Search results for: Social network
3857 Exploring Structure of Mobile Ecosystem: Inter-Industry Network Analysis Approach
Authors: Yongyoon Suh, Chulhyun Kim, Moon-soo Kim
Abstract:
As increasing importance of symbiosis and cooperation among mobile communication industries, the mobile ecosystem has been especially highlighted in academia and practice. The structure of mobile ecosystem is quite complex and the ecological role of actors is important to understand that structure. In this respect, this study aims to explore structure of mobile ecosystem in the case of Korea using inter-industry network analysis. Then, the ecological roles in mobile ecosystem are identified using centrality measures as a result of network analysis: degree of centrality, closeness, and betweenness. The result shows that the manufacturing and service industries are separate. Also, the ecological roles of some actors are identified based on the characteristics of ecological terms: keystone, niche, and dominator. Based on the result of this paper, we expect that the policy makers can formulate the future of mobile industry and healthier mobile ecosystem can be constructed.
Keywords: Mobile ecosystem, structure, ecological roles, network analysis, network index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20683856 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.
Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13023855 Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis
Authors: M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee
Abstract:
The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis.Keywords: Morphometric, Tor tambroides, Stepwise Discriminant Analysis , Neural Network Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21503854 Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network
Authors: Earleen Jane Fuentes, Regeene Melarese Lim, Franklin Benjamin Tapia, Alexis Pantola
Abstract:
Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA.Keywords: Mobile ad-hoc network, selfish nodes, reputation-based techniques, acknowledgment-based techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13763853 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context
Authors: Mangesh R. Phate, V. H. Tatwawadi
Abstract:
This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.
The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.
Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19703852 Device Discover: A Component for Network Management System using Simple Network Management Protocol
Authors: Garima Gupta, Daya Gupta
Abstract:
Virtually all existing networked system management tools use a Manager/Agent paradigm. That is, distributed agents are deployed on managed devices to collect local information and report it back to some management unit. Even those that use standard protocols such as SNMP fall into this model. Using standard protocol has the advantage of interoperability among devices from different vendors. However, it may not be able to provide customized information that is of interest to satisfy specific management needs. In this dissertation work, different approaches are used to collect information regarding the devices attached to a Local Area Network. An SNMP aware application is being developed that will manage the discovery procedure and will be used as data collector.Keywords: ICMP Scanner, Network Discovery, NetworkManagement, SNMP Scanner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16663851 Challenges to Enable Quick Start of an Environmental Monitoring with Wireless Sensor Network Technology
Authors: Masaki Ito, Hideyuki Tokuda, Takao Kawamura, Kazunori Sugahara
Abstract:
With the advancement of wireless sensor network technology, its practical utilization is becoming an important challange. This paper overviews my past environmental monitoring project, and discusses the process of starting the monitoring by classifying it into four steps. The steps to start environmental monitoring can be complicated, but not well discussed by researchers of wireless sensor network technology. This paper demonstrates our activity and challenges in each of the four steps to ease the process, and argues future challenges to enable quick start of environmental monitoring.Keywords: Environmental Monitoring, Wireless Sensor Network, Field Experiment and Research Challenges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19633850 Trust Enhanced Dynamic Source Routing Protocol for Adhoc Networks
Authors: N. Bhalaji, A. R. Sivaramkrishnan, Sinchan Banerjee, V. Sundar, A. Shanmugam
Abstract:
Nodes in mobile Ad Hoc Network (MANET) do not rely on a central infrastructure but relay packets originated by other nodes. Mobile ad hoc networks can work properly only if the participating nodes collaborate in routing and forwarding. For individual nodes it might be advantageous not to collaborate, though. In this conceptual paper we propose a new approach based on relationship among the nodes which makes them to cooperate in an Adhoc environment. The trust unit is used to calculate the trust values of each node in the network. The calculated trust values are being used by the relationship estimator to determine the relationship status of nodes. The proposed enhanced protocol was compared with the standard DSR protocol and the results are analyzed using the network simulator-2.Keywords: Reliable Routing, DSR, Grudger, Adhoc network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25043849 Social Business Models: When Profits and Impacts Are Not at Odds
Authors: Elisa Pautasso, Matteo Castagno, Michele Osella
Abstract:
In the last decade the emergence of new social needs as an effect of the economic crisis has stimulated the flourishing of business endeavours characterised by explicit social goals. Social start-ups, social enterprises or Corporate Social Responsibility operations carried out by traditional companies are quintessential examples in this regard. This paper analyses these kinds of initiatives in order to discover the main characteristics of social business models and to provide insights to social entrepreneurs for developing or improving their strategies. The research is conducted through the integration of literature review and case study analysis and, thanks to the recognition of the importance of both profits and social impacts as the key success factors for a social business model, proposes a framework for identifying indicators suitable for measuring the social impacts generated.Keywords: Business model, case study, impacts, social business.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18113848 Image Compression with Back-Propagation Neural Network using Cumulative Distribution Function
Authors: S. Anna Durai, E. Anna Saro
Abstract:
Image Compression using Artificial Neural Networks is a topic where research is being carried out in various directions towards achieving a generalized and economical network. Feedforward Networks using Back propagation Algorithm adopting the method of steepest descent for error minimization is popular and widely adopted and is directly applied to image compression. Various research works are directed towards achieving quick convergence of the network without loss of quality of the restored image. In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Back-propagation Network, it takes longer time to converge. The reason for this is, the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbors with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative distribution function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used, the Back-propagation Neural Network yields high compression ratio as well as it converges quickly.Keywords: Back-propagation Neural Network, Cumulative Distribution Function, Correlation, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25523847 Software Effort Estimation Models Using Radial Basis Function Network
Authors: E. Praynlin, P. Latha
Abstract:
Software Effort Estimation is the process of estimating the effort required to develop software. By estimating the effort, the cost and schedule required to estimate the software can be determined. Accurate Estimate helps the developer to allocate the resource accordingly in order to avoid cost overrun and schedule overrun. Several methods are available in order to estimate the effort among which soft computing based method plays a prominent role. Software cost estimation deals with lot of uncertainty among all soft computing methods neural network is good in handling uncertainty. In this paper Radial Basis Function Network is compared with the back propagation network and the results are validated using six data sets and it is found that RBFN is best suitable to estimate the effort. The Results are validated using two tests the error test and the statistical test.
Keywords: Software cost estimation, Radial Basis Function Network (RBFN), Back propagation function network, Mean Magnitude of Relative Error (MMRE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23883846 A Utilitarian Approach to Modeling Information Flows in Social Networks
Authors: Usha Sridhar, Sridhar Mandyam
Abstract:
We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the Insurance industry, can be used for social network analysis. We develop a utilitarian framework that allows us to interpret Pareto optimal exchanges of value as potential information flows, while achieving a maximization of a sum of expected utilities of information of the group of agents. We examine some interesting conditions on the utility function under which the flows are optimal. We illustrate the promise of this new approach to attach economic value to information in networks with a synthetic example.Keywords: Borch's Theorem , Economic value of information, Information Exchange, Pareto Optimal Solution, Social Networks, Utility Functions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15053845 Prediction the Deformation in Upsetting Process by Neural Network and Finite Element
Authors: H.Mohammadi Majd, M.Jalali Azizpour , Foad Saadi
Abstract:
In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting processKeywords: Back-propagation artificial neural network(BPANN), prediction, upsetting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15523844 Performance Evaluation of Routing Protocols for High Density Ad Hoc Networks Based on Energy Consumption by GlomoSim Simulator
Abstract:
Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing (LAR1).Our evaluation is based on energy consumption in mobile ad hoc networks. The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.
Keywords: Ad hoc Network, energy consumption, Glomosim, routing protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21353843 Global Existence of Periodic Solutions in a Delayed Tri–neuron Network
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.Keywords: Delay, global Hopf bifurcation, neural network, periodicsolutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14863842 Time Series Forecasting Using a Hybrid RBF Neural Network and AR Model Based On Binomial Smoothing
Authors: Fengxia Zheng, Shouming Zhong
Abstract:
ANNARIMA that combines both autoregressive integrated moving average (ARIMA) model and artificial neural network (ANN) model is a valuable tool for modeling and forecasting nonlinear time series, yet the over-fitting problem is more likely to occur in neural network models. This paper provides a hybrid methodology that combines both radial basis function (RBF) neural network and auto regression (AR) model based on binomial smoothing (BS) technique which is efficient in data processing, which is called BSRBFAR. This method is examined by using the data of Canadian Lynx data. Empirical results indicate that the over-fitting problem can be eased using RBF neural network based on binomial smoothing which is called BS-RBF, and the hybrid model–BS-RBFAR can be an effective way to improve forecasting accuracy achieved by BSRBF used separately.
Keywords: Binomial smoothing (BS), hybrid, Canadian Lynx data, forecasting accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36873841 EEIA: Energy Efficient Indexed Aggregation in Smart Wireless Sensor Networks
Authors: Mohamed Watfa, William Daher, Hisham Al Azar
Abstract:
The main idea behind in network aggregation is that, rather than sending individual data items from sensors to sinks, multiple data items are aggregated as they are forwarded by the sensor network. Existing sensor network data aggregation techniques assume that the nodes are preprogrammed and send data to a central sink for offline querying and analysis. This approach faces two major drawbacks. First, the system behavior is preprogrammed and cannot be modified on the fly. Second, the increased energy wastage due to the communication overhead will result in decreasing the overall system lifetime. Thus, energy conservation is of prime consideration in sensor network protocols in order to maximize the network-s operational lifetime. In this paper, we give an energy efficient approach to query processing by implementing new optimization techniques applied to in-network aggregation. We first discuss earlier approaches in sensors data management and highlight their disadvantages. We then present our approach “Energy Efficient Indexed Aggregation" (EEIA) and evaluate it through several simulations to prove its efficiency, competence and effectiveness.Keywords: Sensor Networks, Data Base, Data Fusion, Aggregation, Indexing, Energy Efficiency
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17963840 Application of Neural Networks in Financial Data Mining
Authors: Defu Zhang, Qingshan Jiang, Xin Li
Abstract:
This paper deals with the application of a well-known neural network technique, multilayer back-propagation (BP) neural network, in financial data mining. A modified neural network forecasting model is presented, and an intelligent mining system is developed. The system can forecast the buying and selling signs according to the prediction of future trends to stock market, and provide decision-making for stock investors. The simulation result of seven years to Shanghai Composite Index shows that the return achieved by this mining system is about three times as large as that achieved by the buy and hold strategy, so it is advantageous to apply neural networks to forecast financial time series, the different investors could benefit from it.
Keywords: Data mining, neural network, stock forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35903839 Design and Bandwidth Allocation of Embedded ATM Networks using Genetic Algorithm
Authors: H. El-Madbouly
Abstract:
In this paper, genetic algorithm (GA) is proposed for the design of an optimization algorithm to achieve the bandwidth allocation of ATM network. In Broadband ISDN, the ATM is a highbandwidth; fast packet switching and multiplexing technique. Using ATM it can be flexibly reconfigure the network and reassign the bandwidth to meet the requirements of all types of services. By dynamically routing the traffic and adjusting the bandwidth assignment, the average packet delay of the whole network can be reduced to a minimum. M/M/1 model can be used to analyze the performance.Keywords: Bandwidth allocation, Genetic algorithm, ATMNetwork, packet delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13783838 Recurrent Radial Basis Function Network for Failure Time Series Prediction
Authors: Ryad Zemouri, Paul Ciprian Patic
Abstract:
An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18193837 Social Structure, Involuntary Relations, and Urban Poverty
Authors: Mahmood Niroobakhsh
Abstract:
This article deals with special structuralism approaches to explain a certain kind of social problem. Widespread presence of poverty is a reminder of deep-rooted unresolved problems of social relations. The expected role from an individual for the social system recognizes poverty derived from an interrelated social structure. By the time, enabled to act on his role in the course of social interaction, reintegration of the poor in society may take place. Poverty and housing type are reflections of the underlying social structure, primarily structure’s elements, systemic interrelations, and the overall strength or weakness of that structure. Poverty varies based on social structure in that the stronger structures are less likely to produce poverty.Keywords: Absolute poverty, relative poverty, social structure, urban poverty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16863836 Optimizing Network Latency with Fast Path Assignment for Incoming Flows
Abstract:
Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm.Keywords: Latency, Fast path assignment, Bottleneck link.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5933835 Digital Social Networks: Examining the Knowledge Characteristics
Authors: Nurul Aini M. Nordan, Ahmad I. Z. Abidin, Ahmad K. Mahmood, Noreen I. Arshad
Abstract:
In today-s information age, numbers of organizations are still arguing on capitalizing the values of Information Technology (IT) and Knowledge Management (KM) to which individuals can benefit from and effective communication among the individuals can be established. IT exists in enabling positive improvement for communication among knowledge workers (k-workers) with a number of social network technology domains at workplace. The acceptance of digital discourse in sharing of knowledge and facilitating the knowledge and information flows at most of the organizations indeed impose the culture of knowledge sharing in Digital Social Networks (DSN). Therefore, this study examines whether the k-workers with IT background would confer an effect on the three knowledge characteristics -- conceptual, contextual, and operational. Derived from these three knowledge characteristics, five potential factors will be examined on the effects of knowledge exchange via e-mail domain as the chosen query. It is expected, that the results could provide such a parameter in exploring how DSN contributes in supporting the k-workers- virtues, performance and qualities as well as revealing the mutual point between IT and KM.Keywords: Digital social networks, e-mail, knowledge management, knowledge worker.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13743834 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes
Authors: Z. Nougrara
Abstract:
In this paper we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We therefore have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.Keywords: Satellite image, road network, nodes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16983833 A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems
Authors: Sultan Noman Qasem
Abstract:
This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature.
Keywords: Radial basis function network, Hybrid learning, Multi-objective optimization, Genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22533832 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation
Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez
Abstract:
Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.
Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20793831 Implementation of a New Neural Network Function Block to Programmable Logic Controllers Library Function
Authors: Hamid Abdi, Abolfazl Salami, Abolfazl Ahmadi
Abstract:
Programmable logic controllers are the main controllers in the today's industries; they are used for several applications in industrial control systems and there are lots of examples exist from the PLC applications in industries especially in big companies and plants such as refineries, power plants, petrochemical companies, steel companies, and food and production companies. In the PLCs there are some functions in the function library in software that can be used in PLC programs as basic program elements. The aim of this project are introducing and implementing a new function block of a neural network to the function library of PLC. This block can be applied for some control applications or nonlinear functions calculations after it has been trained for these applications. The implemented neural network is a Perceptron neural network with three layers, three input nodes and one output node. The block can be used in manual or automatic mode. In this paper the structure of the implemented function block, the parameters and the training method of the network are presented by considering the especial method of PLC programming and its complexities. Finally the application of the new block is compared with a classic simulated block and the results are presented.Keywords: Programmable Logic Controller, PLC Programming, Neural Networks, Perception Network, Intelligent Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38103830 Analytical Model of Connection Establishment Duration Calculation in Wireless Networks
Authors: Y. Chaiko
Abstract:
It is important to provide possibility of so called “handover" for the mobile subscriber from GSM network to Wi-Fi network and back. To solve specified problem it is necessary to estimate connection time between base station and wireless access point. Difficulty to estimate this parameter is that it doesn-t described in specifications of the standard and, hence, no recommended value is given. In this paper, the analytical model is presented that allows the estimating connection time between base station and IEEE 802.11 access point.Keywords: Access point, connection procedure, Wi-Fi network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17223829 Keyword Network Analysis on the Research Trends of Life-Long Education for People with Disabilities in Korea
Authors: Jakyoung Kim, Sungwook Jang
Abstract:
The purpose of this study is to examine the research trends of life-long education for people with disabilities using a keyword network analysis. For this purpose, 151 papers were selected from 594 papers retrieved using keywords such as 'people with disabilities' and 'life-long education' in the Korean Education and Research Information Service. The Keyword network analysis was constructed by extracting and coding the keyword used in the title of the selected papers. The frequency of the extracted keywords, the centrality of degree, and betweenness was analyzed by the keyword network. The results of the keyword network analysis are as follows. First, the main keywords that appeared frequently in the study of life-long education for people with disabilities were 'people with disabilities', 'life-long education', 'developmental disabilities', 'current situations', 'development'. The research trends of life-long education for people with disabilities are focused on the current status of the life-long education and the program development. Second, the keyword network analysis and visualization showed that the keywords with high frequency of occurrences also generally have high degree centrality and betweenness centrality. In terms of the keyword network diagram, it was confirmed that research trends of life-long education for people with disabilities are centered on six prominent keywords. Based on these results, it was discussed that life-long education for people with disabilities in the future needs to expand the subjects and the supporting areas of the life-long education, and the research needs to be further expanded into more detailed and specific areas.Keywords: Life-long education, people with disabilities, research trends, keyword network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12463828 Constant Factor Approximation Algorithm for p-Median Network Design Problem with Multiple Cable Types
Authors: Chaghoub Soraya, Zhang Xiaoyan
Abstract:
This research presents the first constant approximation algorithm to the p-median network design problem with multiple cable types. This problem was addressed with a single cable type and there is a bifactor approximation algorithm for the problem. To the best of our knowledge, the algorithm proposed in this paper is the first constant approximation algorithm for the p-median network design with multiple cable types. The addressed problem is a combination of two well studied problems which are p-median problem and network design problem. The introduced algorithm is a random sampling approximation algorithm of constant factor which is conceived by using some random sampling techniques form the literature. It is based on a redistribution Lemma from the literature and a steiner tree problem as a subproblem. This algorithm is simple, and it relies on the notions of random sampling and probability. The proposed approach gives an approximation solution with one constant ratio without violating any of the constraints, in contrast to the one proposed in the literature. This paper provides a (21 + 2)-approximation algorithm for the p-median network design problem with multiple cable types using random sampling techniques.Keywords: Approximation algorithms, buy-at-bulk, combinatorial optimization, network design, p-median.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599