extraction from Unstructured and Ungrammatical Data Sources for Semantic Annotation

Authors: Quratulain N. Rajput, Sajjad Haider, Nasir Touheed

Abstract:

The internet has become an attractive avenue for global e-business, e-learning, knowledge sharing, etc. Due to continuous increase in the volume of web content, it is not practically possible for a user to extract information by browsing and integrating data from a huge amount of web sources retrieved by the existing search engines. The semantic web technology enables advancement in information extraction by providing a suite of tools to integrate data from different sources. To take full advantage of semantic web, it is necessary to annotate existing web pages into semantic web pages. This research develops a tool, named OWIE (Ontology-based Web Information Extraction), for semantic web annotation using domain specific ontologies. The tool automatically extracts information from html pages with the help of pre-defined ontologies and gives them semantic representation. Two case studies have been conducted to analyze the accuracy of OWIE.

Keywords: Ontology, Semantic Annotation, Wrapper, Information Extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108
2109 Collaborative Education Practice in a Data Structure E-Learning Course

Authors: Gang Chen, Ruimin Shen

Abstract:

This paper presented a collaborative education model, which consists four parts: collaborative teaching, collaborative working, collaborative training and interaction. Supported by an e-learning platform, collaborative education was practiced in a data structure e-learning course. Data collected shows that most of students accept collaborative education. This paper goes one step attempting to determine which aspects appear to be most important or helpful in collaborative education.

Keywords: Collaborative work, education, data structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
2108 Regularization of the Trajectories of Dynamical Systems by Adjusting Parameters

Authors: Helle Hein, Ülo Lepik

Abstract:

A gradient learning method to regulate the trajectories of some nonlinear chaotic systems is proposed. The method is motivated by the gradient descent learning algorithms for neural networks. It is based on two systems: dynamic optimization system and system for finding sensitivities. Numerical results of several examples are presented, which convincingly illustrate the efficiency of the method.

Keywords: Chaos, Dynamical Systems, Learning, Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
2107 The Effects of an Information Delivery Modality on Psychology of E-learning Students

Authors: Eunil Park, Angel P. del Pobil

Abstract:

Does a communication modality matter in delivering e-learning information? With the recent growth of broadcasting systems, media technologies and e-learning contents, various systems with different communication modalities have been introduced. In accordance with these trends, this study examines the effects of the information delivery modality on psychology of students. Findings from an experiment indicated that the delivering information which includes a video modality elicited higher degrees of credibility, quality, representativeness of content, and perceived suitability for delivering information than those of auditory information. However, there is no difference between content liking and attitude. The Implications of the findings and the limitations are discussed.

Keywords: Communication modality, e-learning, multimodality, students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
2106 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations

Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan

Abstract:

In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.

Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, Bifurcation analysis, neuron modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
2105 Studying Efficiency of Digital Technology Facilitated Assessment Techniques in Higher Education

Authors: B. Ferdousi

Abstract:

This study examines the adoption of digital technology in academic assessment or e-assessment in higher education. The main focus of this research is to determine the impact of advanced digital technology on different assessment techniques such as formative assessment and summative assessment. The goal of this study is to critically evaluate the selection of different assessment methods using digital technology to enhance assessment for more effective learning. Given the increasing use of digital technology in the assessment of students' achievement in the learning process, this research is significant. Based on a literature review of different assessment techniques using technology, this study focuses on the formative and summative techniques of e-assessment. The paper offers an in-depth analysis of the innovative and creative use of digital technology in assessment. The findings of this research will enhance knowledge and in-depth understanding of using technology in assessment, especially in active learning environments, in higher academic institutions.

Keywords: E-assessment techniques, assessment for learning, assessment of learning, digital technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 194