Search results for: Ascending Sort Index Vector
1572 Contributions to Differential Geometry of Pseudo Null Curves in Semi-Euclidean Space
Authors: Melih Turgut, Süha Yılmaz
Abstract:
In this paper, first, a characterization of spherical Pseudo null curves in Semi-Euclidean space is given. Then, to investigate position vector of a pseudo null curve, a system of differential equation whose solution gives the components of the position vector of a pseudo null curve on the Frenet axis is established by means of Frenet equations. Additionally, in view of some special solutions of mentioned system, characterizations of some special pseudo null curves are presented.Keywords: Semi-Euclidean Space, Pseudo Null Curves, Position Vectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13441571 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691570 Effect of Rollers Differential Speed and Paddy Moisture Content on Performance of Rubber Roll Husker
Authors: S. Firouzi, M.R. Alizadeh, S. Minaei
Abstract:
A study was carried out at the Rice Research Institute of Iran (RRII) to investigate the effect of rollers differential peripheral speed of commercial rubber roll husker and paddy moisture content on the husking index and percentage of broken rice. The experiment was conducted at six levels of rollers differential speed (1.5, 2.2, 2.9, 3.6, 4.3 and 5 m/s) and three levels of paddy moisture content (8-9, 10-11 and 12-13% w.b.). Two common paddy varieties namely, Binam and Khazer, were selected for this study. Results revealed that the effect of rollers differential speed and moisture content significantly (P<0.01) affected percentage of broken brown rice and paddy husking index. Average broken kernel percentage increased from 13 to 14.61% while husking index decreased from 71.64 to 61.81%, as paddy moisture content increased from 8-9 to 12-13%. It was observed that amount of broken rice decreased from 18.83 to 9.97%, when rollers differential speed varied from 1.5 to 5 m/s, while the husking index initially increased and then started to decrease. The mean value of husking index for Khazar variety (64.71%) was significantly lower than that for Binam variety (69.2%). It was concluded that rollers differential speed of 2.9 m/s and moisture content of 8-9% was the most appropriate combination for paddy husking of Binam and Khazar varieties in rubber roll husker.Keywords: husking index, moisture content, paddy, rubber roll husker.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32871569 Classification Influence Index and its Application for k-Nearest Neighbor Classifier
Authors: Sejong Oh
Abstract:
Classification is an important topic in machine learning and bioinformatics. Many datasets have been introduced for classification tasks. A dataset contains multiple features, and the quality of features influences the classification accuracy of the dataset. The power of classification for each feature differs. In this study, we suggest the Classification Influence Index (CII) as an indicator of classification power for each feature. CII enables evaluation of the features in a dataset and improved classification accuracy by transformation of the dataset. By conducting experiments using CII and the k-nearest neighbor classifier to analyze real datasets, we confirmed that the proposed index provided meaningful improvement of the classification accuracy.Keywords: accuracy, classification, dataset, data preprocessing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14951568 Heat Transfer in a Parallel-Plate Enclosure with Graded-Index Coatings on its Walls
Authors: Jiun-Wei Chen, Chih-Yang Wu, Ming-Feng Hou
Abstract:
A numerical study on the heat transfer in the thermal barrier coatings and the substrates of a parallel-plate enclosure is carried out. Some of the thermal barrier coatings, such as ceramics, are semitransparent and are of interest for high-temperature applications where radiation effects are significant. The radiative transfer equations and the energy equations are solved by using the discrete ordinates method and the finite difference method. Illustrative results are presented for temperature distributions in the coatings and the opaque walls under various heating conditions. The results show that the temperature distribution is more uniform in the interior portion of each coating away from its boundary for the case with a larger average of varying refractive index and a positive gradient of refractive index enhances radiative transfer to the substrates.Keywords: Radiative transfer, parallel-plate enclosure, coatings, varying refractive index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14571567 An Index based Forward Backward Multiple Pattern Matching Algorithm
Authors: Raju Bhukya, DVLN Somayajulu
Abstract:
Pattern matching is one of the fundamental applications in molecular biology. Searching DNA related data is a common activity for molecular biologists. In this paper we explore the applicability of a new pattern matching technique called Index based Forward Backward Multiple Pattern Matching algorithm(IFBMPM), for DNA Sequences. Our approach avoids unnecessary comparisons in the DNA Sequence due to this; the number of comparisons of the proposed algorithm is very less compared to other existing popular methods. The number of comparisons rapidly decreases and execution time decreases accordingly and shows better performance.
Keywords: Comparisons, DNA Sequence, Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23741566 A High Quality Speech Coder at 600 bps
Authors: Yong Zhang, Ruimin Hu
Abstract:
This paper presents a vocoder to obtain high quality synthetic speech at 600 bps. To reduce the bit rate, the algorithm is based on a sinusoidally excited linear prediction model which extracts few coding parameters, and three consecutive frames are grouped into a superframe and jointly vector quantization is used to obtain high coding efficiency. The inter-frame redundancy is exploited with distinct quantization schemes for different unvoiced/voiced frame combinations in the superframe. Experimental results show that the quality of the proposed coder is better than that of 2.4kbps LPC10e and achieves approximately the same as that of 2.4kbps MELP and with high robustness.
Keywords: Speech coding, Vector quantization, linear predicition, Mixed sinusoidal excitation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21871565 Least-Squares Support Vector Machine for Characterization of Clusters of Microcalcifications
Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha
Abstract:
Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.
Keywords: Clusters of Microcalcifications, Ductal Carcinoma in Situ, Least-Square Support Vector Machine, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18121564 Fault Zone Detection on Advanced Series Compensated Transmission Line using Discrete Wavelet Transform and SVM
Authors: Renju Gangadharan, G. N. Pillai, Indra Gupta
Abstract:
In this paper a novel method for finding the fault zone on a Thyristor Controlled Series Capacitor (TCSC) incorporated transmission line is presented. The method makes use of the Support Vector Machine (SVM), used in the classification mode to distinguish between the zones, before or after the TCSC. The use of Discrete Wavelet Transform is made to prepare the features which would be given as the input to the SVM. This method was tested on a 400 kV, 50 Hz, 300 Km transmission line and the results were highly accurate.Keywords: Flexible ac transmission system (FACTS), thyristorcontrolled series-capacitor (TCSC), discrete wavelet transforms(DWT), support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17311563 Performances Assessment of Direct Torque Controlled IM Drives Using Fuzzy Logic Control and Space Vector Modulation Strategy
Authors: L. Moussaoui, L. Rahmani
Abstract:
This paper deals with the direct torque control (DTC) of the induction motor. This type of control allows decoupling control between the flux and the torque without the need for a transformation of coordinates. However, as with other hysteresis-based systems, the classical DTC scheme represents a high ripple, in both the electromagnetic torque and the stator flux and a distortion in the stator current. As well, it suffers from variable switching frequency. To solve these problems various modifications, in conventional DTC scheme, have been made during the last decade. Indeed the DTC based on space vector modulation (SVM) has proved to generate very low ripples in torque and flux with constant switching frequency. It also shows almost the same dynamic performances as the classical DTC system. On the other hand, fuzzy logic is considered as an interesting alternative approach for its advantages: Analysis close to the exigencies of user, ability of nonlinear systems control, best dynamic performances and inherent quality of robustness.
Therefore, two fuzzy direct torque control approaches, for the induction motor fed by SVM-voltage source inverter, are proposed in this paper. By using these two approaches of DTC, the advantages of fuzzy logic control, space vector modulation, and direct torque control method are combined. The performances of these DTC schemes are evaluated through digital simulation using Matlab/Simulink platform and fuzzy logic tools. Simulation results illustrate the effectiveness and the superiority of the proposed Fuzzy DTC-SVM schemes in comparison to the classical DTC.
Keywords: Direct torque control, Fuzzy logic control, Induction motor, Switching frequency, Space vector modulation, Torque and flux ripples.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23981562 The Use of Thermal Infrared Wavelengths to Determine the Volcanic Soils
Authors: Levent Basayigit, Mert Dedeoglu, Fadime Ozogul
Abstract:
In this study, an application was carried out to determine the Volcanic Soils by using remote sensing. The study area was located on the Golcuk formation in Isparta-Turkey. The thermal bands of Landsat 7 image were used for processing. The implementation of the climate model that was based on the water index was used in ERDAS Imagine software together with pixel based image classification. Soil Moisture Index (SMI) was modeled by using the surface temperature (Ts) which was obtained from thermal bands and vegetation index (NDVI) derived from Landsat 7. Surface moisture values were grouped and classified by using scoring system. Thematic layers were compared together with the field studies. Consequently, different moisture levels for volcanic soils were indicator for determination and separation. Those thermal wavelengths are preferable bands for separation of volcanic soils using moisture and temperature models.
Keywords: Landsat 7, soil moisture index, temperature models, volcanic soils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11071561 Support Vector Machines For Understanding Lane Color and Sidewalks
Authors: Hoon Lee, Soonyoung Park, Kyoungho Choi
Abstract:
Understanding road features such as lanes, the color of lanes, and sidewalks in a live video captured from a moving vehicle is essential to build video-based navigation systems. In this paper, we present a novel idea to understand the road features using support vector machines. Various feature vectors including color components of road markings and the difference between two regions, i.e., chosen AOIs, and so on are fed into SVM, deciding colors of lanes and sidewalks robustly. Experimental results are provided to show the robustness of the proposed idea.Keywords: video-based navigation system, lane detection, SVMs, autonomous vehicles
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18341560 Analysis of Food Security Situation among Nigerian Rural Farmers
Authors: Victoria A. Okwoche, Benjamin C. Asogwa
Abstract:
This paper analysed the food security situation among Nigerian rural farmers. Data collected on 202 rural farmers from Benue State were analysed using descriptive and inferential statistics. The study revealed that majority of the respondents (60.83%) had medium dietary diversity. Furthermore, household daily calorie requirement for the food secure households was 10,723 and the household daily calorie consumption was 12,598, with a surplus index of 0.04. The food security index was 1.16. The Household daily per capita calorie consumption was 3,221.2. For the food insecure households, the household daily calorie requirement was 20,213 and the household daily calorie consumption was 17,393. The shortfall index was 0.14. The food security index was 0.88. The Household daily per capita calorie consumption was 2,432.8. The most commonly used coping strategies during food stress included intercropping (99.2%), reliance on less preferred food (98.1%), limiting portion size at meal times (85.8%) and crop diversification (70.8%).Keywords: Analysis, food security, rural areas, farmers, Nigeria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29121559 Economic Factorial Analysis of CO2 Emissions: The Divisia Index with Interconnected Factors Approach
Authors: Alexander Y. Vaninsky
Abstract:
This paper presents a method of economic factorial analysis of the CO2 emissions based on the extension of the Divisia index to interconnected factors. This approach, contrary to the Kaya identity, considers three main factors of the CO2 emissions: gross domestic product, energy consumption, and population - as equally important, and allows for accounting of all of them simultaneously. The three factors are included into analysis together with their carbon intensities that allows for obtaining a comprehensive picture of the change in the CO2 emissions. A computer program in R-language that is available for free download serves automation of the calculations. A case study of the U.S. carbon dioxide emissions is used as an example.
Keywords: CO2 emissions, Economic analysis, Factorial analysis, Divisia index, Interconnected factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25581558 Selecting the Best Sub-Region Indexing the Images in the Case of Weak Segmentation Based On Local Color Histograms
Authors: Mawloud Mosbah, Bachir Boucheham
Abstract:
Color Histogram is considered as the oldest method used by CBIR systems for indexing images. In turn, the global histograms do not include the spatial information; this is why the other techniques coming later have attempted to encounter this limitation by involving the segmentation task as a preprocessing step. The weak segmentation is employed by the local histograms while other methods as CCV (Color Coherent Vector) are based on strong segmentation. The indexation based on local histograms consists of splitting the image into N overlapping blocks or sub-regions, and then the histogram of each block is computed. The dissimilarity between two images is reduced, as consequence, to compute the distance between the N local histograms of the both images resulting then in N*N values; generally, the lowest value is taken into account to rank images, that means that the lowest value is that which helps to designate which sub-region utilized to index images of the collection being asked. In this paper, we make under light the local histogram indexation method in the hope to compare the results obtained against those given by the global histogram. We address also another noteworthy issue when Relying on local histograms namely which value, among N*N values, to trust on when comparing images, in other words, which sub-region among the N*N sub-regions on which we base to index images. Based on the results achieved here, it seems that relying on the local histograms, which needs to pose an extra overhead on the system by involving another preprocessing step naming segmentation, does not necessary mean that it produces better results. In addition to that, we have proposed here some ideas to select the local histogram on which we rely on to encode the image rather than relying on the local histogram having lowest distance with the query histograms.
Keywords: CBIR, Color Global Histogram, Color Local Histogram, Weak Segmentation, Euclidean Distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17301557 A New Pattern for Handwritten Persian/Arabic Digit Recognition
Authors: A. Harifi, A. Aghagolzadeh
Abstract:
The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.
Keywords: Pattern recognition, Persian digits, NeuralNetwork.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16761556 Stability of Interconnected Systems under Structural Perturbation: Decomposition-Aggregation Approach
Authors: M. Kidouche, H. Habbi, M. Zelmat
Abstract:
In this paper, the decomposition-aggregation method is used to carry out connective stability criteria for general linear composite system via aggregation. The large scale system is decomposed into a number of subsystems. By associating directed graphs with dynamic systems in an essential way, we define the relation between system structure and stability in the sense of Lyapunov. The stability criteria is then associated with the stability and system matrices of subsystems as well as those interconnected terms among subsystems using the concepts of vector differential inequalities and vector Lyapunov functions. Then, we show that the stability of each subsystem and stability of the aggregate model imply connective stability of the overall system. An example is reported, showing the efficiency of the proposed technique.Keywords: Composite system, Connective stability, Lyapunovfunctions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15041555 A Bayesian Kernel for the Prediction of Protein- Protein Interactions
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21631554 Assessing Organizational Resilience Capacity to Flooding: Index Development and Application to Greek Small and Medium-Sized Enterprises
Authors: A. Skouloudis, K. Evangelinos, W. Leal-Filho, P. Vouros, I. Nikolaou, T. Tsalis
Abstract:
In this study a composite index of factors linked to the resilience capacity of small and medium-sized enterprises (SMEs) to flooding is proposed and tested. A sample of SMEs located in flood-prone areas (n = 391) was administered a structured questionnaire pertaining to cognitive, managerial and contextual factors that affect the ability to prepare, withstand, and recover from flooding events. Through the proposed index, a bottom-up, self-assessment approach is set forth that could assist in standardizing such assessments with an overarching aim of reducing the vulnerability of SMEs to floods. This is achieved by examining critical internal and external parameters affecting SMEs’ resilience capacity which is particularly important taking into account the limited resources these enterprises tend to have at their disposal and that they can generate single points of failure in dense supply chain networks.
Keywords: Floods, SMEs, organizational resilience capacity, index development, Greece.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4681553 An Approach for the Prediction of Cardiovascular Diseases
Authors: Nebi Gedik
Abstract:
Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.
Keywords: Cardiovascular disease, feature extraction, supervised learning, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681552 The Robust Clustering with Reduction Dimension
Authors: Dyah E. Herwindiati
Abstract:
A clustering is process to identify a homogeneous groups of object called as cluster. Clustering is one interesting topic on data mining. A group or class behaves similarly characteristics. This paper discusses a robust clustering process for data images with two reduction dimension approaches; i.e. the two dimensional principal component analysis (2DPCA) and principal component analysis (PCA). A standard approach to overcome this problem is dimension reduction, which transforms a high-dimensional data into a lower-dimensional space with limited loss of information. One of the most common forms of dimensionality reduction is the principal components analysis (PCA). The 2DPCA is often called a variant of principal component (PCA), the image matrices were directly treated as 2D matrices; they do not need to be transformed into a vector so that the covariance matrix of image can be constructed directly using the original image matrices. The decomposed classical covariance matrix is very sensitive to outlying observations. The objective of paper is to compare the performance of robust minimizing vector variance (MVV) in the two dimensional projection PCA (2DPCA) and the PCA for clustering on an arbitrary data image when outliers are hiden in the data set. The simulation aspects of robustness and the illustration of clustering images are discussed in the end of paperKeywords: Breakdown point, Consistency, 2DPCA, PCA, Outlier, Vector Variance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16971551 Farm Diversification and the Corresponding Policy for Its Implementation in Georgia
Authors: E. Kharaishvili
Abstract:
The paper shows the necessity of farm diversification in accordance with the current trends in agricultural sector of Georgia. The possibilities for the diversification and the corresponding economic policy are suggested. The causes that hinder diversification of farms are revealed, possibilities of diversification are identified and the ability of increasing employment through diversification is proved. Index of harvest diversification is calculated based on the areas used for cereals and legumes, potatoes and vegetables and other food crops. Crop and livestock production indexes are analyzed; correlation between crop capacity index and value added per worker and per hectare is studied. Based on the research farm diversification strategies and priorities of corresponding economic policy are presented. Based on the conclusions relevant recommendations are suggested.Keywords: Farm diversification, diversification index, agricultural development policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19851550 Value Index, a Novel Decision Making Approach for Waste Load Allocation
Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani
Abstract:
Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.Keywords: Waste load allocation (WLA), Value index, Multi objective particle swarm optimization (MOPSO), Haraz River, Equity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271549 Studies on Various Parameters Involved in Conjugation of Starch with Lysine for Excellent Emulsification Properties Using Response Surface Methodology
Authors: Sourish Bhattacharya, Priyanka Singh
Abstract:
The process parameters, starch-water ratio (A, (w/v) %), pH of suspension (B), Temperature(C, °C) and Time (D, hrs.)., were optimized for the preparation of starch-lysine conjugate and studying their effect on stability of emulsions by calculating emulsion stability index using response surface methodology. The optimized conditions are pH 9.0, temperature 60oC, reaction time 6 hrs, starch:water ratio 1:2.5, having emulsion stability index was 0.72.
Keywords: Emulsion stability index, pH of suspension, Starch-water ratio, Temperature, Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18501548 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.
Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23121547 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011546 Development of the Academic Model to Predict Student Success at VUT-FSASEC Using Decision Trees
Authors: Langa Hendrick Musawenkosi, Twala Bhekisipho
Abstract:
The success or failure of students is a concern for every academic institution, college, university, governments and students themselves. Several approaches have been researched to address this concern. In this paper, a view is held that when a student enters a university or college or an academic institution, he or she enters an academic environment. The academic environment is unique concept used to develop the solution for making predictions effectively. This paper presents a model to determine the propensity of a student to succeed or fail in the French South African Schneider Electric Education Center (FSASEC) at the Vaal University of Technology (VUT). The Decision Tree algorithm is used to implement the model at FSASEC.
Keywords: Academic environment model, decision trees, FSASEC, K-nearest neighbor, machine learning, popularity index, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11371545 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature
Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak
Abstract:
In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21491544 Comparative Study of Ad Hoc Routing Protocols in Vehicular Ad-Hoc Networks for Smart City
Authors: Khadija Raissi, Bechir Ben Gouissem
Abstract:
In this paper, we perform the investigation of some routing protocols in Vehicular Ad-Hoc Network (VANET) context. Indeed, we study the efficiency of protocols like Dynamic Source Routing (DSR), Ad hoc On-demand Distance Vector Routing (AODV), Destination Sequenced Distance Vector (DSDV), Optimized Link State Routing convention (OLSR) and Vehicular Multi-hop algorithm for Stable Clustering (VMASC) in terms of packet delivery ratio (PDR) and throughput. The performance evaluation and comparison between the studied protocols shows that the VMASC is the best protocols regarding fast data transmission and link stability in VANETs. The validation of all results is done by the NS3 simulator.
Keywords: VANET, smart city, AODV, OLSR, DSR, OLSR, VMASC, routing protocols, NS3.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10271543 Unsupervised Text Mining Approach to Early Warning System
Authors: Ichihan Tai, Bill Olson, Paul Blessner
Abstract:
Traditional early warning systems that alarm against crisis are generally based on structured or numerical data; therefore, a system that can make predictions based on unstructured textual data, an uncorrelated data source, is a great complement to the traditional early warning systems. The Chicago Board Options Exchange (CBOE) Volatility Index (VIX), commonly referred to as the fear index, measures the cost of insurance against market crash, and spikes in the event of crisis. In this study, news data is consumed for prediction of whether there will be a market-wide crisis by predicting the movement of the fear index, and the historical references to similar events are presented in an unsupervised manner. Topic modeling-based prediction and representation are made based on daily news data between 1990 and 2015 from The Wall Street Journal against VIX index data from CBOE.
Keywords: Early Warning System, Knowledge Management, Topic Modeling, Market Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920