Search results for: wiener chaos expansion
1438 Solving SPDEs by Least Squares Method
Authors: Hassan Manouzi
Abstract:
We present in this paper a useful strategy to solve stochastic partial differential equations (SPDEs) involving stochastic coefficients. Using the Wick-product of higher order and the Wiener-Itˆo chaos expansion, the SPDEs is reformulated as a large system of deterministic partial differential equations. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. To obtain the chaos coefficients in the corresponding deterministic equations, we use a least square formulation. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.Keywords: least squares, wick product, SPDEs, finite element, wiener chaos expansion, gradient method
Procedia PDF Downloads 4191437 Solving Stochastic Eigenvalue Problem of Wick Type
Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati
Abstract:
In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Ito chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition-coordination method. Once this approximation is performed, the statistics of the numerical solution can be easily evaluated.Keywords: eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Ito chaos expansion
Procedia PDF Downloads 3581436 Topological Indices of Some Graph Operations
Authors: U. Mary
Abstract:
Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper.Keywords: complementary prism graph, first Zagreb index, neighborhood corona graph, steiner distance, splitting graph, steiner wiener index, wiener index
Procedia PDF Downloads 5701435 Polynomial Chaos Expansion Combined with Exponential Spline for Singularly Perturbed Boundary Value Problems with Random Parameter
Authors: W. K. Zahra, M. A. El-Beltagy, R. R. Elkhadrawy
Abstract:
So many practical problems in science and technology developed over the past decays. For instance, the mathematical boundary layer theory or the approximation of solution for different problems described by differential equations. When such problems consider large or small parameters, they become increasingly complex and therefore require the use of asymptotic methods. In this work, we consider the singularly perturbed boundary value problems which contain very small parameters. Moreover, we will consider these perturbation parameters as random variables. We propose a numerical method to solve this kind of problems. The proposed method is based on an exponential spline, Shishkin mesh discretization, and polynomial chaos expansion. The polynomial chaos expansion is used to handle the randomness exist in the perturbation parameter. Furthermore, the Monte Carlo Simulations (MCS) are used to validate the solution and the accuracy of the proposed method. Numerical results are provided to show the applicability and efficiency of the proposed method, which maintains a very remarkable high accuracy and it is ε-uniform convergence of almost second order.Keywords: singular perturbation problem, polynomial chaos expansion, Shishkin mesh, two small parameters, exponential spline
Procedia PDF Downloads 1601434 Hosoya Polynomials of Zero-Divisor Graphs
Authors: Abdul Jalil M. Khalaf, Esraa M. Kadhim
Abstract:
The Hosoya polynomial of a graph G is a graphical invariant polynomial that its first derivative at x= 1 is equal to the Wiener index and second derivative at x=1 is equal to the Hyper-Wiener index. In this paper we study the Hosoya polynomial of zero-divisor graphs.Keywords: Hosoya polynomial, wiener index, Hyper-Wiener index, zero-divisor graphs
Procedia PDF Downloads 5301433 Identification of Wiener Model Using Iterative Schemes
Authors: Vikram Saini, Lillie Dewan
Abstract:
This paper presents the iterative schemes based on Least square, Hierarchical Least Square and Stochastic Approximation Gradient method for the Identification of Wiener model with parametric structure. A gradient method is presented for the parameter estimation of wiener model with noise conditions based on the stochastic approximation. Simulation results are presented for the Wiener model structure with different static non-linear elements in the presence of colored noise to show the comparative analysis of the iterative methods. The stochastic gradient method shows improvement in the estimation performance and provides fast convergence of the parameters estimates.Keywords: hard non-linearity, least square, parameter estimation, stochastic approximation gradient, Wiener model
Procedia PDF Downloads 4051432 On Deterministic Chaos: Disclosing the Missing Mathematics from the Lorenz-Haken Equations
Authors: Meziane Belkacem
Abstract:
We aim at converting the original 3D Lorenz-Haken equations, which describe laser dynamics –in terms of self-pulsing and chaos- into 2-second-order differential equations, out of which we extract the so far missing mathematics and corroborations with respect to nonlinear interactions. Leaning on basic trigonometry, we pull out important outcomes; a fundamental result attributes chaos to forbidden periodic solutions inside some precisely delimited region of the control parameter space that governs the bewildering dynamics.Keywords: Physics, optics, nonlinear dynamics, chaos
Procedia PDF Downloads 1561431 Additive White Gaussian Noise Filtering from ECG by Wiener Filter and Median Filter: A Comparative Study
Authors: Hossein Javidnia, Salehe Taheri
Abstract:
The Electrocardiogram (ECG) is the recording of the heart’s electrical potential versus time. ECG signals are often contaminated with noise such as baseline wander and muscle noise. As these signals have been widely used in clinical studies to detect heart diseases, it is essential to filter these noises. In this paper we compare performance of Wiener Filtering and Median Filtering methods to filter Additive White Gaussian (AWG) noise with the determined signal to noise ratio (SNR) ranging from 3 to 5 dB applied to long-term ECG recordings samples. Root mean square error (RMSE) and coefficient of determination (R2) between the filtered ECG and original ECG was used as the filter performance indicator. Experimental results show that Wiener filter has better noise filtering performance than Median filter.Keywords: ECG noise filtering, Wiener filtering, median filtering, Gaussian noise, filtering performance
Procedia PDF Downloads 5291430 Main Chaos-Based Image Encryption Algorithm
Authors: Ibtissem Talbi
Abstract:
During the last decade, a variety of chaos-based cryptosystems have been investigated. Most of them are based on the structure of Fridrich, which is based on the traditional confusion-diffusion architecture proposed by Shannon. Compared with traditional cryptosystems (DES, 3DES, AES, etc.), the chaos-based cryptosystems are more flexible, more modular and easier to be implemented, which make them suitable for large scale-data encyption, such as images and videos. The heart of any chaos-based cryptosystem is the chaotic generator and so, a part of the efficiency (robustness, speed) of the system depends greatly on it. In this talk, we give an overview of the state of the art of chaos-based block ciphers and we describe some of our schemes already proposed. Also we will focus on the essential characteristics of the digital chaotic generator, The needed performance of a chaos-based block cipher in terms of security level and speed of calculus depends on the considered application. There is a compromise between the security and the speed of the calculation. The security of these block block ciphers will be analyzed.Keywords: chaos-based cryptosystems, chaotic generator, security analysis, structure of Fridrich
Procedia PDF Downloads 6841429 Efficacy of a Wiener Filter Based Technique for Speech Enhancement in Hearing Aids
Authors: Ajish K. Abraham
Abstract:
Hearing aid is the most fundamental technology employed towards rehabilitation of persons with sensory neural hearing impairment. Hearing in noise is still a matter of major concern for many hearing aid users and thus continues to be a challenging issue for the hearing aid designers. Several techniques are being currently used to enhance the speech at the hearing aid output. Most of these techniques, when implemented, result in reduction of intelligibility of the speech signal. Thus the dissatisfaction of the hearing aid user towards comprehending the desired speech amidst noise is prevailing. Multichannel Wiener Filter is widely implemented in binaural hearing aid technology for noise reduction. In this study, Wiener filter based noise reduction approach is experimented for a single microphone based hearing aid set up. This method checks the status of the input speech signal in each frequency band and then selects the relevant noise reduction procedure. Results showed that the Wiener filter based algorithm is capable of enhancing speech even when the input acoustic signal has a very low Signal to Noise Ratio (SNR). Performance of the algorithm was compared with other similar algorithms on the basis of improvement in intelligibility and SNR of the output, at different SNR levels of the input speech. Wiener filter based algorithm provided significant improvement in SNR and intelligibility compared to other techniques.Keywords: hearing aid output speech, noise reduction, SNR improvement, Wiener filter, speech enhancement
Procedia PDF Downloads 2471428 Residual Life Estimation Based on Multi-Phase Nonlinear Wiener Process
Authors: Hao Chen, Bo Guo, Ping Jiang
Abstract:
Residual life (RL) estimation based on multi-phase nonlinear Wiener process was studied in this paper, which is significant for complicated products with small samples. Firstly, nonlinear Wiener model with random parameter was introduced and multi-phase nonlinear Wiener model was proposed to model degradation process of products that were nonlinear and separated into different phases. Then the multi-phase RL probability density function based on the presented model was derived approximately in a closed form and parameters estimation was achieved with the method of maximum likelihood estimation (MLE). Finally, the method was applied to estimate the RL of high voltage plus capacitor. Compared with the other three different models by log-likelihood function (Log-LF) and Akaike information criterion (AIC), the results show that the proposed degradation model can capture degradation process of high voltage plus capacitors in a better way and provide a more reliable result.Keywords: multi-phase nonlinear wiener process, residual life estimation, maximum likelihood estimation, high voltage plus capacitor
Procedia PDF Downloads 4531427 A Novel Parametric Chaos-Based Switching System PCSS for Image Encryption
Authors: Mohamed Salah Azzaz, Camel Tanougast, Tarek Hadjem
Abstract:
In this paper, a new low-cost image encryption technique is proposed and analyzed. The developed chaos-based key generator provides complex behavior and can change it automatically via a random-like switching rule. The designed encryption scheme is called PCSS (Parametric Chaos-based Switching System). The performances of this technique were evaluated in terms of data security and privacy. Simulation results have shown the effectiveness of this technique, and it can thereafter, ready for a hardware implementation.Keywords: chaos, encryption, security, image
Procedia PDF Downloads 4751426 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model
Authors: A. Brouri, F. Giri, A. Mkhida, A. Elkarkri, M. L. Chhibat
Abstract:
Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators.Keywords: nonlinear system identification, Hammerstein-Wiener systems, frequency identification, polynomial decomposition
Procedia PDF Downloads 5111425 Frequency Identification of Wiener-Hammerstein Systems
Authors: Brouri Adil, Giri Fouad
Abstract:
The problem of identifying Wiener-Hammerstein systems is addressed in the presence of two linear subsystems of structure totally unknown. Presently, the nonlinear element is allowed to be noninvertible. The system identification problem is dealt by developing a two-stage frequency identification method such a set of points of the nonlinearity are estimated first. Then, the frequency gains of the two linear subsystems are determined at a number of frequencies. The method involves Fourier series decomposition and only requires periodic excitation signals. All involved estimators are shown to be consistent.Keywords: Wiener-Hammerstein systems, Fourier series expansions, frequency identification, automation science
Procedia PDF Downloads 5361424 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption
Authors: Ashish Ashish
Abstract:
In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption
Procedia PDF Downloads 1511423 Hosoya Polynomials of Mycielskian Graphs
Authors: Sanju Vaidya, Aihua Li
Abstract:
Vulnerability measures and topological indices are crucial in solving various problems such as the stability of the communication networks and development of mathematical models for chemical compounds. In 1947, Harry Wiener introduced a topological index related to molecular branching. Now there are more than 100 topological indices for graphs. For example, Hosoya polynomials (also called Wiener polynomials) were introduced to derive formulas for certain vulnerability measures and topological indices for various graphs. In this paper, we will find a relation between the Hosoya polynomials of any graph and its Mycielskian graph. Additionally, using this we will compute vulnerability measures, closeness and betweenness centrality, and extended Wiener indices. It is fascinating to see how Hosoya polynomials are useful in the two diverse fields, cybersecurity and chemistry.Keywords: hosoya polynomial, mycielskian graph, graph vulnerability measure, topological index
Procedia PDF Downloads 691422 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method
Authors: Mohamad R. Moshtagh, Ahmad Bagheri
Abstract:
Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.Keywords: fault detection, gearbox, machine learning, wiener method
Procedia PDF Downloads 801421 Whether Chaos Theory Could Reconstruct the Ancient Societies
Authors: Zahra Kouzehgari
Abstract:
Since the early emergence of chaos theory in the 1970s in mathematics and physical science, it has increasingly been developed and adapted in social sciences as well. The non-linear and dynamic characteristics of the theory make it a useful conceptual framework to interpret the complex social systems behavior. Regarding chaotic approach principals, sensitivity to initial conditions, dynamic adoption, strange attractors and unpredictability this paper aims to examine whether chaos approach could interpret the ancient social changes. To do this, at first, a brief history of the chaos theory, its development and application in social science as well as the principals making the theory, then its application in archaeological since has been reviewed. The study demonstrates that although based on existing archaeological records reconstruct the whole social system of the human past, the non-linear approaches in studying social complex systems would be of a great help in finding general order of the ancient societies and would enable us to shed light on some of the social phenomena in the human history or to make sense of them.Keywords: archaeology, non-linear approach, chaos theory, ancient social systems
Procedia PDF Downloads 2831420 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance
Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian
Abstract:
Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.Keywords: identification, Hammerstein-Wiener, optimization, quantization
Procedia PDF Downloads 2571419 Chaotic Dynamics of Cost Overruns in Oil and Gas Megaprojects: A Review
Authors: O. J. Olaniran, P. E. D. Love, D. J. Edwards, O. Olatunji, J. Matthews
Abstract:
Cost overruns are a persistent problem in oil and gas megaprojects. Whilst the extant literature is filled with studies on incidents and causes of cost overruns, underlying theories to explain their emergence in oil and gas megaprojects are few. Yet, a way to contain the syndrome of cost overruns is to understand the bases of ‘how and why’ they occur. Such knowledge will also help to develop pragmatic techniques for better overall management of oil and gas megaprojects. The aim of this paper is to explain the development of cost overruns in hydrocarbon megaprojects through the perspective of chaos theory. The underlying principles of chaos theory and its implications for cost overruns are examined and practical recommendations proposed. In addition, directions for future research in this fertile area provided.Keywords: chaos theory, oil and gas, cost overruns, megaprojects
Procedia PDF Downloads 5591418 Probabilistic Slope Stability Analysis of Excavation Induced Landslides Using Hermite Polynomial Chaos
Authors: Schadrack Mwizerwa
Abstract:
The characterization and prediction of landslides are crucial for assessing geological hazards and mitigating risks to infrastructure and communities. This research aims to develop a probabilistic framework for analyzing excavation-induced landslides, which is fundamental for assessing geological hazards and mitigating risks to infrastructure and communities. The study uses Hermite polynomial chaos, a non-stationary random process, to analyze the stability of a slope and characterize the failure probability of a real landslide induced by highway construction excavation. The correlation within the data is captured using the Karhunen-Loève (KL) expansion theory, and the finite element method is used to analyze the slope's stability. The research contributes to the field of landslide characterization by employing advanced random field approaches, providing valuable insights into the complex nature of landslide behavior and the effectiveness of advanced probabilistic models for risk assessment and management. The data collected from the Baiyuzui landslide, induced by highway construction, is used as an illustrative example. The findings highlight the importance of considering the probabilistic nature of landslides and provide valuable insights into the complex behavior of such hazards.Keywords: Hermite polynomial chaos, Karhunen-Loeve, slope stability, probabilistic analysis
Procedia PDF Downloads 761417 Small Entrepreneurs as Creators of Chaos: Increasing Returns Requires Scaling
Authors: M. B. Neace, Xin GAo
Abstract:
Small entrepreneurs are ubiquitous. Regardless of location their success depends on several behavioral characteristics and several market conditions. In this concept paper, we extend this paradigm to include elements from the science of chaos. Our observations, research findings, literature search and intuition lead us to the proposition that all entrepreneurs seek increasing returns, as did the many small entrepreneurs we have interviewed over the years. There will be a few whose initial perturbations may create tsunami-like waves of increasing returns over time resulting in very large market consequences–the butterfly impact. When small entrepreneurs perturb the market-place and their initial efforts take root a series of phase-space transitions begin to occur. They sustain the stream of increasing returns by scaling up. Chaos theory contributes to our understanding of this phenomenon. Sustaining and nourishing increasing returns of small entrepreneurs as complex adaptive systems requires scaling. In this paper we focus on the most critical element of the small entrepreneur scaling process–the mindset of the owner-operator.Keywords: entrepreneur, increasing returns, scaling, chaos
Procedia PDF Downloads 4561416 Durability and Early-Age Behavior of Sprayed Concrete with an Expansion Admixture
Authors: Kyong-Ku Yun, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han, Pan-Gil Choi
Abstract:
Sprayed concrete is a way to spray a concrete using a machinery with high air pressure. There are insufficient studies on the durability and early-age behavior of sprayed concrete using high quality expansion agent. A series of an experiment were executed with 5 varying expansion agent replacement rates, while all the other conditions were kept constant, including cement binder content and water-cement ratio. The tests includes early-age shrinkage test, rapid chloride permeability test, and image analysis of air void structure. The early-age expansion test with the variation of expansion agent show that the expansion strain increases as the ratio of expansion agent increases. The rapid chloride permeability test shows that it decrease as the expansion agent increase. Therefore, expansion agent affects into the rapid chloride permeability in a better way. As expansion agent content increased, spacing factor slightly decreased while specific surface kept relatively stable. As a results, the optimum ratio of expansion agent would be selected between 7 % and 11%.Keywords: sprayed concrete, durability, early-age behavior, expansion admixture
Procedia PDF Downloads 5071415 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method
Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry
Abstract:
The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design
Procedia PDF Downloads 1521414 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model
Authors: Soudabeh Shemehsavar
Abstract:
In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process
Procedia PDF Downloads 3171413 Melnikov Analysis for the Chaos of the Nonlocal Nanobeam Resting on Fractional-Order Softening Nonlinear Viscoelastic Foundations
Authors: Guy Joseph Eyebe, Gambo Betchewe, Alidou Mohamadou, Timoleon Crepin Kofane
Abstract:
In the present study, the dynamics of nanobeam resting on fractional order softening nonlinear viscoelastic pasternack foundations is studied. The Hamilton principle is used to derive the nonlinear equation of the motion. Approximate analytical solution is obtained by applying the standard averaging method. The Melnikov method is used to investigate the chaotic behaviors of device, the critical curve separating the chaotic and non-chaotic regions are found. It is shown that appearance of chaos in the system depends strongly on the fractional order parameter.Keywords: chaos, fractional-order, Melnikov method, nanobeam
Procedia PDF Downloads 1591412 Chaotic Analysis of Acid Rains with Times Series of pH Degree, Nitrate and Sulphate Concentration on Wet Samples
Authors: Aysegul Sener, Gonca Tuncel Memis, Mirac Kamislioglu
Abstract:
Chaos theory is one of the new paradigms of science since the last century. After determining chaos in the weather systems by Edward Lorenz the popularity of the theory was increased. Chaos is observed in many natural systems and studies continue to defect chaos to other natural systems. Acid rain is one of the environmental problems that have negative effects on environment and acid rains values are monitored continuously. In this study, we aim that analyze the chaotic behavior of acid rains in Turkey with the chaotic defecting approaches. The data of pH degree of rain waters, concentration of sulfate and nitrate data of wet rain water samples in the rain collecting stations which are located in different regions of Turkey are provided by Turkish State Meteorology Service. Lyapunov exponents, reconstruction of the phase space, power spectrums are used in this study to determine and predict the chaotic behaviors of acid rains. As a result of the analysis it is found that acid rain time series have positive Lyapunov exponents and wide power spectrums and chaotic behavior is observed in the acid rain time series.Keywords: acid rains, chaos, chaotic analysis, Lypapunov exponents
Procedia PDF Downloads 1461411 Design of Chaos Algorithm Based Optimal PID Controller for SVC
Authors: Saeid Jalilzadeh
Abstract:
SVC is one of the most significant devices in FACTS technology which is used in parallel compensation, enhancing the transient stability, limiting the low frequency oscillations and etc. designing a proper controller is effective in operation of svc. In this paper the equations that describe the proposed system have been linearized and then the optimum PID controller has been designed for svc which its optimal coefficients have been earned by chaos algorithm. Quick damping of oscillations of generator is the aim of designing of optimum PID controller for svc whether the input power of generator has been changed suddenly. The system with proposed controller has been simulated for a special disturbance and the dynamic responses of generator have been presented. The simulation results showed that a system composed with proposed controller has suitable operation in fast damping of oscillations of generator.Keywords: chaos, PID controller, SVC, frequency oscillation
Procedia PDF Downloads 4411410 A Summary of the Research on the Driving Mechanism of Space Expansion in China's National New District
Authors: Qin Xia
Abstract:
’National New District’ as a regional overall promotion of strategic thinking has become increasingly mature, but its spatial expansion is still chaotic and disorderly, so it is urgent to summarize the complex and unique driving mechanism contained in its spatial expansion to formulate sustainable urban expansion plan. Under the understanding of the general laws of the driving mechanism of China's space expansion, it is found that the existing research on the driving mechanism of the space expansion of national new districts is insufficient. The research area focuses on the research of the driving mechanism of the space expansion of a single new area. In terms of research methods, qualitative description is the main focus. In terms of research content, it is limited to the expansion speed, intensity, and area of the new district itself and does not involve the expansion and utilization efficiency of space and the spillover efficiency to surrounding cities. The specific connotations of social, economic, political, and geographical categories are not thoroughly explored. It is often a general explanation that a certain factor has promoted it. The logic is not rigorous and convincing, and the description is relatively static, with different time and space. There is less literature on scale interaction. Through the reflection on the key and difficult points of the drive mechanism of the space expansion of the national new area, it is clear that the existing research on the drive mechanism of the space expansion of the national new area should be continued to drive the sustainable expansion of space.Keywords: national new district, space expansion, driving mechanism, existing research
Procedia PDF Downloads 1691409 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image
Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche
Abstract:
The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter
Procedia PDF Downloads 163