Search results for: Recognition of Prior Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3037

Search results for: Recognition of Prior Learning

67 Factors Affecting Students’ Performance in Chemistry: Case Study in Zanzibar Secondary Schools

Authors: Ahmed A. Hassan, Hassan I. Ali, Abdallah A. Salum, Asia M. Kassim, Yussuf N. Elmoge, Ali A. Amour

Abstract:

The purpose of this study was to investigate the performance of chemistry in Zanzibar Secondary Schools. It was conducted in all regions of Zanzibar in public and private secondary schools and Ministry of Education officials. The objective of the study included finding out causes of poor performance in chemistry. Views, opinions, and suggestions of teachers and students to improve performance of chemistry and a descriptive survey was adopted for the study. 45 teachers and 200 students were randomly sampled from 15 secondary schools in Zanzibar and ten Ministry of Education officials were purposively sampled for the study. Questionnaires and open-ended interview schedules were the main instruments used in obtaining relevant data from respondents. Data collected from the field was analyzed both qualitatively and quantitatively. Qualitative analysis involved content analysis of the responses obtained through interviews and quantitative analysis involved generation of tables, frequencies and percentages. The results revealed that there were shortages of trained teachers, lack of proficiency in the language of instruction (English) and major facilities like laboratories and books. These led to poor delivery of subject matter and consequently resulting in poor performance. Based on the findings, this study recommends that provision of trained, competent, and effective teachers as vital aspects to be considered. Government through Ministry of Education should put effort to stalk libraries and equip laboratories with modern books and instruments. In addition, the ministry should strengthen teachers’ training and encourage use of instructional media in class and make conducive learning environment to both teachers and students.

Keywords: Zanzibar, secondary schools, chemistry, science, performance and factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7290
66 The COVID-19 Pandemic: Lessons Learned in Promoting Student Internationalisation

Authors: David Cobham

Abstract:

In higher education, a great degree of importance is placed on the internationalisation of the student experience. This is seen as a valuable contributor to elements such as building confidence, broadening knowledge, creating networks, and connections and enhancing employability for current students who will become the next generation of managers in technology and business. The COVID-19 pandemic has affected all areas of people’s lives. The limitations of travel coupled with the fears and concerns generated by the health risks have dramatically reduced the opportunity for students to engage with this agenda. Institutions of higher education have been required to rethink fundamental aspects of their business model from recruitment and enrolment, through learning approaches, assessment methods and the pathway to employment. This paper presents a case study which focuses on student mobility and how the physical experience of being in another country either to study, to work, to volunteer or to gain cultural and social enhancement has of necessity been replaced by alternative approaches. It considers trans-national education as an alternative to physical study overseas, virtual mobility and internships as an alternative to international work experience and adopting collaborative on-line projects as an alternative to in-person encounters. The paper concludes that although these elements have been adopted to address the current situation, the lessons learnt and the feedback gained suggests that they have contributed successfully in new and sometimes unexpected ways, and that they will persist beyond the present to become part of the "new normal" for the future. That being the case, senior leaders of institutions of higher education will be required to revisit their international plans and to rewrite their international strategies to take account of and build upon these changes.

Keywords: Trans-national education, internationalisation, higher education management, virtual mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968
65 Clustering for Detection of Population Groups at Risk from Anticholinergic Medication

Authors: Amirali Shirazibeheshti, Tarik Radwan, Alireza Ettefaghian, Farbod Khanizadeh, George Wilson, Cristina Luca

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.

Keywords: Anticholinergic medication, socioeconomic status, deprivation, clustering, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1070
64 Modelling and Dimension Analysis of a Multipurpose Convertible Laptop Table Using Autodesk Fusion 360

Authors: Nitesh Pandey, Manish Kumar, Pankaj Gupta, Amit Kumar Srivastava

Abstract:

The convertible table is a versatile and adaptable item designed to provide numerous solutions in one. The design incorporates numerous features that offer both ease and functionality. The description of the versatile convertible table in this overview encompasses a range of features that can be tailored to accommodate various user requirements. With its changeable functionality, this piece can easily transform into a workstation, dining table, or coffee table to suit various needs. Significantly, this multipurpose convertible laptop table includes a specific section for electronic devices such as computers and tablets, offering convenience for remote workers and online learners. In addition, providing storage space for essential equipment promotes a tidy workspace by facilitating the organization of many items. The integrated flash system offers supplementary illumination for dimly lit surroundings, while the cooling fans prevent the table's surface from overheating in hot weather or during prolonged laptop usage, making it an optimal and superior choice for laptop users. In order to cater to the needs of students, painters, and other individuals who require writing tools on a regular basis, a pencil and pen stand is included, hence enhancing the versatility of the table. The scissor lift mechanism allows for easy modifications in height, making it convenient to customize usage and providing the option of using it as a standing desk. Overall, this convertible table exemplifies its ability to adapt, its user-friendly nature, and its usefulness in a wide range of situations and settings.

Keywords: Furniture design, laptop stand, study table, learning tool, furniture manufacturing, contemporary design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157
63 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.

Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 488
62 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification

Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian

Abstract:

Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.

Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
61 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249
60 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring

Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti

Abstract:

Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.

Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
59 Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire

Authors: M. C. Pardo-Ferreira, J. C. Rubio-Romero, M. Martínez-Rojas

Abstract:

Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating.

Keywords: Resilience engineering, construction sector, resilience assessment grid, construction phase health and safety plan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
58 An Inclusion Project for Deaf Children into a Northern Italy Contest

Authors: G. Tamanza, A. Bossoni

Abstract:

84 deaf students (from primary school to college) and their families participated in this inclusion project in cooperation with numerous institutions in northern Italy (Brescia-Lombardy). Participants were either congenitally deaf or their deafness was related to other pathologies. This research promoted the integration of deaf students as they pass from primary school to high school to college. Learning methods and processes were studied that focused on encour­aging individual autonomy and socialization. The research team and its collaborators included school teachers, speech ther­apists, psychologists and home tutors, as well as teaching assistants, child neuropsychiatrists and other external authorities involved with deaf persons social inclusion programs. Deaf children and their families were supported, in terms of inclusion, and were made aware of the research team that focused on the Bisogni Educativi Speciali (BES or Special Educational Needs) (L.170/2010 - DM 5669/2011). This project included a diagnostic and evaluative phase as well as an operational one. Results demonstrated that deaf children were highly satisfied and confident; academic performance improved and collaboration in school increased. Deaf children felt that they had access to high school and college. Empowerment for the families of deaf children in terms of networking among local services that deal with the deaf also improved while family satisfaction also improved. We found that teachers and those who gave support to deaf children increased their professional skills. Achieving autonomy, instrumental, communicative and relational abilities were also found to be crucial. Project success was determined by temporal continuity, clear theoretical methodology, strong alliance for the project direction and a resilient team response.

Keywords: Autonomy, inclusion, skills, well-being.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
57 Ecoliteracy and Pedagogical Praxis in the Multidisciplinary University Greenhouse toward the Food Security Strengthening

Authors: Citlali Aguilera Lira, David Lynch Steinicke, Andrea León Garcia

Abstract:

One of the challenges that higher education faces is to find how to approach the sustainability in an inclusive way to the student within all the different academic areas, how to move the sustainable development from the abstract field to the operational field. This research comes from the ecoliteracy and the pedagogical praxis as tools for rebuilding the teaching processes inside of universities. The purpose is to determine and describe which are the factors involved in the process of learning particularly in the Greenhouse-School Siembra UV. In the Greenhouse-School Siembra UV, of the University of Veracruz, are cultivated vegetables, medicinal plants and small cornfields under the usage of eco-technologies such as hydroponics, Wickingbed and Hugelkultur, which main purpose is the saving of space, labor and natural resources, as well as function as agricultural production alternatives in the urban and periurban zones. The sample was formed with students from different academic areas and who are actively involved in the greenhouse, as well as institutes from the University of Veracruz and governmental and nongovernmental departments. This project comes from a pedagogic praxis approach, from filling the needs that the different professional profiles of the university students have. All this with the purpose of generate a pragmatic dialogue with the sustainability. It also comes from the necessity to understand the factors that intervene in the students’ praxis. In this manner is how the students are the fundamental unit in the sphere of sustainability. As a result, it is observed that those University of Veracruz students who are involved in the Greenhouse-school, Siembra UV, have enriched in different levels the sense of urban and periurban agriculture because of the diverse academic approaches they have and the interaction between them. It is concluded that the ecotechnologies act as fundamental tools for ecoliteracy in society, where it is strengthen the nutritional and food security from a sustainable development approach.

Keywords: Farming eco-technologies, food security, multidisciplinary, pedagogical praxis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
56 Manodharmam: A Scientific Methodology for Improvisation and Cognition in Carnatic Music

Authors: Raghavi Janaswamy, Saraswathi K. Vasudev

Abstract:

Music is ubiquitous in human lives. Ever since the foetus hears the sound inside the mother’s womb and later upon birth the baby experiences alluring sounds, the curiosity of learning emanates and evokes exploration. Music is an education than a mere entertainment. The intricate balance between music, education and entertainment has well been recognized by the scientific community and is being explored as a viable tool to understand and improve the human cognition. There are seven basic swaras (notes) Sa, Ri, Ga, Ma, Pa, Da and Ni in the Carnatic music system that are analogous to C, D, E, F, G, A and B of the western system. The Carnatic music builds on the conscious use of microtones, gamakams (oscillation) and rendering styles that evolved over centuries and established its stance. The complex but erudite raga system has been designed with elaborate experiments on srutis (musical sounds) and human perception abilities. In parallel, ‘rasa’- the emotions evoked by certain srutis and hence the ragas been solidified along with the power of language in combination with the musical sounds. The Carnatic music branches out as Kalpita sangeetam (pre-composed music) and Manodharma sangeetam (improvised music). This article explores the Manodharma sangeetam and its subdivisions such as raga alapana, swara kalpana, neraval and ragam-tanam-pallavi (RTP). The intrinsic mathematical strategies in its practice methods toward improvising the music have been discussed in detail with concert examples. The techniques on swara weaving for swara kalpana rendering and methods on the alapana development are also discussed at length with an emphasis on the impact on the human cognitive abilities. The articulation of the outlined conscious practice methods not only helps to leave a long-lasting melodic impression on the listeners but also onsets cognitive developments.

Keywords: Carnatic, Manodharmam, music cognition, Alapana.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 632
55 Evaluating the Understanding of the University Students (Basic Sciences and Engineering) about the Numerical Representation of the Average Rate of Change

Authors: Saeid Haghjoo, Ebrahim Reyhani, Fahimeh Kolahdouz

Abstract:

The present study aimed to evaluate the understanding of the students in Tehran universities (Iran) about the numerical representation of the average rate of change based on the Structure of Observed Learning Outcomes (SOLO). In the present descriptive-survey research, the statistical population included undergraduate students (basic sciences and engineering) in the universities of Tehran. The samples were 604 students selected by random multi-stage clustering. The measurement tool was a task whose face and content validity was confirmed by math and mathematics education professors. Using Cronbach's Alpha criterion, the reliability coefficient of the task was obtained 0.95, which verified its reliability. The collected data were analyzed by descriptive statistics and inferential statistics (chi-squared and independent t-tests) under SPSS-24 software. According to the SOLO model in the prestructural, unistructural, and multistructural levels, basic science students had a higher percentage of understanding than that of engineering students, although the outcome was inverse at the relational level. However, there was no significant difference in the average understanding of both groups. The results indicated that students failed to have a proper understanding of the numerical representation of the average rate of change, in addition to missconceptions when using physics formulas in solving the problem. In addition, multiple solutions were derived along with their dominant methods during the qualitative analysis. The current research proposed to focus on the context problems with approximate calculations and numerical representation, using software and connection common relations between math and physics in the teaching process of teachers and professors.

Keywords: Average rate of change, context problems, derivative, numerical representation, SOLO taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
54 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4524
53 Evaluation of Pragmatic Information in an English Textbook: Focus on Requests

Authors: Israa A. Qari

Abstract:

Learning to request in a foreign language is a key ability within pragmatics language teaching. This paper examines how requests are taught in English Unlimited Book 3 (Cambridge University Press), an EFL textbook series employed by King Abdulaziz University in Jeddah, Saudi Arabia to teach advanced foundation year students English. The focus of analysis is the evaluation of the request linguistic strategies present in the textbook, frequency of the use of these strategies, and the contextual information provided on the use of these linguistic forms. The researcher collected all the linguistic forms which consisted of the request speech act and divided them into levels employing the CCSARP request coding manual. Findings demonstrated that simple and commonly employed request strategies are introduced. Looking closely at the exercises throughout the chapters, it was noticeable that the book exclusively employed the most direct form of requesting (the imperative) when giving learners instructions: e.g. listen, write, ask, answer, read, look, complete, choose, talk, think, etc. The book also made use of some other request strategies such as ‘hedged performatives’ and ‘query preparatory’. However, it was also found that many strategies were not dealt with in the book, specifically strategies with combined functions (e.g. possibility, ability). On a sociopragmatic level, a strong focus was found to exist on standard situations in which relations between the requester and requestee are clear. In general, contextual information was communicated implicitly only. The textbook did not seem to differentiate between formal and informal request contexts (register) which might consequently impel students to overgeneralize. The paper closes with some recommendations for textbook and curriculum designers. Findings are also contrasted with previous results from similar body of research on EFL requests.

Keywords: EFL, Requests, Saudi, speech acts, textbook evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453
52 Nanomaterial Based Electrochemical Sensors for Endocrine Disrupting Compounds

Authors: Gaurav Bhanjana, Ganga Ram Chaudhary, Sandeep Kumar, Neeraj Dilbaghi

Abstract:

Main sources of endocrine disrupting compounds in the ecosystem are hormones, pesticides, phthalates, flame retardants, dioxins, personal-care products, coplanar polychlorinated biphenyls (PCBs), bisphenol A, and parabens. These endocrine disrupting compounds are responsible for learning disabilities, brain development problems, deformations of the body, cancer, reproductive abnormalities in females and decreased sperm count in human males. Although discharge of these chemical compounds into the environment cannot be stopped, yet their amount can be retarded through proper evaluation and detection techniques. The available techniques for determination of these endocrine disrupting compounds mainly include high performance liquid chromatography (HPLC), mass spectroscopy (MS) and gas chromatography-mass spectrometry (GC–MS). These techniques are accurate and reliable but have certain limitations like need of skilled personnel, time consuming, interference and requirement of pretreatment steps. Moreover, these techniques are laboratory bound and sample is required in large amount for analysis. In view of above facts, new methods for detection of endocrine disrupting compounds should be devised that promise high specificity, ultra sensitivity, cost effective, efficient and easy-to-operate procedure. Nowadays, electrochemical sensors/biosensors modified with nanomaterials are gaining high attention among researchers. Bioelement present in this system makes the developed sensors selective towards analyte of interest. Nanomaterials provide large surface area, high electron communication feature, enhanced catalytic activity and possibilities of chemical modifications. In most of the cases, nanomaterials also serve as an electron mediator or electrocatalyst for some analytes.

Keywords: Sensors, endocrine disruptors, nanoparticles, electrochemical, microscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
51 A Face-to-Face Education Support System Capable of Lecture Adaptation and Q&A Assistance Based On Probabilistic Inference

Authors: Yoshitaka Fujiwara, Jun-ichirou Fukushima, Yasunari Maeda

Abstract:

Keys to high-quality face-to-face education are ensuring flexibility in the way lectures are given, and providing care and responsiveness to learners. This paper describes a face-to-face education support system that is designed to raise the satisfaction of learners and reduce the workload on instructors. This system consists of a lecture adaptation assistance part, which assists instructors in adapting teaching content and strategy, and a Q&A assistance part, which provides learners with answers to their questions. The core component of the former part is a “learning achievement map", which is composed of a Bayesian network (BN). From learners- performance in exercises on relevant past lectures, the lecture adaptation assistance part obtains information required to adapt appropriately the presentation of the next lecture. The core component of the Q&A assistance part is a case base, which accumulates cases consisting of questions expected from learners and answers to them. The Q&A assistance part is a case-based search system equipped with a search index which performs probabilistic inference. A prototype face-to-face education support system has been built, which is intended for the teaching of Java programming, and this approach was evaluated using this system. The expected degree of understanding of each learner for a future lecture was derived from his or her performance in exercises on past lectures, and this expected degree of understanding was used to select one of three adaptation levels. A model for determining the adaptation level most suitable for the individual learner has been identified. An experimental case base was built to examine the search performance of the Q&A assistance part, and it was found that the rate of successfully finding an appropriate case was 56%.

Keywords: Bayesian network, face-to-face education, lecture adaptation, Q&A assistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
50 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: Taxi industry, decision making, recommendation system, embedding model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
49 Saving Energy through Scalable Architecture

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.

Keywords: Scalable Architectures, Sustainability, Application Design, Disruptive Technology, Machine Learning, Natural Language Processing, AI, Social Media Platform, Cloud Computing, Advanced Networking, Storage Devices, Advanced Monitoring, Metering Infrastructure, Climate change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61
48 Impact of Individual Resilience on Organisational Resilience: An Exploratory Study

Authors: Mitansha, Suzanne Wilkinson, Regan Potangaroa

Abstract:

The built environment is designed, maintained, operated, and decommissioned by construction organisations, which play a significant role in providing physical resources and rebuilding infrastructures during major crises and disasters. It is evident that enhancing the resilience of construction organisations allows better responding ability and speedy recovery from disasters and acts as a boon for the nation in the face of significant disruptions. As individuals are the integral component of any organisation, hence, individual resilience is considered a critical aspect, which may boost organisational resilience of construction sector. It has been observed that individual resilience is indirectly supported by organisation’s citizenship behaviour, job performance, and career success. Not only this, it also tends to hold a directly proportional relation with job satisfaction, physical and emotional well-being affected by organisation’s work culture, whereas the resilience of organisation increases as a result of positive adaption, growth and collective learning of the employees as an entity. Moreover, indicators like situation awareness in staff and crisis related issues, effective vulnerability management, organisational leadership and culture ensured by approachable, encouraging and people-oriented leaders, are prominent for achieving organisational resilience. It, thus, becomes perceptible that both, organisational and individual resiliencies, have the potential to influence each other. Consequently, it arises a major question that how these characteristics are associated and tend to behave with respect to each other. The study, thus, aims to explore the overlapping dimensions of organisational and individual resilience to determine the impact boundaries. The research methodology of the paper would be based on systematic literature review specifically focused on the resilience of construction industry. This would provide a direct comparison of characteristics influencing individual and organisational resilience and will present the most significant indicators of individual resilience that can eventually help to enhance the resilience of construction organisations amidst any disaster or crisis.

Keywords: Construction industry, individual resilience, organisational resilience, overlapping dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225
47 A Decision Support Tool for Evaluating Mobility Projects

Authors: H. Omrani, P. Gerber

Abstract:

Success is a European project that will implement several clean transport offers in three European cities and evaluate the environmental impacts. The goal of these measures is to improve urban mobility or the displacement of residents inside cities. For e.g. park and ride, electric vehicles, hybrid bus and bike sharing etc. A list of 28 criteria and 60 measures has been established for evaluation of these transport projects. The evaluation criteria can be grouped into: Transport, environment, social, economic and fuel consumption. This article proposes a decision support system based that encapsulates a hybrid approach based on fuzzy logic, multicriteria analysis and belief theory for the evaluation of impacts of urban mobility solutions. A web-based tool called DeSSIA (Decision Support System for Impacts Assessment) has been developed that treats complex data. The tool has several functionalities starting from data integration (import of data), evaluation of projects and finishes by graphical display of results. The tool development is based on the concept of MVC (Model, View, and Controller). The MVC is a conception model adapted to the creation of software's which impose separation between data, their treatment and presentation. Effort is laid on the ergonomic aspects of the application. It has codes compatible with the latest norms (XHTML, CSS) and has been validated by W3C (World Wide Web Consortium). The main ergonomic aspect focuses on the usability of the application, ease of learning and adoption. By the usage of technologies such as AJAX (XML and Java Script asynchrones), the application is more rapid and convivial. The positive points of our approach are that it treats heterogeneous data (qualitative, quantitative) from various information sources (human experts, survey, sensors, model etc.).

Keywords: Decision support tool, hybrid approach, urban mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
46 Meta Model Based EA for Complex Optimization

Authors: Maumita Bhattacharya

Abstract:

Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, many real life optimization problems often require finding optimal solution to complex high dimensional, multimodal problems involving computationally very expensive fitness function evaluations. Use of evolutionary algorithms in such problem domains is thus practically prohibitive. An attractive alternative is to build meta models or use an approximation of the actual fitness functions to be evaluated. These meta models are order of magnitude cheaper to evaluate compared to the actual function evaluation. Many regression and interpolation tools are available to build such meta models. This paper briefly discusses the architectures and use of such meta-modeling tools in an evolutionary optimization context. We further present two evolutionary algorithm frameworks which involve use of meta models for fitness function evaluation. The first framework, namely the Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model [14] reduces computation time by controlled use of meta-models (in this case approximate model generated by Support Vector Machine regression) to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the metamodel are generated from a single uniform model. This does not take into account uncertain scenarios involving noisy fitness functions. The second model, DAFHEA-II, an enhanced version of the original DAFHEA framework, incorporates a multiple-model based learning approach for the support vector machine approximator to handle noisy functions [15]. Empirical results obtained by evaluating the frameworks using several benchmark functions demonstrate their efficiency

Keywords: Meta model, Evolutionary algorithm, Stochastictechnique, Fitness function, Optimization, Support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2067
45 Child Abuse: Emotional, Physical, Neglect, Sexual and the Psychological Effects: A Case Scenario in Lagos State, Nigeria

Authors: Ololade M. Aminu

Abstract:

Child abuse is a significant issue worldwide, affecting the socio-development and mental and physical health of young individuals. It is the maltreatment of a child by an adult or a child. This paper focuses on child abuse in Communities in Lagos State, Nigeria. The aim of this study is to investigate the extent of child abuse and its impact on the mood, social activities, self-worth, concentration, and academic performance of children in Communities in Lagos State. The primary research instrument used in this study was the interview (Forensic), which consisted of two sections. The first section gathered data on the details of the child and the forms and impacts of abuse experienced, while the second section focused on family structure and parental style. The study found that children who experienced various forms of abuse, such as emotional, neglect, physical, or sexual abuse, were hesitant to report it out of fear of threats or even death from the abuser. These abused children displayed withdrawn behaviour, depression, and low self-worth and underperformed academically compared to their peers who did not experience abuse. The findings align with socio-learning theory and intergenerational transmission of violence, which suggest that parents and caregivers who engage in child abuse often do so because they themselves experienced or witnessed abuse as children, thereby normalizing violence. The study highlights the prevalent issue of child abuse in Lagos State and emphasizes the need for advocacy programs and capacity building to raise awareness about child abuse and prevention. The distribution of the Child’s Rights Act/Child’s Right Law in various sectors is also recommended to underscore the importance of protecting the rights of children. Additionally, the inclusion of courses on child abuse in the school curriculum is proposed to ensure children are educated on recognizing and reporting abuse.

Keywords: Child abuse, physical ill-treatment, neglect, parental style, psychological effect, sexual offence, reporting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 97
44 A Methodology for Creating Energy Sustainability in an Enterprise

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

As we enter the new era of Artificial Intelligence (AI) and cloud computing, we mostly rely on the machine and natural language processing capabilities of AI, and energy efficient hardware and software devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and to sustain the depletion of natural resources. The core pillars of sustainability are Economic, Environmental, and Social, which are also informally referred to as 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core sustainability model in the enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand there is also a growing concern in many industries on how to reduce carbon emission and conserve natural resources while adopting sustainability in the corporate business models and policies. In our paper, we would like to discuss the driving forces such as climate changes, natural disasters, pandemic, disruptive technologies, corporate policies, scaled business models and emerging social media and AI platforms that influence the 3 main pillars of sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increase recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (shared IT services, cloud computing and application modernization) with the vision for a sustainable environment.

Keywords: AI, cloud computing, machine learning, social media platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204
43 Millennial Teachers of Canada: Innovation within the Boxed-In Constraints of Tradition

Authors: Lena Shulyakovskaya

Abstract:

Every year, schools aim to develop and adopt new technology and pedagogy as a way to equip today's students with the needed 21st Century skills. However, the field of primary and secondary education may not be as open to embracing change in reality. Despite the drive to reform and innovation, the field of education in Canada is still very much steeped in tradition and uses many of the practices that came into effect over 50 years ago. Among those are employment and retention practices. Millennials are the youngest generation of professionals entering the workplace at this time and the ones leaving their jobs within just a few years. Almost half of new teachers leave Canadian schools within their first five years on the job. This paper discusses one of the contributing factors that lead Canadian millennial teachers to either leave or stay in the profession - standardized education system. Using an exploratory case study approach, in-depth interviews with former and current millennial teachers were conducted to learn about their experiences within the K-12 system. Among the findings were the young teachers' concerns about the constant changes to teaching practices and technological implementations that claimed to advance teaching and learning, and yet in reality only disguised and reiterated the same traditional, outdated, and standardized practices that already existed. Furthermore, while many millennial teachers aspired to be innovative with their curriculum and teaching practices, they felt trapped and helpless in the hands of school leaders who were very reluctant to change. While many new program ideas and technological advancements are being made openly available to teachers on a regular basis, it is important to consider the education field as a whole and how it plays into the teachers' ability to realistically implement changes. By the year 2025, millennials will make up approximately 75% of the North American workforce. It is important to examine generational differences among teachers and understand how millennial teachers may be shaping the future of primary and secondary schools, either by staying or leaving the profession.

Keywords: 21st century skills, millennials, teacher attrition, tradition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
42 A Game-Based Product Modelling Environment for Non-Engineer

Authors: Guolong Zhong, Venkatesh Chennam Vijay, Ilias Oraifige

Abstract:

In the last 20 years, Knowledge Based Engineering (KBE) has shown its advantages in product development in different engineering areas such as automation, mechanical, civil and aerospace engineering in terms of digital design automation and cost reduction by automating repetitive design tasks through capturing, integrating, utilising and reusing the existing knowledge required in various aspects of the product design. However, in primary design stages, the descriptive information of a product is discrete and unorganized while knowledge is in various forms instead of pure data. Thus, it is crucial to have an integrated product model which can represent the entire product information and its associated knowledge at the beginning of the product design. One of the shortcomings of the existing product models is a lack of required knowledge representation in various aspects of product design and its mapping to an interoperable schema. To overcome the limitation of the existing product model and methodologies, two key factors are considered. First, the product model must have well-defined classes that can represent the entire product information and its associated knowledge. Second, the product model needs to be represented in an interoperable schema to ensure a steady data exchange between different product modelling platforms and CAD software. This paper introduced a method to provide a general product model as a generative representation of a product, which consists of the geometry information and non-geometry information, through a product modelling framework. The proposed method for capturing the knowledge from the designers through a knowledge file provides a simple and efficient way of collecting and transferring knowledge. Further, the knowledge schema provides a clear view and format on the data that needed to be gathered in order to achieve a unified knowledge exchange between different platforms. This study used a game-based platform to make product modelling environment accessible for non-engineers. Further the paper goes on to test use case based on the proposed game-based product modelling environment to validate the effectiveness among non-engineers.

Keywords: Game-based learning, knowledge based engineering, product modelling, design automation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
41 In vitro and in vivo Anticholinesterase Activity of the Volatile Oil of the Aerial Parts of Ocimum basilicum L. and O. africanum Lour. Growing in Egypt

Authors: M. G. Tadros, S. M. Ezzat, M. M. Salama, M. A. Farag

Abstract:

In this study, the in vitro anticholinesterase activity of
the volatile oils of both O. basilicum and O. africanum was
investigated and both samples showed significant activity. The major
constituents of the two oils were isolated using several column
chromatographies. Linalool, 1,8-cineol and eugenol were isolated
from the volatile oil of O. basilicum and camphor was isolated from
the volatile oil of O. africanum. The anticholinesterase activities of
the isolated compounds were also evaluated where 1,8-cineol showed
the highest inhibitory activity followed by camphor. To confirm these
activities, learning and memory enhancing effects were tested in
mice. Memory impairment was induced by scopolamine, a
cholinergic muscarinic receptor antagonist. Anti-amnesic effects of
both volatile oils and their terpenoids were investigated by the
passive avoidance task in mice. We also examined their effects on
brain acetylcholinesterase activity. Results showed that scopolamineinduced
cognitive dysfunction was significantly attenuated by
administration of the volatile oils and their terpenoids, eugenol and
camphor, in the passive avoidance task and inhibited brain
acetylcholinesterase activity. These results suggest that O. basilicum
and O. africanum volatile oils can be good candidates for further
studies on Alzheimer’s disease via their acetylcholinesterase
inhibitory actions.

Keywords: Acetylcholinesterase, Ocimum africanum, Ocimum basilicum, passive avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3469
40 Females’ Usage Patterns of Information and Communication Technologies (ICTs) in the Vhembe District, South Africa

Authors: F. O. Maphiri-Makananise

Abstract:

This paper explores and provides substantiated evidence on the usage patterns of Information and Communication Technologies (ICTs) by female users at Vhembe District in Limpopo- Province, South Africa. The study presents a comprehensive picture on the usage of ICTs from female users’ perspective. The significance of this study stems from the need to assess the role, relevance and usage patterns of ICTs such as smartphones, computers, laptops, and iPods, the internet and social networking sites among females following the developments of new media technologies in society. The objective of the study is to investigate the usability and accessibility of ICTs to empower female users in South Africa. The study used quantitative and qualitative research methods to determine the major ideas, perceptions and usage patterns of ICTs by users. Data collection involved the use of structured selfadministered questionnaire from two groups of respondents who participated in this study. Thus, (n=50) female students at the University of Venda provided their ideas and perceptions about the usefulness and usage patterns of ICTs such as smartphones, the Internet and computers at the university level, whereas, the second group were (n=50) learners from Makhado Comprehensive School who provided their perceptions and ideas about the use of ICTs at the high school level. The researcher also noted that the findings of the study were useful as a guideline and model for ICT intervention that could work as an empowerment to women in South Africa. It was observed that the central purpose of ICTs among female users was to search for information regarding assignment writing, conducting research, dating, exchanging ideas and networking with friends and relatives. This was demonstrated by a high number of females who used ICTs for e-learning (62%) and social purposes (85%). Therefore, the study revealed that most females used ICTs for social purposes and accessing the internet rather than for entertainment, a gesture that provides an opportune space to empower rural women in South Africa.

Keywords: Female users, Information and Communication Technologies, Internet, Usage patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
39 Unveiling the Indonesian Identity through Proverbial Expressions: The Relation of Meaning between Authority and Globalization

Authors: Prima Gusti Yanti, Fairul Zabadi

Abstract:

The purpose of the study is to find out relation of moral massage between the authority and globalization in proverb. Proverb is one of the many forms of cultural identity of the Indonesian/Malay people filled with moral values. The values contained within those proverbs are beneficial not only to the society, but also to those who held power amidst on this era of globalization. The method being used is qualitative research through content analysis which is done by describing and uncovering the forms and meanings of proverbs used within Indonesia Minangkabau society. Sources for this study’s data were extracted from a Minangkabau native speaker in the sub district of Tanah Abang, Jakarta. Said sources were retrieved through a series of interviews with the Minangkabau native speaker, whose speech is still adorned with idiomatic expressions. The research findings show that there are 30 existed proverbs or idiomatic expressions in the Minangkabau language often used by its indigenous people. The thirty data contain moral values which are closely interwoven with the matter of power and globalization. Analytical results show that the fourteen moral values contained within proverbs reflect a firm connection between rule and power in globalization; such as: responsible, brave, togetherness and consensus, tolerance, politeness, thorough and meticulous, honest and keeping promise, ingenious and learning, care, self-correction, be fair, alert, arbitrary, self-awareness. Structurally, proverbs possess an unchangeably formal construction; symbolically, proverbs possess meanings that are clearly decided through ethnographic communicative factors along with situational and cultural contexts. Values contained within proverbs may be used as a guide in social management, be it between fellow men, between men and nature, or even between men and their Creator. Therefore, the meanings and values contained within the morals of proverbs could also be utilized as a counsel for those who rule and in charge of power in order to stem the tides of globalization that had already spread into sectoral, territorial and educational continuums.

Keywords: Continuum, globalization, identity, proverb, rule-power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
38 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing

Authors: Fazl Ullah, Rahmat Ullah

Abstract:

This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.

Keywords: Fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170