Search results for: quick training algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4321

Search results for: quick training algorithm

1021 An Earth Mover’s Distance Algorithm Based DDoS Detection Mechanism in SDN

Authors: Yang Zhou, Kangfeng Zheng, Wei Ni, Ren Ping Liu

Abstract:

Software-defined networking (SDN) provides a solution for scalable network framework with decoupled control and data plane. However, this architecture also induces a particular distributed denial-of-service (DDoS) attack that can affect or even overwhelm the SDN network. DDoS attack detection problem has to date been mostly researched as entropy comparison problem. However, this problem lacks the utilization of SDN, and the results are not accurate. In this paper, we propose a DDoS attack detection method, which interprets DDoS detection as a signature matching problem and is formulated as Earth Mover’s Distance (EMD) model. Considering the feasibility and accuracy, we further propose to define the cost function of EMD to be a generalized Kullback-Leibler divergence. Simulation results show that our proposed method can detect DDoS attacks by comparing EMD values with the ones computed in the case without attacks. Moreover, our method can significantly increase the true positive rate of detection.

Keywords: DDoS detection, EMD, relative entropy, SDN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
1020 Image Retrieval Using Fused Features

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The system is designed to show images which are related to the query image. Extracting color, texture, and shape features from an image plays a vital role in content-based image retrieval (CBIR). Initially RGB image is converted into HSV color space due to its perceptual uniformity. From the HSV image, Color features are extracted using block color histogram, texture features using Haar transform and shape feature using Fuzzy C-means Algorithm. Then, the characteristics of the global and local color histogram, texture features through co-occurrence matrix and Haar wavelet transform and shape are compared and analyzed for CBIR. Finally, the best method of each feature is fused during similarity measure to improve image retrieval effectiveness and accuracy.

Keywords: Color Histogram, Haar Wavelet Transform, Fuzzy C-means, Co-occurrence matrix; Similarity measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2127
1019 Optimal Placement of DG in Distribution System to Mitigate Power Quality Disturbances

Authors: G.V.K Murthy, S. Sivanagaraju, S. Satyanarayana, B. Hanumantha Rao

Abstract:

Distributed Generation (DG) systems are considered an integral part in future distribution system planning. Appropriate size and location of distributed generation plays a significant role in minimizing power losses in distribution systems. Among the benefits of distributed generation is the reduction in active power losses, which can improve the system performance, reliability and power quality. In this paper, Artificial Bee Colony (ABC) algorithm is proposed to determine the optimal DG-unit size and location by loss sensitivity index in order to minimize the real power loss, total harmonic distortion (THD) and voltage sag index improvement. Simulation study is conducted on 69-bus radial test system to verify the efficacy of the proposed method.

Keywords: Distributed generation, artificial bee colony method, loss reduction, radial distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2859
1018 Development of Intelligent Time/Frequency Based Signal Detection Algorithm for Intrusion Detection System

Authors: Waqas Ahmed, S Sajjad Haider Zaidi

Abstract:

For the past couple of decades Weak signal detection is of crucial importance in various engineering and scientific applications. It finds its application in areas like Wireless communication, Radars, Aerospace engineering, Control systems and many of those. Usually weak signal detection requires phase sensitive detector and demodulation module to detect and analyze the signal. This article gives you a preamble to intrusion detection system which can effectively detect a weak signal from a multiplexed signal. By carefully inspecting and analyzing the respective signal, this system can successfully indicate any peripheral intrusion. Intrusion detection system (IDS) is a comprehensive and easy approach towards detecting and analyzing any signal that is weakened and garbled due to low signal to noise ratio (SNR). This approach finds significant importance in applications like peripheral security systems.

Keywords: Data Acquisition, fast frequency transforms, Lab VIEW software, weak signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2510
1017 Location Detection of Vehicular Accident Using Global Navigation Satellite Systems/Inertial Measurement Units Navigator

Authors: Neda Navidi, Rene Jr. Landry

Abstract:

Vehicle tracking and accident recognizing are considered by many industries like insurance and vehicle rental companies. The main goal of this paper is to detect the location of a car accident by combining different methods. The methods, which are considered in this paper, are Global Navigation Satellite Systems/Inertial Measurement Units (GNSS/IMU)-based navigation and vehicle accident detection algorithms. They are expressed by a set of raw measurements, which are obtained from a designed integrator black box using GNSS and inertial sensors. Another concern of this paper is the definition of accident detection algorithm based on its jerk to identify the position of that accident. In fact, the results convinced us that, even in GNSS blockage areas, the position of the accident could be detected by GNSS/INS integration with 50% improvement compared to GNSS stand alone.

Keywords: Driving behavior, integration, IMU, GNSS, monitoring, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1230
1016 Investigation of the Possibility to Prepare Supervised Classification Map of Gully Erosion by RS and GIS

Authors: Ali Mohammadi Torkashvand, Hamid Reza Alipour

Abstract:

This study investigates the possibility providing gully erosion map by the supervised classification of satellite images (ETM+) in two mountainous and plain land types. These land types were the part of Varamin plain, Tehran province, and Roodbar subbasin, Guilan province, as plain and mountain land types, respectively. The position of 652 and 124 ground control points were recorded by GPS respectively in mountain and plain land types. Soil gully erosion, land uses or plant covers were investigated in these points. Regarding ground control points and auxiliary points, training points of gully erosion and other surface features were introduced to software (Ilwis 3.3 Academic). The supervised classified map of gully erosion was prepared by maximum likelihood method and then, overall accuracy of this map was computed. Results showed that the possibility supervised classification of gully erosion isn-t possible, although it need more studies for results generalization to other mountainous regions. Also, with increasing land uses and other surface features in plain physiography, it decreases the classification of accuracy.

Keywords: Supervised classification, Gully erosion, Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
1015 Transformation Building of Micro- Entrepreneurs: A Conceptual Model

Authors: Abu Bakar Sedek Abdul Jamak, Saridan Abu Bakar, Zulkipli Ghazali, Roselind Wan

Abstract:

The majority of micro-entrepreneurs in Malaysia operate very small-scaled business activities such as food stalls, burger stalls, night market hawkers, grocery stores, constructions, rubber and oil palm small holders, and other agro-based services and activities. Why are they venturing into entrepreneurship - is it for survival, out of interest or due to encouragement and assistance from the local government? And why is it that some micro-entrepreneurs are lagging behind in entrepreneurship, and what do they need to rectify this situation so that they are able to progress further? Furthermore, what are the skills that the micro entrepreneurs should developed to transform them into successful micro-enterprises and become small and medium-sized enterprises (SME)? This paper proposes a 7-Step approach that can serve as a basis for identification of critical entrepreneurial success factors that enable policy makers, practitioners, consultants, training managers and other agencies in developing tools to assist micro business owners. This paper also highlights the experience of one of the successful companies in Malaysia that has transformed from micro-enterprise to become a large organization in less than 10 years.

Keywords: Entrepreneurship, Micro-entrepreneurs, Transformation, Customers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
1014 Ethical Perspectives on Implementation of Computer Aided Design Curriculum in Architecture in Nigeria: A Case Study of Chukwuemeka Odumegwu Ojukwu University, Uli

Authors: Kelechi E. Ezeji

Abstract:

The use of Computer Aided Design (CAD) technologies has become pervasive in the Architecture, Engineering and Construction (AEC) industry. This has led to its inclusion as an important part of the training module in the curriculum for Architecture Schools in Nigeria. This paper examines the ethical questions that arise in the implementation of Computer Aided Design (CAD) Content of the curriculum for Architectural education. Using existing literature, it begins this scrutiny from the propriety of inclusion of CAD into the education of the architect and the obligations of the different stakeholders in the implementation process. It also examines the questions raised by the negative use of computing technologies as well as perceived negative influence of the use of CAD on design creativity. Survey methodology was employed to gather data from the Department of Architecture, Chukwuemeka Odumegwu Ojukwu University Uli, which has been used as a case study on how the issues raised are being addressed. The paper draws conclusions on what will make for successful ethical implementation.

Keywords: Computer aided design, curriculum, education, ethics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
1013 Mental Health Surveys on Community and Organizational Levels: Challenges, Issues, Conclusions and Possibilities

Authors: László L. Lippai

Abstract:

In addition to the fact that mental health bears great significance to a particular individual, it can also be regarded as an organizational, community and societal resource. Within the Szeged Health Promotion Research Group, we conducted mental health surveys on two levels: The inhabitants of a medium-sized Hungarian town and students of a Hungarian university with a relatively big headcount were requested to participate in surveys whose goals were to define local government priorities and organization-level health promotion programmes, respectively. To facilitate professional decision-making, we defined three, pragmatically relevant, groups of the target population: the mentally healthy, the vulnerable and the endangered. In order to determine which group a person actually belongs to, we designed a simple and quick measurement tool, which could even be utilised as a smoothing method, the Mental State Questionnaire validity of the above three categories was verified by analysis of variance against psychological quality of life variables. We demonstrate the pragmatic significance of our method via the analyses of the scores of our two mental health surveys. On town level, during our representative survey in Hódmezővásárhely (N=1839), we found that 38.7% of the participants was mentally healthy, 35.3% was vulnerable, while 16.3% was considered as endangered. We were able to identify groups that were in a dramatic state in terms of mental health. For example, such a group consisted of men aged 45 to 64 with only primary education qualification and the ratios of the mentally healthy, vulnerable and endangered were 4.5, 45.5 and 50%, respectively. It was also astonishing to see to what a little extent qualification prevailed as a protective factor in the case of women. Based on our data, the female group aged 18 to 44 with primary education—of whom 20.3% was mentally healthy, 42.4% vulnerable and 37.3% was endangered—as well as the female group aged 45 to 64 with university or college degree—of whom 25% was mentally healthy, 51.3 vulnerable and 23.8% endangered—are to be handled as priority intervention target groups in a similarly difficult position. On organizational level, our survey involving the students of the University of Szeged, N=1565, provided data to prepare a strategy of mental health promotion for a university with a headcount exceeding 20,000. When developing an organizational strategy, it was important to gather information to estimate the proportions of target groups in which mental health promotion methods; for example, life management skills development, detection, psychological consultancy, psychotherapy, would be applied. Our scores show that 46.8% of the student participants were mentally healthy, 42.1% were vulnerable and 11.1% were endangered. These data convey relevant information as to the allocation of organizational resources within a university with a considerable headcount. In conclusion, The Mental State Questionnaire, as a valid smoothing method, is adequate to describe a community in a plain and informative way in the terms of mental health. The application of the method can promote the preparation, design and implementation of mental health promotion interventions. 

Keywords: Health promotion, mental health promotion, mental state questionnaire, psychological well-being.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
1012 Kalman Filter Gain Elimination in Linear Estimation

Authors: Nicholas D. Assimakis

Abstract:

In linear estimation, the traditional Kalman filter uses the Kalman filter gain in order to produce estimation and prediction of the n-dimensional state vector using the m-dimensional measurement vector. The computation of the Kalman filter gain requires the inversion of an m x m matrix in every iteration. In this paper, a variation of the Kalman filter eliminating the Kalman filter gain is proposed. In the time varying case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix and the inversion of an m x m matrix in every iteration. In the time invariant case, the elimination of the Kalman filter gain requires the inversion of an n x n matrix in every iteration. The proposed Kalman filter gain elimination algorithm may be faster than the conventional Kalman filter, depending on the model dimensions.

Keywords: Discrete time, linear estimation, Kalman filter, Kalman filter gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
1011 Correlation-based Feature Selection using Ant Colony Optimization

Authors: M. Sadeghzadeh, M. Teshnehlab

Abstract:

Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant colony optimization, Classification, Datamining, Feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
1010 Exploring the Ambiguity Resolution in Spacecraft Attitude Determination Using GNSS Phase Measurement

Authors: Lv Meibo, Naqvi Najam Abbas, Li YanJun

Abstract:

Attitude Determination (AD) of a spacecraft using the phase measurements of the Global Navigation Satellite System (GNSS) is an active area of research. Various attitude determination algorithms have been developed in yester years for spacecrafts using different sensors but the last two decades have witnessed a phenomenal increase in research related with GPS receivers as a stand-alone sensor for determining the attitude of satellite using the phase measurements of the signals from GNSS. The GNSS-based Attitude determination algorithms have been experimented in many real missions. The problem of AD algorithms using GNSS phase measurements has two important parts; the ambiguity resolution and the determining of attitude. Ambiguity resolution is the widely addressed topic in literature for implementing the AD algorithm using GNSS phase measurements for achieving the accuracy of millimeter level. This paper broadly overviews the different techniques for resolving the integer ambiguities encountered in AD using GNSS phase measurements.

Keywords: Attitude Determination, Ambiguity Resolution, GNSS, LAMBDA Method, Satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
1009 Walking Hexapod Robot in Disaster Recovery: Developing Algorithm for Terrain Negotiation and Navigation

Authors: Md. Masum Billah, Mohiuddin Ahmed, Soheli Farhana

Abstract:

In modern day disaster recovery mission has become one of the top priorities in any natural disaster management regime. Smart autonomous robots may play a significant role in such missions, including search for life under earth quake hit rubbles, Tsunami hit islands, de-mining in war affected areas and many other such situations. In this paper current state of many walking robots are compared and advantages of hexapod systems against wheeled robots are described. In our research we have selected a hexapod spider robot; we are developing focusing mainly on efficient navigation method in different terrain using apposite gait of locomotion, which will make it faster and at the same time energy efficient to navigate and negotiate difficult terrain. This paper describes the method of terrain negotiation navigation in a hazardous field.

Keywords: Walking robots, locomotion, hexapod robot, gait, hazardous field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4433
1008 Neural Network-Based Control Strategies Applied to a Fed-Batch Crystallization Process

Authors: P. Georgieva, S. Feyo de Azevedo

Abstract:

This paper is focused on issues of process modeling and two model based control strategies of a fed-batch sugar crystallization process applying the concept of artificial neural networks (ANNs). The control objective is to force the operation into following optimal supersaturation trajectory. It is achieved by manipulating the feed flow rate of sugar liquor/syrup, considered as the control input. The control task is rather challenging due to the strong nonlinearity of the process dynamics and variations in the crystallization kinetics. Two control alternatives are considered – model predictive control (MPC) and feedback linearizing control (FLC). Adequate ANN process models are first built as part of the controller structures. MPC algorithm outperforms the FLC approach with respect to satisfactory reference tracking and smooth control action. However, the MPC is computationally much more involved since it requires an online numerical optimization, while for the FLC an analytical control solution was determined.

Keywords: artificial neural networks, nonlinear model control, process identification, crystallization process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
1007 GEP Considering Purchase Prices, Profits of IPPs and Reliability Criteria Using Hybrid GA and PSO

Authors: H. Shayeghi, H. Hosseini, A. Shabani, M. Mahdavi

Abstract:

In this paper, optimal generation expansion planning (GEP) is investigated considering purchase prices, profits of independent power producers (IPPs) and reliability criteria using a new method based on hybrid coded Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). In this approach, optimal purchase price of each IPP is obtained by HCGA and reliability criteria are calculated by PSO technique. It should be noted that reliability criteria and the rate of carbon dioxide (CO2) emission have been considered as constraints of the GEP problem. Finally, the proposed method has been tested on the case study system. The results evaluation show that the proposed method can simply obtain optimal purchase prices of IPPs and is a fast method for calculation of reliability criteria in expansion planning. Also, considering the optimal purchase prices and profits of IPPs in generation expansion planning are caused that the expansion costs are decreased and the problem is solved more exactly.

Keywords: GEP Problem, IPPs, Reliability Criteria, GA, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
1006 Analysis of Diverse Cluster Ensemble Techniques

Authors: S. Sarumathi, N. Shanthi, P. Ranjetha

Abstract:

Data mining is the procedure of determining interesting patterns from the huge amount of data. With the intention of accessing the data faster the most supporting processes needed is clustering. Clustering is the process of identifying similarity between data according to the individuality present in the data and grouping associated data objects into clusters. Cluster ensemble is the technique to combine various runs of different clustering algorithms to obtain a general partition of the original dataset, aiming for consolidation of outcomes from a collection of individual clustering outcomes. The performances of clustering ensembles are mainly affecting by two principal factors such as diversity and quality. This paper presents the overview about the different cluster ensemble algorithm along with their methods used in cluster ensemble to improve the diversity and quality in the several cluster ensemble related papers and shows the comparative analysis of different cluster ensemble also summarize various cluster ensemble methods. Henceforth this clear analysis will be very useful for the world of clustering experts and also helps in deciding the most appropriate one to determine the problem in hand.

Keywords: Cluster Ensemble, Consensus Function, CSPA, Diversity, HGPA, MCLA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1005 A Survey: Clustering Ensembles Techniques

Authors: Reza Ghaemi , Md. Nasir Sulaiman , Hamidah Ibrahim , Norwati Mustapha

Abstract:

The clustering ensembles combine multiple partitions generated by different clustering algorithms into a single clustering solution. Clustering ensembles have emerged as a prominent method for improving robustness, stability and accuracy of unsupervised classification solutions. So far, many contributions have been done to find consensus clustering. One of the major problems in clustering ensembles is the consensus function. In this paper, firstly, we introduce clustering ensembles, representation of multiple partitions, its challenges and present taxonomy of combination algorithms. Secondly, we describe consensus functions in clustering ensembles including Hypergraph partitioning, Voting approach, Mutual information, Co-association based functions and Finite mixture model, and next explain their advantages, disadvantages and computational complexity. Finally, we compare the characteristics of clustering ensembles algorithms such as computational complexity, robustness, simplicity and accuracy on different datasets in previous techniques.

Keywords: Clustering Ensembles, Combinational Algorithm, Consensus Function, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3452
1004 A Generic Approach to Achieve Optimal Server Consolidation by Using Existing Servers in Virtualized Data Center

Authors: Siyuan Jing, Kun She

Abstract:

Virtualization-based server consolidation has been proven to be an ideal technique to solve the server sprawl problem by consolidating multiple virtualized servers onto a few physical servers leading to improved resource utilization and return on investment. In this paper, we solve this problem by using existing servers, which are heterogeneous and diversely preferred by IT managers. Five practical consolidation rules are introduced, and a decision model is proposed to optimally allocate source services to physical target servers while maximizing the average resource utilization and preference value. Our model can be regarded as a multi-objective multi-dimension bin-packing (MOMDBP) problem with constraints, which is strongly NP-hard. An improved grouping generic algorithm (GGA) is introduced for the problem. Extensive simulations were performed and the results are given.

Keywords: GGA-based Heuristics, Preference, Real-worldConstraints, Resource Utilization, Server Consolidation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
1003 Novel Direct Flux and Torque Control of Optimally Designed 6 Phase Reluctance Machine with Special Current Waveform

Authors: E T. Rakgati, E. Matlotse

Abstract:

In this paper the principle, basic torque theory and design optimisation of a six-phase reluctance dc machine are considered. A trapezoidal phase current waveform for the machine drive is proposed and evaluated to minimise ripple torque. Low cost normal laminated salient-pole rotors with and without slits and chamfered poles are investigated. The six-phase machine is optimised in multi-dimensions by linking the finite-element analysis method directly with an optimisation algorithm; the objective function is to maximise the torque per copper losses of the machine. The armature reaction effect is investigated in detail and found to be severe. The measured and calculated torque performances of a 35 kW optimum designed six-phase reluctance dc machine drive are presented.

Keywords: Reluctance dc machine, current waveform, design optimisation, finite element analysis, armature reaction effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1002 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, capsule network, capacity optimization, character recognition, data augmentation; semantic segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 701
1001 A Distributed Approach to Extract High Utility Itemsets from XML Data

Authors: S. Kannimuthu, K. Premalatha

Abstract:

This paper investigates a new data mining capability that entails mining of High Utility Itemsets (HUI) in a distributed environment. Existing research in data mining deals with only presence or absence of an items and do not consider the semantic measures like weight or cost of the items. Thus, HUI mining algorithm has evolved. HUI mining is the one kind of utility mining concept, aims to identify itemsets whose utility satisfies a given threshold. Although, the approach of mining HUIs in a distributed environment and mining of the same from XML data have not explored yet. In this work, a novel approach is proposed to mine HUIs from the XML based data in a distributed environment. This work utilizes Service Oriented Computing (SOC) paradigm which provides Knowledge as a Service (KaaS). The interesting patterns are provided via the web services with the help of knowledge server to answer the queries of the consumers. The performance of the approach is evaluated on various databases using execution time and memory consumption.

Keywords: Data mining, Knowledge as a Service, service oriented computing, utility mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
1000 A Combination of Similarity Ranking and Time for Social Research Paper Searching

Authors: P. Jomsri

Abstract:

Nowadays social media are important tools for web resource discovery. The performance and capabilities of web searches are vital, especially search results from social research paper bookmarking. This paper proposes a new algorithm for ranking method that is a combination of similarity ranking with paper posted time or CSTRank. The paper posted time is static ranking for improving search results. For this particular study, the paper posted time is combined with similarity ranking to produce a better ranking than other methods such as similarity ranking or SimRank. The retrieval performance of combination rankings is evaluated using mean values of NDCG. The evaluation in the experiments implies that the chosen CSTRank ranking by using weight score at ratio 90:10 can improve the efficiency of research paper searching on social bookmarking websites.

Keywords: combination ranking, information retrieval, time, similarity ranking, static ranking, weight score

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
999 A New Technique for Solar Activity Forecasting Using Recurrent Elman Networks

Authors: Salvatore Marra, Francesco C. Morabito

Abstract:

In this paper we present an efficient approach for the prediction of two sunspot-related time series, namely the Yearly Sunspot Number and the IR5 Index, that are commonly used for monitoring solar activity. The method is based on exploiting partially recurrent Elman networks and it can be divided into three main steps: the first one consists in a “de-rectification" of the time series under study in order to obtain a new time series whose appearance, similar to a sum of sinusoids, can be modelled by our neural networks much better than the original dataset. After that, we normalize the derectified data so that they have zero mean and unity standard deviation and, finally, train an Elman network with only one input, a recurrent hidden layer and one output using a back-propagation algorithm with variable learning rate and momentum. The achieved results have shown the efficiency of this approach that, although very simple, can perform better than most of the existing solar activity forecasting methods.

Keywords: Elman neural networks, sunspot, solar activity, time series prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
998 MIMO Broadcast Scheduling for Weighted Sum-rate Maximization

Authors: Swadhin Kumar Mishra, Sidhartha Panda, C. Ardil

Abstract:

Multiple-Input-Multiple-Output (MIMO) is one of the most important communication techniques that allow wireless systems to achieve higher data rate. To overcome the practical difficulties in implementing Dirty Paper Coding (DPC), various suboptimal MIMO Broadcast (MIMO-BC) scheduling algorithms are employed which choose the best set of users among all the users. In this paper we discuss such a sub-optimal MIMO-BC scheduling algorithm which employs antenna selection at the receiver side. The channels for the users considered here are not Identical and Independent Distributed (IID) so that users at the receiver side do not get equal opportunity for communication. So we introduce a method of applying weights to channels of the users which are not IID in such a way that each of the users gets equal opportunity for communication. The effect of weights on overall sum-rate achieved by the system has been investigated and presented.

Keywords: Antenna selection, Identical and Independent Distributed (IID), Sum-rate capacity, Weighted sum rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
997 Analyzing Behaviour of the Utilization of the Online News Clipping Database: Experience in Suan Sunandha Rajabhat University

Authors: Siriporn Poolsuwan, Kanyarat Bussaban

Abstract:

This research aims to investigate and analyze user’s behaviour towards the utilization of the online news clipping database at Suan Sunandha Rajabhat University, Thailand. Data is gathered from 214 lecturers and 380 undergraduate students by using questionnaires. Findings show that most users knew the online news clipping service from their friends, library’s website and their teachers. The users learned how to use it by themselves and others learned by training of SSRU library. Most users used the online news clipping database one time per month at home and always used the service for general knowledge, up-to-date academic knowledge and assignment reference. Moreover, the results of using the online news clipping service problems include the users themselves, service management, service device- computer and tools – and the network, service provider, and publicity. This research would be benefit for librarians and teachers for planning and designing library services in their works and organization

Keywords: Online Database, User Behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
996 Portfolio Management: A Fuzzy Set Based Approach to Monitoring Size to Maximize Return and Minimize Risk

Authors: Margaret F. Shipley

Abstract:

Fuzzy logic can be used when knowledge is incomplete or when ambiguity of data exists. The purpose of this paper is to propose a proactive fuzzy set- based model for reacting to the risk inherent in investment activities relative to a complete view of portfolio management. Fuzzy rules are given where, depending on the antecedents, the portfolio size may be slightly or significantly decreased or increased. The decision maker considers acceptable bounds on the proportion of acceptable risk and return. The Fuzzy Controller model allows learning to be achieved as 1) the firing strength of each rule is measured, 2) fuzzy output allows rules to be updated, and 3) new actions are recommended as the system continues to loop. An extension is given to the fuzzy controller that evaluates potential financial loss before adjusting the portfolio. An application is presented that illustrates the algorithm and extension developed in the paper.

Keywords: Portfolio Management, Financial Market Monitoring, Fuzzy Controller, Fuzzy Logic,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
995 Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network

Authors: Motonobu Hattori

Abstract:

In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.

Keywords: catastrophic forgetting, chaotic neural network, complementary learning systems, dual-network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
994 Using a Semantic Self-Organising Web Page-Ranking Mechanism for Public Administration and Education

Authors: Marios Poulos, Sozon Papavlasopoulos, V. S. Belesiotis

Abstract:

In the proposed method for Web page-ranking, a novel theoretic model is introduced and tested by examples of order relationships among IP addresses. Ranking is induced using a convexity feature, which is learned according to these examples using a self-organizing procedure. We consider the problem of selforganizing learning from IP data to be represented by a semi-random convex polygon procedure, in which the vertices correspond to IP addresses. Based on recent developments in our regularization theory for convex polygons and corresponding Euclidean distance based methods for classification, we develop an algorithmic framework for learning ranking functions based on a Computational Geometric Theory. We show that our algorithm is generic, and present experimental results explaining the potential of our approach. In addition, we explain the generality of our approach by showing its possible use as a visualization tool for data obtained from diverse domains, such as Public Administration and Education.

Keywords: Computational Geometry, Education, e-Governance, Semantic Web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
993 Awareness Level of Green Computing among Computer Users in Kebbi State, Nigeria

Authors: A. Mubarak, A. I. Augie

Abstract:

This study investigated the awareness level of green computing possessed by computer users in Kebbi state. Survey method was employed to carry out the study. The study involved computer users from ICT business/training centers around Argungu and Birnin Kebbi areas of Kebbi state. Purposive sampling method was used to draw 156 respondents that volunteer to answer the questionnaire administered for gathering the data of the study. Out of the 156 questionnaires distributed, 121 were used for data analysis. In all, 79 respondents were from Argungu, while 42 were from Birnin Kebbi. The two research questions of the study were answered with descriptive statistic (percentage), and inferential statistics (ANOVA). The findings showed that the most of the computer users do not possess adequate awareness on conscious use of computing system. Also, the study showed that there is no significant difference regarding the consciousness of green computing possesses among computer users in Argungu and Birnin Kebbi. Based on these findings, the study suggested among others an aggressive campaign on green computing practice among computer users in Kebbi state.

Keywords: Green computing, awareness, information technology, Energy Star.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 657
992 Neural Networks for Short Term Wind Speed Prediction

Authors: K. Sreelakshmi, P. Ramakanthkumar

Abstract:

Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.

Keywords: Short term wind speed prediction, Neural networks, Back propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3065