Search results for: prediction method.
8813 River Flow Prediction Using Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23658812 Monthly River Flow Prediction Using a Nonlinear Prediction Method
Authors: N. H. Adenan, M. S. M. Noorani
Abstract:
River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.
Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19628811 Intra Prediction using Weighted Average of Pixel Values According to Prediction Direction
Authors: Kibaek Kim, Dongjin Jung, Jinik Jang, Jechang Jeong
Abstract:
In this paper, we proposed a method to reduce quantization error. In order to reduce quantization error, low pass filtering is applied on neighboring samples of current block in H.264/AVC. However, it has a weak point that low pass filtering is performed regardless of prediction direction. Since it doesn-t consider prediction direction, it may not reduce quantization error effectively. Proposed method considers prediction direction for low pass filtering and uses a threshold condition for reducing flag bit. We compare our experimental result with conventional method in H.264/AVC and we can achieve the average bit-rate reduction of 1.534% by applying the proposed method. Bit-rate reduction between 0.580% and 3.567% are shown for experimental results.Keywords: Coding efficiency, H.264/AVC, Intra prediction, Low pass filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17508810 An Improved Prediction Model of Ozone Concentration Time Series Based On Chaotic Approach
Authors: N. Z. A. Hamid, M. S. M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly Ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.
Keywords: Chaotic approach, phase space, Cao method, local linear approximation method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17838809 On the Prediction of Transmembrane Helical Segments in Membrane Proteins
Abstract:
The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1F88 was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. One group of test data sets that contain total 19 protein sequences was utilized to access the effect of this method. Compared with the prediction results of DAS, PRED-TMR2, SOSUI, HMMTOP2.0 and TMHMM2.0, the obtained results indicate that the presented method has higher prediction accuracy.Keywords: hydrophobicity, membrane protein, transmembranehelical segments, wavelet transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15828808 Analysis of Physicochemical Properties on Prediction of R5, X4 and R5X4 HIV-1 Coreceptor Usage
Authors: Kai-Ti Hsu, Hui-Ling Huang, Chun-Wei Tung, Yi-Hsiung Chen, Shinn-Ying Ho
Abstract:
Bioinformatics methods for predicting the T cell coreceptor usage from the array of membrane protein of HIV-1 are investigated. In this study, we aim to propose an effective prediction method for dealing with the three-class classification problem of CXCR4 (X4), CCR5 (R5) and CCR5/CXCR4 (R5X4). We made efforts in investigating the coreceptor prediction problem as follows: 1) proposing a feature set of informative physicochemical properties which is cooperated with SVM to achieve high prediction test accuracy of 81.48%, compared with the existing method with accuracy of 70.00%; 2) establishing a large up-to-date data set by increasing the size from 159 to 1225 sequences to verify the proposed prediction method where the mean test accuracy is 88.59%, and 3) analyzing the set of 14 informative physicochemical properties to further understand the characteristics of HIV-1coreceptors.Keywords: Coreceptor, genetic algorithm, HIV-1, SVM, physicochemical properties, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23858807 Application of Seismic Wave Method in Early Estimation of Wencheng Earthquake
Authors: Wenlong Liu, Yucheng Liu
Abstract:
This paper introduces the application of seismic wave method in earthquake prediction and early estimation. The advantages of the seismic wave method over the traditional earthquake prediction method are demonstrated. An example is presented in this study to show the accuracy and efficiency of using the seismic wave method in predicting a medium-sized earthquake swarm occurred in Wencheng, Zhejiang, China. By applying this method, correct predictions were made on the day after this earthquake swarm started and the day the maximum earthquake occurred, which provided scientific bases for governmental decision-making.
Keywords: earthquake prediction, earthquake swarm, seismicactivity method, seismic wave method, Wencheng earthquake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16568806 Fast Intra Prediction Algorithm for H.264/AVC Based on Quadratic and Gradient Model
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC standard uses an intra prediction, 9 directional modes for 4x4 luma blocks and 8x8 luma blocks, 4 directional modes for 16x16 macroblock and 8x8 chroma blocks, respectively. It means that, for a macroblock, it has to perform 736 different RDO calculation before a best RDO modes is determined. With this Multiple intra-mode prediction, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards, but computational complexity is increased significantly. This paper presents a fast intra prediction algorithm for H.264/AVC intra prediction based a characteristic of homogeneity information. In this study, the gradient prediction method used to predict the homogeneous area and the quadratic prediction function used to predict the nonhomogeneous area. Based on the correlation between the homogeneity and block size, the smaller block is predicted by gradient prediction and quadratic prediction, so the bigger block is predicted by gradient prediction. Experimental results are presented to show that the proposed method reduce the complexity by up to 76.07% maintaining the similar PSNR quality with about 1.94%bit rate increase in average.Keywords: Intra prediction, H.264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18948805 The Reliability of the Improved e-N Method for Transition Prediction as Checked by PSE Method
Authors: Caihong Su
Abstract:
Transition prediction of boundary layers has always been an important problem in fluid mechanics both theoretically and practically, yet notwithstanding the great effort made by many investigators, there is no satisfactory answer to this problem. The most popular method available is so-called e-N method which is heavily dependent on experiments and experience. The author has proposed improvements to the e-N method, so to reduce its dependence on experiments and experience to a certain extent. One of the key assumptions is that transition would occur whenever the velocity amplitude of disturbance reaches 1-2% of the free stream velocity. However, the reliability of this assumption needs to be verified. In this paper, transition prediction on a flat plate is investigated by using both the improved e-N method and the parabolized stability equations (PSE) methods. The results show that the transition locations predicted by both methods agree reasonably well with each other, under the above assumption. For the supersonic case, the critical velocity amplitude in the improved e-N method should be taken as 0.013, whereas in the subsonic case, it should be 0.018, both are within the range 1-2%.Keywords: Boundary layer, e-N method, PSE, Transition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15088804 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/ deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.Keywords: Epilepsy, Seizure, Phase Correlation, Fluctuation, Deviation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24678803 On Improving Breast Cancer Prediction Using GRNN-CP
Authors: Kefaya Qaddoum
Abstract:
The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.
Keywords: Neural network, conformal prediction, cancer classification, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8398802 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process
Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek
Abstract:
It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.
Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23988801 A Novel Prediction Method for Tag SNP Selection using Genetic Algorithm based on KNN
Authors: Li-Yeh Chuang, Yu-Jen Hou, Jr., Cheng-Hong Yang
Abstract:
Single nucleotide polymorphisms (SNPs) hold much promise as a basis for disease-gene association. However, research is limited by the cost of genotyping the tremendous number of SNPs. Therefore, it is important to identify a small subset of informative SNPs, the so-called tag SNPs. This subset consists of selected SNPs of the genotypes, and accurately represents the rest of the SNPs. Furthermore, an effective evaluation method is needed to evaluate prediction accuracy of a set of tag SNPs. In this paper, a genetic algorithm (GA) is applied to tag SNP problems, and the K-nearest neighbor (K-NN) serves as a prediction method of tag SNP selection. The experimental data used was taken from the HapMap project; it consists of genotype data rather than haplotype data. The proposed method consistently identified tag SNPs with considerably better prediction accuracy than methods from the literature. At the same time, the number of tag SNPs identified was smaller than the number of tag SNPs in the other methods. The run time of the proposed method was much shorter than the run time of the SVM/STSA method when the same accuracy was reached.
Keywords: Genetic Algorithm (GA), Genotype, Single nucleotide polymorphism (SNP), tag SNPs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17718800 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model
Authors: S. Channgam, A. Sae-Tang, T. Termsaithong
Abstract:
In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.
Keywords: Bak-Tang-Wiesenfeld sandpile model, avalanches, cross-correlation, prediction method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11748799 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.
Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3358798 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: Prediction of financial markets, Adaptive methods, MSE, LSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10208797 On the Prediction of Transmembrane Helical Segments in Membrane Proteins Based on Wavelet Transform
Abstract:
The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a new method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. To access the effect of the method, 80 proteins with known 3D-structure from Mptopo database are chosen at random as the test objects (including 325 TMHs), 308 of which can be predicted accurately, the average predicted accuracy is 96.3%. In addition, the above 80 membrane proteins are divided into 13 groups according to their function and type. In particular, the results of the prediction of TMHs of the 13 groups are satisfying.Keywords: discrete wavelet transform, hydrophobicity, membrane protein, transmembrane helical segments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14128796 Efficient Lossless Compression of Weather Radar Data
Authors: Wei-hua Ai, Wei Yan, Xiang Li
Abstract:
Data compression is used operationally to reduce bandwidth and storage requirements. An efficient method for achieving lossless weather radar data compression is presented. The characteristics of the data are taken into account and the optical linear prediction is used for the PPI images in the weather radar data in the proposed method. The next PPI image is identical to the current one and a dramatic reduction in source entropy is achieved by using the prediction algorithm. Some lossless compression methods are used to compress the predicted data. Experimental results show that for the weather radar data, the method proposed in this paper outperforms the other methods.
Keywords: Lossless compression, weather radar data, optical linear prediction, PPI image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22578795 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy
Authors: K. Petcharaporn, S. Kumchoo
Abstract:
The acidity (citric acid) is the one of chemical content that can be refer to the internal quality and it’s a maturity index of tomato, The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR) spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomato.
Keywords: Tomato, quality, prediction, transmittance, titratable acidity, citric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27008794 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region
Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan
Abstract:
Rainfall runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15 – May 18 2014). Prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.Keywords: Flood, HEC-HMS, Prediction, Rainfall – Runoff.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22278793 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method
Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi
Abstract:
Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.
Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22978792 Using Probe Person Data for Travel Mode Detection
Authors: Muhammad Awais Shafique, Eiji Hato, Hideki Yaginuma
Abstract:
Recently GPS data is used in a lot of studies to automatically reconstruct travel patterns for trip survey. The aim is to minimize the use of questionnaire surveys and travel diaries so as to reduce their negative effects. In this paper data acquired from GPS and accelerometer embedded in smart phones is utilized to predict the mode of transportation used by the phone carrier. For prediction, Support Vector Machine (SVM) and Adaptive boosting (AdaBoost) are employed. Moreover a unique method to improve the prediction results from these algorithms is also proposed. Results suggest that the prediction accuracy of AdaBoost after improvement is relatively better than the rest.
Keywords: Accelerometer, AdaBoost, GPS, Mode Prediction, Support vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24508791 A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.
Keywords: Intra prediction, H264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25068790 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.
Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6548789 Selective Intra Prediction Mode Decision for H.264/AVC Encoders
Authors: Jun Sung Park, Hyo Jung Song
Abstract:
H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards such as MPEG-2, but computational complexity is increased significantly. In this paper, we propose selective mode decision schemes for fast intra prediction mode selection. The objective is to reduce the computational complexity of the H.264/AVC encoder without significant rate-distortion performance degradation. In our proposed schemes, the intra prediction complexity is reduced by limiting the luma and chroma prediction modes using the directional information of the 16×16 prediction mode. Experimental results are presented to show that the proposed schemes reduce the complexity by up to 78% maintaining the similar PSNR quality with about 1.46% bit rate increase in average.Keywords: Video encoding, H.264, Intra prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34688788 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.
Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6378787 Protein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings
Authors: Leong Lee, Cyriac Kandoth, Jennifer L. Leopold, Ronald L. Frank
Abstract:
Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational prediction algorithms rarely has exceeded 75%. In a previous paper [1], this research team presented a rule-based method called RT-RICO (Relaxed Threshold Rule Induction from Coverings) to predict protein secondary structure. The average Q3 accuracy on the sample datasets using RT-RICO was 80.3%, an improvement over comparable computational methods. Although this demonstrated that RT-RICO might be a promising approach for predicting secondary structure, the algorithm-s computational complexity and program running time limited its use. Herein a parallelized implementation of a slightly modified RT-RICO approach is presented. This new version of the algorithm facilitated the testing of a much larger dataset of 396 protein domains [2]. Parallelized RTRICO achieved a Q3 score of 74.6%, which is higher than the consensus prediction accuracy of 72.9% that was achieved for the same test dataset by a combination of four secondary structure prediction methods [2].Keywords: data mining, protein secondary structure prediction, parallelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15968786 Diesel Fault Prediction Based on Optimized Gray Neural Network
Authors: Han Bing, Yin Zhenjie
Abstract:
In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.
Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13028785 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks
Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra
Abstract:
The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17578784 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205