Search results for: topic analysis
8931 Web Search Engine Based Naming Procedure for Independent Topic
Authors: Takahiro Nishigaki, Takashi Onoda
Abstract:
In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {"scor", "game", "lead", "quarter", "rebound"}. This Topic 1 is considered to represent the topic of "SPORTS". This topic name "SPORTS" has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness.Keywords: Independent topic analysis, topic extraction, topic naming, web search engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4998930 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis
Authors: Sidi Yang, Haiyi Zhang
Abstract:
Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.
Keywords: Text mining, Twitter, topic model, sentiment analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18078929 Lecture Video Indexing and Retrieval Using Topic Keywords
Authors: B. J. Sandesh, Saurabha Jirgi, S. Vidya, Prakash Eljer, Gowri Srinivasa
Abstract:
In this paper, we propose a framework to help users to search and retrieve the portions in the lecture video of their interest. This is achieved by temporally segmenting and indexing the lecture video using the topic keywords. We use transcribed text from the video and documents relevant to the video topic extracted from the web for this purpose. The keywords for indexing are found by applying the non-negative matrix factorization (NMF) topic modeling techniques on the web documents. Our proposed technique first creates indices on the transcribed documents using the topic keywords, and these are mapped to the video to find the start and end time of the portions of the video for a particular topic. This time information is stored in the index table along with the topic keyword which is used to retrieve the specific portions of the video for the query provided by the users.
Keywords: Video indexing and retrieval, lecture videos, content based video search, multimodal indexing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15538928 Incremental Learning of Independent Topic Analysis
Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda
Abstract:
In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10578927 Topic Modeling Using Latent Dirichlet Allocation and Latent Semantic Indexing on South African Telco Twitter Data
Authors: Phumelele P. Kubheka, Pius A. Owolawi, Gbolahan Aiyetoro
Abstract:
Twitter is one of the most popular social media platforms where users share their opinions on different subjects. Twitter can be considered a great source for mining text due to the high volumes of data generated through the platform daily. Many industries such as telecommunication companies can leverage the availability of Twitter data to better understand their markets and make an appropriate business decision. This study performs topic modeling on Twitter data using Latent Dirichlet Allocation (LDA). The obtained results are benchmarked with another topic modeling technique, Latent Semantic Indexing (LSI). The study aims to retrieve topics on a Twitter dataset containing user tweets on South African Telcos. Results from this study show that LSI is much faster than LDA. However, LDA yields better results with higher topic coherence by 8% for the best-performing model in this experiment. A higher topic coherence score indicates better performance of the model.
Keywords: Big data, latent Dirichlet allocation, latent semantic indexing, Telco, topic modeling, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4588926 Recognizing an Individual, Their Topic of Conversation, and Cultural Background from 3D Body Movement
Authors: Gheida J. Shahrour, Martin J. Russell
Abstract:
The 3D body movement signals captured during human-human conversation include clues not only to the content of people’s communication but also to their culture and personality. This paper is concerned with automatic extraction of this information from body movement signals. For the purpose of this research, we collected a novel corpus from 27 subjects, arranged them into groups according to their culture. We arranged each group into pairs and each pair communicated with each other about different topics. A state-of-art recognition system is applied to the problems of person, culture, and topic recognition. We borrowed modeling, classification, and normalization techniques from speech recognition. We used Gaussian Mixture Modeling (GMM) as the main technique for building our three systems, obtaining 77.78%, 55.47%, and 39.06% from the person, culture, and topic recognition systems respectively. In addition, we combined the above GMM systems with Support Vector Machines (SVM) to obtain 85.42%, 62.50%, and 40.63% accuracy for person, culture, and topic recognition respectively. Although direct comparison among these three recognition systems is difficult, it seems that our person recognition system performs best for both GMM and GMM-SVM, suggesting that intersubject differences (i.e. subject’s personality traits) are a major source of variation. When removing these traits from culture and topic recognition systems using the Nuisance Attribute Projection (NAP) and the Intersession Variability Compensation (ISVC) techniques, we obtained 73.44% and 46.09% accuracy from culture and topic recognition systems respectively.
Keywords: Person Recognition, Topic Recognition, Culture Recognition, 3D Body Movement Signals, Variability Compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21738925 Online Topic Model for Broadcasting Contents Using Semantic Correlation Information
Authors: Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park, Sang-Jo Lee
Abstract:
This paper proposes a method of learning topics for broadcasting contents. There are two kinds of texts related to broadcasting contents. One is a broadcasting script, which is a series of texts including directions and dialogues. The other is blogposts, which possesses relatively abstracted contents, stories, and diverse information of broadcasting contents. Although two texts range over similar broadcasting contents, words in blogposts and broadcasting script are different. When unseen words appear, it needs a method to reflect to existing topic. In this paper, we introduce a semantic vocabulary expansion method to reflect unseen words. We expand topics of the broadcasting script by incorporating the words in blogposts. Each word in blogposts is added to the most semantically correlated topics. We use word2vec to get the semantic correlation between words in blogposts and topics of scripts. The vocabularies of topics are updated and then posterior inference is performed to rearrange the topics. In experiments, we verified that the proposed method can discover more salient topics for broadcasting contents.
Keywords: Broadcasting script analysis, topic expansion, semantic correlation analysis, word2vec.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17598924 Research Topic Map Construction
Authors: Hei-Chia Wang, Che-Tsung Yang
Abstract:
While the explosive increase in information published on the Web, researchers have to filter information when searching for conference related information. To make it easier for users to search related information, this paper uses Topic Maps and social information to implement ontology since ontology can provide the formalisms and knowledge structuring for comprehensive and transportable machine understanding that digital information requires. Besides enhancing information in Topic Maps, this paper proposes a method of constructing research Topic Maps considering social information. First, extract conference data from the web. Then extract conference topics and the relationships between them through the proposed method. Finally visualize it for users to search and browse. This paper uses ontology, containing abundant of knowledge hierarchy structure, to facilitate researchers getting useful search results. However, most previous ontology construction methods didn-t take “people" into account. So this paper also analyzes the social information which helps researchers find the possibilities of cooperation/combination as well as associations between research topics, and tries to offer better results.Keywords: Ontology, topic maps, social information, co-authorship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18028923 Generation Expansion Planning Strategies on Power System: A Review
Authors: V. Phupha, T. Lantharthong, N. Rugthaicharoencheep
Abstract:
The problem of generation expansion planning (GEP) has been extensively studied for many years. This paper presents three topics in GEP as follow: statistical model, models for generation expansion, and expansion problem. In the topic of statistical model, the main stages of the statistical modeling are briefly explained. Some works on models for GEP are reviewed in the topic of models for generation expansion. Finally for the topic of expansion problem, the major issues in the development of a longterm expansion plan are summarized.Keywords: Generation expansion planning, strategies, power system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32148922 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence
Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park
Abstract:
Scripts are one of the basic text resources to understand broadcasting contents. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches, and provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scene segments consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics by statistical learning method. To tackle this problem, we propose a method to improve topic quality with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, more accurate topical representations lead to get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. By iteratively inferring topics and determining semantically neighborhood scene segments, we draw a topic space represents broadcasting contents well. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.Keywords: Broadcasting contents, generalized P´olya urn model, scripts, text similarity, topic model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18168921 Latent Topic Based Medical Data Classification
Authors: Jian-hua Yeh, Shi-yi Kuo
Abstract:
This paper discusses the classification process for medical data. In this paper, we use the data from ACM KDDCup 2008 to demonstrate our classification process based on latent topic discovery. In this data set, the target set and outliers are quite different in their nature: target set is only 0.6% size in total, while the outliers consist of 99.4% of the data set. We use this data set as an example to show how we dealt with this extremely biased data set with latent topic discovery and noise reduction techniques. Our experiment faces two major challenge: (1) extremely distributed outliers, and (2) positive samples are far smaller than negative ones. We try to propose a suitable process flow to deal with these issues and get a best AUC result of 0.98.
Keywords: classification, latent topics, outlier adjustment, feature scaling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16418920 Exchanges of Knowledge about Product Configurations using XML Topic Map
Authors: Namchul Do, Jihun Cho
Abstract:
Modeling product configurations needs large amounts of knowledge about technical and marketing restrictions on the product. Previous attempts to automate product configurations concentrate on representations and management of the knowledge for specific domains in fixed and isolated computing environments. Since the knowledge about product configurations is subject to continuous change and hard to express, these attempts often failed to efficiently manage and exchange the knowledge in collaborative product development. In this paper, XML Topic Map (XTM) is introduced to represent and exchange the knowledge about product configurations in collaborative product development. A product configuration model based on XTM along with its merger and inference facilities enables configuration engineers in collaborative product development to manage and exchange their knowledge efficiently. A prototype implementation is also presented to demonstrate the proposed model can be applied to engineering information systems to exchange the product configuration knowledge.
Keywords: Knowledge exchange, product configurations, XML topic map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13508919 Fine-Grained Sentiment Analysis: Recent Progress
Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan
Abstract:
Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially the fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, ma-chine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.
Keywords: sentiment analysis, fine-grained, machine learning, deep learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23948918 More than Two Decades of Research on Groupware: A Systematic Lexical Analysis
Authors: Loay A. Altamimi
Abstract:
Collaborative technologies or software known as groupware are key enabling tools for communication, collaboration and co-ordination among individuals, work groups and businesses. Available reviews of the groupware literature are very few, and mostly neither systematic nor recent. This paper is an effort to fill this gap, and to provide researchers, with a more up-to-date and wide systematic literature review. For this purpose, 1087 scholarly articles, published from 1990 to 2013, on the topic of groupware, were collected by the literature search. The study here adopted the systematic approach of lexical analysis for the analysis of those articles.
Keywords: Lexical Analysis, Literature review, Groupware, collaborative Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23718917 The Documentary Analysis of Meta-Analysis Research in Violence of Media
Authors: Proud Arunrangsiwed
Abstract:
The part of “future direction” in the findings of meta-analysis could provide the great direction to conduct the future studies. This study, “The Documentary Analysis of Meta-Analysis Research in Violence of Media” would conclude “future directions” out of 10 meta-analysis papers. The purposes of this research are to find an appropriate research design or an appropriate methodology for the future research related to the topic, “violence of media”. Further research needs to explore by longitudinal and experimental design, and also needs to have a careful consideration about age effects, time spent effects, enjoyment effects and ordinary lifestyle of each media consumer.
Keywords: Aggressive, future direction, meta-analysis, media, violence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27028916 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20028915 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.
Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878914 Genetic Mining: Using Genetic Algorithm for Topic based on Concept Distribution
Authors: S. M. Khalessizadeh, R. Zaefarian, S.H. Nasseri, E. Ardil
Abstract:
Today, Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to text classification, summarization and information retrieval system in text mining process. This researches show a better performance due to the nature of Genetic Algorithm. In this paper a new algorithm for using Genetic Algorithm in concept weighting and topic identification, based on concept standard deviation will be explored.Keywords: Genetic Algorithm, Text Mining, Term Weighting, Concept Extraction, Concept Distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37098913 White Blood Cells Identification and Counting from Microscopic Blood Image
Authors: Lorenzo Putzu, Cecilia Di Ruberto
Abstract:
The counting and analysis of blood cells allows the evaluation and diagnosis of a vast number of diseases. In particular, the analysis of white blood cells (WBCs) is a topic of great interest to hematologists. Nowadays the morphological analysis of blood cells is performed manually by skilled operators. This involves numerous drawbacks, such as slowness of the analysis and a nonstandard accuracy, dependent on the operator skills. In literature there are only few examples of automated systems in order to analyze the white blood cells, most of which only partial. This paper presents a complete and fully automatic method for white blood cells identification from microscopic images. The proposed method firstly individuates white blood cells from which, subsequently, nucleus and cytoplasm are extracted. The whole work has been developed using MATLAB environment, in particular the Image Processing Toolbox.Keywords: Automatic detection, Biomedical image processing, Segmentation, White blood cell analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89038912 Refined Buckling Analysis of Rectangular Plates Under Uniaxial and Biaxial Compression
Authors: V. Piscopo
Abstract:
In the traditional buckling analysis of rectangular plates the classical thin plate theory is generally applied, so neglecting the plating shear deformation. It seems quite clear that this method is not totally appropriate for the analysis of thick plates, so that in the following the two variable refined plate theory proposed by Shimpi (2006), that permits to take into account the transverse shear effects, is applied for the buckling analysis of simply supported isotropic rectangular plates, compressed in one and two orthogonal directions. The relevant results are compared with the classical ones and, for rectangular plates under uniaxial compression, a new direct expression, similar to the classical Bryan-s formula, is proposed for the Euler buckling stress. As the buckling analysis is a widely diffused topic for a variety of structures, such as ship ones, some applications for plates uniformly compressed in one and two orthogonal directions are presented and the relevant theoretical results are compared with those ones obtained by a FEM analysis, carried out by ANSYS, to show the feasibility of the presented method.Keywords: Buckling analysis, Thick plates, Biaxial stresses
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26268911 Analysis of Knowledge Management Trend by Bibliometric Approach
Authors: Hsu-Hao Tsai, Jiann-Min Yang
Abstract:
The analysis is mainly concentrating on the knowledge management literatures productivity trend which subjects as “knowledge management" in SSCI database. The purpose what the analysis will propose is to summarize the trend information for knowledge management researchers since core knowledge will be concentrated in core categories. The result indicated that the literature productivity which topic as “knowledge management" is still increasing extremely and will demonstrate the trend by different categories including author, country/territory, institution name, document type, language, publication year, and subject area. Focus on the right categories, you will catch the core research information. This implies that the phenomenon "success breeds success" is more common in higher quality publications.Keywords: Knowledge Management, SSCI, Bibliometric, Lotka's Law
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12388910 Mining User-Generated Contents to Detect Service Failures with Topic Model
Authors: Kyung Bae Park, Sung Ho Ha
Abstract:
Online user-generated contents (UGC) significantly change the way customers behave (e.g., shop, travel), and a pressing need to handle the overwhelmingly plethora amount of various UGC is one of the paramount issues for management. However, a current approach (e.g., sentiment analysis) is often ineffective for leveraging textual information to detect the problems or issues that a certain management suffers from. In this paper, we employ text mining of Latent Dirichlet Allocation (LDA) on a popular online review site dedicated to complaint from users. We find that the employed LDA efficiently detects customer complaints, and a further inspection with the visualization technique is effective to categorize the problems or issues. As such, management can identify the issues at stake and prioritize them accordingly in a timely manner given the limited amount of resources. The findings provide managerial insights into how analytics on social media can help maintain and improve their reputation management. Our interdisciplinary approach also highlights several insights by applying machine learning techniques in marketing research domain. On a broader technical note, this paper illustrates the details of how to implement LDA in R program from a beginning (data collection in R) to an end (LDA analysis in R) since the instruction is still largely undocumented. In this regard, it will help lower the boundary for interdisciplinary researcher to conduct related research.Keywords: Latent Dirichlet allocation, R program, text mining, topic model, user generated contents, visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12158909 Technology Assessment: Exploring Possibilities to Encounter Problems Faced by Intellectual Property through Blockchain
Authors: M. Ismail, E. Grifell-Tatjé, A. Paz
Abstract:
A significant discussion on the topic of blockchain as a solution to the issues of intellectual property highlights the relevance that this topic holds. Some experts label this technology as destructive since it holds immense potential to change course of traditional practices. The extent and areas to which this technology can be of use are still being researched. This paper provides an in-depth review on the intellectual property and blockchain technology. Further it explores what makes blockchain suitable for intellectual property, the practical solutions available and the support different governments are offering. This paper further studies the framework of universities in context of its outputs and how can they be streamlined using blockchain technology. The paper concludes by discussing some limitations and future research question.Keywords: Blockchain, decentralization, open innovation, intellectual property, patents, university-industry relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9208908 Assessment of EU Competitiveness Factors by Multivariate Methods
Authors: L. Melecký
Abstract:
Measurement of competitiveness between countries or regions is an important topic of many economic analysis and scientific papers. In European Union (EU), there is no mainstream approach of competitiveness evaluation and measuring. There are many opinions and methods of measurement and evaluation of competitiveness between states or regions at national and European level. The methods differ in structure of using the indicators of competitiveness and ways of their processing. The aim of the paper is to analyze main sources of competitive potential of the EU Member States with the help of Factor analysis (FA) and to classify the EU Member States to homogeneous units (clusters) according to the similarity of selected indicators of competitiveness factors by Cluster analysis (CA) in reference years 2000 and 2011. The theoretical part of the paper is devoted to the fundamental bases of competitiveness and the methodology of FA and CA methods. The empirical part of the paper deals with the evaluation of competitiveness factors in the EU Member States and cluster comparison of evaluated countries by cluster analysis.
Keywords: Competitiveness, cluster analysis, EU, factor analysis, multivariate methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20448907 TOSOM: A Topic-Oriented Self-Organizing Map for Text Organization
Authors: Hsin-Chang Yang, Chung-Hong Lee, Kuo-Lung Ke
Abstract:
The self-organizing map (SOM) model is a well-known neural network model with wide spread of applications. The main characteristics of SOM are two-fold, namely dimension reduction and topology preservation. Using SOM, a high-dimensional data space will be mapped to some low-dimensional space. Meanwhile, the topological relations among data will be preserved. With such characteristics, the SOM was usually applied on data clustering and visualization tasks. However, the SOM has main disadvantage of the need to know the number and structure of neurons prior to training, which are difficult to be determined. Several schemes have been proposed to tackle such deficiency. Examples are growing/expandable SOM, hierarchical SOM, and growing hierarchical SOM. These schemes could dynamically expand the map, even generate hierarchical maps, during training. Encouraging results were reported. Basically, these schemes adapt the size and structure of the map according to the distribution of training data. That is, they are data-driven or dataoriented SOM schemes. In this work, a topic-oriented SOM scheme which is suitable for document clustering and organization will be developed. The proposed SOM will automatically adapt the number as well as the structure of the map according to identified topics. Unlike other data-oriented SOMs, our approach expands the map and generates the hierarchies both according to the topics and their characteristics of the neurons. The preliminary experiments give promising result and demonstrate the plausibility of the method.
Keywords: Self-organizing map, topic identification, learning algorithm, text clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20248906 Virtual Laboratory for Learning Biology – A Preliminary Investigation
Authors: Murniza Muhamad, Halimah Badioze Zaman, Azlina Ahmad
Abstract:
This study aims to conduct a preliminary investigation to determine the topic to be focused in developing Virtual Laboratory For Biology (VLab-Bio). Samples involved in answering the questionnaire are form five students (equivalent to A-Level) and biology teachers. Time and economical resources for the setting up and construction of scientific laboratories can be solved with the adaptation of virtual laboratories as an educational tool. Thus, it is hoped that the proposed virtual laboratory will help students to learn the abstract concepts in biology. Findings show that the difficult topic chosen is Cell Division and the learning objective to be focused in developing the virtual lab is “Describe the application of knowledge on mitosis in cloning".
Keywords: biology education, computer simulation, virtual laboratory, virtual reality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34828905 Identification of Training Topics for the Improvement of the Relevant Cognitive Skills of Technical Operators in the Railway Domain
Authors: Giulio Nisoli, Jonas Brüngger, Karin Hostettler, Nicole Stoller, Katrin Fischer
Abstract:
Technical operators in the railway domain are experts responsible for the supervisory control of the railway power grid as well as of the railway tunnels. The technical systems used to master these demanding tasks are constantly increasing in their degree of automation. It becomes therefore difficult for technical operators to maintain the control over the technical systems and the processes of their job. In particular, the operators must have the necessary experience and knowledge in dealing with a malfunction situation or unexpected event. For this reason, it is of growing importance that the skills relevant for the execution of the job are maintained and further developed beyond the basic training they receive, where they are educated in respect of technical knowledge and the work with guidelines. Training methods aimed at improving the cognitive skills needed by technical operators are still missing and must be developed. Goals of the present study were to identify which are the relevant cognitive skills of technical operators in the railway domain and to define which topics should be addressed by the training of these skills. Observational interviews were conducted in order to identify the main tasks and the organization of the work of technical operators as well as the technical systems used for the execution of their job. Based on this analysis, the most demanding tasks of technical operators could be identified and described. The cognitive skills involved in the execution of these tasks are those, which need to be trained. In order to identify and analyze these cognitive skills a cognitive task analysis (CTA) was developed. CTA specifically aims at identifying the cognitive skills that employees implement when performing their own tasks. The identified cognitive skills of technical operators were summarized and grouped in training topics. For every training topic, specific goals were defined. The goals regard the three main categories; knowledge, skills and attitude to be trained in every training topic. Based on the results of this study, it is possible to develop specific training methods to train the relevant cognitive skills of the technical operators.
Keywords: Cognitive skills, cognitive task analysis, technical operators in the railway domain, training topics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6898904 A Comparative Study between Displacement and Strain Based Formulated Finite Elements Applied to the Analysis of Thin Shell Structures
Authors: Djamal Hamadi, Oussama Temami, Abdallah Zatar, Sifeddine Abderrahmani
Abstract:
The analysis and design of thin shell structures is a topic of interest in a variety of engineering applications. In structural mechanics problems the analyst seeks to determine the distribution of stresses throughout the structure to be designed. It is also necessary to calculate the displacements of certain points of the structure to ensure that specified allowable values are not exceeded. In this paper a comparative study between displacement and strain based finite elements applied to the analysis of some thin shell structures is presented. The results obtained from some examples show the efficiency and the performance of the strain based approach compared to the well known displacement formulation.
Keywords: Displacement formulation, Finite elements, Strain based approach, Shell structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26358903 Innovativeness of the Furniture Enterprises in Bulgaria
Authors: Radostina Popova
Abstract:
The paper presents an analysis of the innovation performance of small and medium-sized furniture enterprises in Bulgaria, accounting for over 97% of the companies in the sector. It contains advanced features of innovation in enterprises, specific features of the furniture industry in Bulgaria and analysis of the results of studies on the topic. The results from studies of three successive periods - 2006-2008; 2008-2010; 2010-2012, during which were studied 594 small and medium-sized furniture enterprises. There are commonly used in the EU definitions and indicators (European Commission, OECD, Oslo Manual), which allows for the comparability of results.
Keywords: Innovation activity, competitiveness of innovation, furniture enterprises in Bulgaria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13188902 Gender Discrimination in Education in Croatia
Authors: Ivana Šalinović
Abstract:
The term gender emerged in the second half of the last century and since then a growing body of research dealing with the topic demonstrates its importance. Primarily, the research and the theories that were addressing the topic were focused on stating the differences between the terms sex and gender, where sex refers to the biological aspect of a person, while gender refers to the socially ascribed roles, attitudes, behaviors, and etc., and on gender discrimination whose visible and invisible repercussions are harming society and one of the agents of change should be educators on all educational levels since they are emotionally sculpting their students, that is why considerable effort should be put into implementing education about this topic into the standard curriculum. Not only educators, but it is also necessary to change the mindset of the younger generations because they will be important agents in the further elimination of gender discrimination, thus causing societal changes. Therefore, it is very important to hear their voices and their experiences and for these reasons, this research has been done, to see what the students of the second year at a private college university Aspira in Croatia have gone through in their educational ladder. The hypothesis was that the findings would most certainly show a huge difference between female and male students’ experiences and effects of gender discrimination, but the results have actually shown a very mixed picture and the original hypothesis was somewhat disapproved. Instead of finding out that girls experienced a lot of gender discrimination, it turned out that it was the boys who believed that in their previous and current education, there was no equal time distribution between genders, they noticed that the language was not gender-sensitive, teaching aids were not adopted to the genders. They were also the ones that pointed out that the discipline path was not the same for everyone, and they were the ones that the teacher’s gender had more influence on and were also the ones that experienced more gender discrimination.
Keywords: Gender, discrimination, elementary school, high school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448