Search results for: ultra groups
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7242

Search results for: ultra groups

7152 Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates

Authors: Moez ul Hassan, Bushra Noman, Sarmad Hameed, Shahab Mehmood, Asma Bashir

Abstract:

The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research.

Keywords: drug discovery, ionic current, operational amplifier, patch clamp

Procedia PDF Downloads 492
7151 The Importance of Affinity Groups for Organizations and Employees

Authors: Helio Arthur Reis Irigaray, Fabricio Stocker

Abstract:

This study aims to discover the extent to which affinity groups effectively act to combat inequalities, promote diversity, and contribute to the inclusion of non-hegemonic groups in the work environment. To this end, we have built empirical research, in which we interviewed 36 leaders and members of the collectives of non-hegemonic groups, namely women, blacks, and LGBTQ. With the proper authorization of the participants, their interviews were transcribed and submitted for critical analysis of the discourse. The field revealed that collectives are the result of the articulation of non-hegemonic groups, which create and participate in legitimate and institutional spaces to promote diversity. We also identified that diversity actions have happened as a market trend and reproduced mimetically. As the largest companies implement these actions, they become benchmarking and thus create a flow that is reproduced by other companies. However, there is no effective change in the structures that could promote inclusion and belonging. We state that a diverse group of employees are not enough to claim that the organization is diverse and inclusive. There remains much more to discuss and delve into deeply, including gender, diversity, and intersectionality.

Keywords: diversity, inclusion, collectives, affinity groups, employee resource groups

Procedia PDF Downloads 59
7150 Polymorphisms of the UM Genotype of CYP2C19*17 in Thais Taking Medical Cannabis

Authors: Athicha Cherdpunt, Patompong Satapornpong

Abstract:

The medical cannabis is made up of components also known as cannabinoids, which consists of two ingredients which are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Interestingly, the Cannabinoid can be used for many treatments such as chemotherapy, including nausea and vomiting, cachexia, anorexia nervosa, spinal cord injury and disease, epilepsy, pain, and many others. However, the adverse drug reactions (ADRs) of THC can cause sedation, anxiety, dizziness, appetite stimulation and impairments in driving and cognitive function. Furthermore, genetic polymorphisms of CYP2C9, CYP2C19 and CYP3A4 influenced the THC metabolism and might be a cause of ADRs. Particularly, CYP2C19*17 allele increases gene transcription and therefore results in ultra-rapid metabolizer phenotype (UM). The aim of this study, is to investigate the frequency of CYP2C19*17 alleles in Thai patients who have been treated with medical cannabis. We prospectively enrolled 60 Thai patients who were treated with medical cannabis and clinical data from College of Pharmacy, Rangsit University. DNA of each patient was isolated from EDTA blood, using the Genomic DNA Mini Kit. CYP2C19*17 genotyping was conducted using the real time-PCR ViiA7 (ABI, Foster City, CA, USA). 30 patients with medical cannabis-induced ADRs group, 20 (67%) were female, and 10 (33%) were male, with an age range of 30-69 years. On the other hand, 30 patients without medical cannabis-induced ADRs (control group) consist of 17 (57%) female and 13 (43%) male. The most ADRs for medical cannabis treatment in the case group were dry mouth and dry throat (77%), tachycardia (70%), nausea (30%) and arrhythmia(10%). Accordingly, the case group carried CYP2C19*1/*1 (normal metabolizer) approximately 93%, while 7% patients carrying CYP2C19*1/*17 (ultra rapid metabolizers) exhibited in this group. Meanwhile, we found 90% of CYP2C19*1/*1 and 10% of CYP2C19*1/*17 in control group. In this study, we identified the frequency of CYP2C19*17 allele in Thai population which will support the pharmacogenetics biomarkers for screening and avoid ADRs of medical cannabis treatment.

Keywords: CYP2C19, allele frequency, ultra rapid metabolizer, medical cannabis

Procedia PDF Downloads 81
7149 Independence and Path Independence on Cayley Digraphs of Left Groups and Right Groups

Authors: Nuttawoot Nupo, Sayan Panma

Abstract:

A semigroup S is said to be a left (right) zero semigroup if S satisfies the equation xy=x (xy=y) for all x,y in S. In addition, the semigroup S is called a left (right) group if S is isomorphic to the direct product of a group and a left (right) zero semigroup. The Cayley digraph Cay(S,A) of a semigroup S with a connection set A is defined to be a digraph with the vertex set S and the arc set E(Cay(S,A))={(x,xa) | x∈S, a∈A} where A is any subset of S. All sets in this research are assumed to be finite. Let D be a digraph together with a vertex set V and an arc set E. Let u and v be two different vertices in V and I a nonempty subset of V. The vertices u and v are said to be independent if (u,v)∉E and (v,u)∉E. The set I is called an independent set of D if any two different vertices in I are independent. The independence number of D is the maximum cardinality of an independent set of D. Moreover, the vertices u and v are said to be path independent if there is no dipath from u to v and there is no dipath from v to u. The set I is called a path independent set of D if any two different vertices in I are path independent. The path independence number of D is the maximum cardinality of a path independent set of D. In this research, we describe a lower bound and an upper bound of the independence number of Cayley digraphs of left groups and right groups. Some examples corresponding to those bounds are illustrated here. Furthermore, the exact value of the path independence number of Cayley digraphs of left groups and right groups are also presented.

Keywords: Cayley digraphs, independence number, left groups, path independence number, right groups

Procedia PDF Downloads 210
7148 Graphene Transistor Employing Multilayer Hexagonal Boron Nitride as Substrate and Gate Insulator

Authors: Nikhil Jain, Bin Yu

Abstract:

We explore the potential of using ultra-thin hexagonal boron nitride (h-BN) as both supporting substrate and gate dielectric for graphene-channel field effect transistors (GFETs). Different from commonly used oxide-based dielectric materials which are typically amorphous, very rough in surface, and rich with surface traps, h-BN is layered insulator free of dangling bonds and surface states, featuring atomically smooth surface. In a graphene-channel-last device structure with local buried metal gate electrode (TiN), thin h-BN multilayer is employed as both supporting “substrate” and gate dielectric for graphene active channel. We observed superior carrier mobility and electrical conduction, significantly improved from that in GFETs with SiO2 as substrate/gate insulator. In addition, we report excellent dielectric behavior of layered h-BN, including ultra-low leakage current and high critical electric field for breakdown.

Keywords: graphene, field-effect transistors, hexagonal boron nitride, dielectric strength, tunneling

Procedia PDF Downloads 402
7147 A Photoemission Study of Dye Molecules Deposited by Electrospray on rutile TiO2 (110)

Authors: Nouf Alharbi, James O'shea

Abstract:

For decades, renewable energy sources have received considerable global interest due to the increase in fossil fuel consumption. The abundant energy produced by sunlight makes dye-sensitised solar cells (DSSCs) a promising alternative compared to conventional silicon and thin film solar cells due to their transparency and tunable colours, which make them suitable for applications such as windows and glass facades. The transfer of an excited electron onto the surface is an important procedure in the DSSC system, so different groups of dye molecules were studied on the rutile TiO2 (110) surface. Currently, the study of organic dyes has become an interest of researchers due to ruthenium being a rare and expensive metal, and metal-free organic dyes have many features, such as high molar extinction coefficients, low manufacturing costs, and ease of structural modification and synthesis. There are, of course, some groups that have developed organic dyes and exhibited lower light-harvesting efficiency ranging between 4% and 8%. Since most dye molecules are complicated or fragile to be deposited by thermal evaporation or sublimation in the ultra-high vacuum (UHV), all dyes (i.e, D5, SC4, and R6) in this study were deposited in situ using the electrospray deposition technique combined with X-ray photoelectron spectroscopy (XPS) as an alternative method to obtain high-quality monolayers of titanium dioxide. These organic molecules adsorbed onto rutile TiO2 (110) are explored by XPS, which can be used to obtain element-specific information on the chemical structure and study bonding and interaction sites on the surface.

Keywords: dyes, deposition, electrospray, molecules, organic, rutile, sensitised, XPS

Procedia PDF Downloads 45
7146 Identify the Traffic Safety Needs among Risky Groups in Iraq

Authors: Aodai Abdul-Illah Ismail

Abstract:

Even though the dramatic progress that has been made in traffic safety, but still millions of peoples get killed or injured as a result of traffic crashes, besides the huge amount of economic losses due to these crashes. So traffic safety continues to be one of the most important serious issues worldwide, and it affects everyone who uses the road network system, whether you drive, walk, cycle, or push a pram. One of the most important sides that offers promise for further progress in relation to traffic safety is related to risky groups (special population groups) who may have higher potential to be involved in accidents. Traffic safety needs of risky groups are different from each other and also from the average population. Due to the various limitations between these special groups from each other and from the average population, it is not possible to address all the issues –at the same time- raising the importance ranking among the other safety issues. This paper explains a procedure used to identify the most critical traffic safety issues of five risky groups, which include younger, older and female drivers, people with disabilities and school aged children. Multi criteria used in selecting the critical issues because the single criteria is not sufficient. Highway safety professionals were surveyed to obtain the ranking of importance among the risky groups and then to develop the final ranking among issues by applying weight for each of the criteria.

Keywords: traffic safety, risky groups, old drivers, young drivers

Procedia PDF Downloads 323
7145 PD Test in Gas Insulated Substation Using UHF Method

Authors: T. Prabakaran

Abstract:

Gas Insulated Substations (GIS) are widely used as important switchgear equipment because of its high reliability, low space requirement, low risk factor and easy maintenance, yet some failures have been reported. Some of the failures are due to presence of metallic particles inside the GIS compartment. The defect can be generated in GIS during production, maintenance, installation and can be due to ageing of the component. The Ultra-High Frequency (UHF) method is used to diagnose the insulation condition of GIS by detecting the PD signals in GIS. This paper identifies PD patterns for free moving particle defect and particle fixed on cone using UHF method. As insulation failure usually starts with PD activity, this paper investigates the differences in PD characteristics in SF6 gas with different types of defects. Experimental results show that correct identification of defects can be achieved based on considered PD characteristics. The method can be applied to prove the quality of assembly work at commissioning, also on a regular basis after many years in service to detect aged and conducting particles as a part of the condition based maintenance.

Keywords: gas insulated substation, partial discharge, free moving particle defect, particle fixed on cone defect, ultra high frequency method

Procedia PDF Downloads 207
7144 Effect of SPS Parameters on the Densification of ZrB2-Based Composites

Authors: Z. Balak, M. Zakeri, M.R.Rahimipur, M. Azizieh

Abstract:

Spark Plasma Sintering is a new technique which was used for ultra high temperature ceramics such as ZrB2-based composites in recent years. Taguchi design was applied to explore effective parameters for achieving the highest hardness. Nine factors including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure in four levels were considered through the Taguchi technique. In this study, only the effect of SPS conditions on densification and hardness were investigated. ZrB2-based composites were prepared by SPS in different temperatures (1600°C,1700°C, 1800°C, 1900°C), times (4min, 8 min, 12 min, 16min) and pressures (10MPa, 20MPa, 30MPa and 40MPa). The effect of SPS parameters on the densification and hardness were investigated. It was found, by increasing the temperature and time, from level 1 to 4, densification improved continuously. Also, the results shows hardness increases continuously by increasing temperature and time. Finally, it is concluded that temperature and time have more significant effect on densification and harness rather than pressure.

Keywords: spark plasma sintering (SPS), ultra high temperature ceramics (UHTCs), densification, hardness

Procedia PDF Downloads 386
7143 Employee Assessment Systems in the Structures of Corporate Groups

Authors: D. Bąk-Grabowska, K. Grzesik, A. Iwanicka, A. Jagoda

Abstract:

The process of human resources management in the structures of corporate groups demonstrates certain specificity, resulting from the division of decision-making and executive competencies, which occurs within these structures between a parent company and its subsidiaries. The subprocess of employee assessment is considered crucial, since it provides information for the implementation of personnel function. The empirical studies conducted in corporate groups, within which at least one company is located in Poland, confirmed the critical significance of employee assessment systems in the process of human resources management in corporate groups. Parent companies, most often, retain their decision-making authority within the framework of the discussed process and introduce uniform employee assessment and personnel controlling systems to subsidiary companies. However, the instruments for employee assessment applied in corporate groups do not present such specificity.

Keywords: corporate groups, employee periodical assessment system, holding, human resources management

Procedia PDF Downloads 394
7142 Experimental Investigation on Activated Carbon Based Cryosorption Pump

Authors: K. B. Vinay, K. G. Vismay, S. Kasturirengan, G. A. Vivek

Abstract:

Cryosorption pumps are considered to be safe, quiet and ultra-high vacuum production pumps which have their application from Semiconductor industries to ITER [International Thermonuclear Experimental Reactor] units. The principle of physisorption of gases over highly porous materials like activated charcoal at cryogenic temperatures (below -1500°C) is involved in determining the pumping speed of gases like Helium, Hydrogen, Argon and Nitrogen. This paper aims at providing detailed overview of development of Cryosorption pump which is the modern ultra-high vacuum pump and characterization of different activated charcoal materials that optimizes the performance of the pump. Different grades of charcoal were tested in order to determine the pumping speed of the pump and were compared with commercially available Varian cryopanel. The results for bare panel, bare panel with adhesive, cryopanel with pellets, and cryopanel with granules were obtained and compared. The comparison showed that cryopanel adhered with small granules gave better pumping speeds than large sized pellets.

Keywords: adhesive, cryopanel, granules, pellets

Procedia PDF Downloads 393
7141 Low-Temperature Poly-Si Nanowire Junctionless Thin Film Transistors with Nickel Silicide

Authors: Yu-Hsien Lin, Yu-Ru Lin, Yung-Chun Wu

Abstract:

This work demonstrates the ultra-thin poly-Si (polycrystalline Silicon) nanowire junctionless thin film transistors (NWs JL-TFT) with nickel silicide contact. For nickel silicide film, this work designs to use two-step annealing to form ultra-thin, uniform and low sheet resistance (Rs) Ni silicide film. The NWs JL-TFT with nickel silicide contact exhibits the good electrical properties, including high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In addition, this work also compares the electrical characteristics of NWs JL-TFT with nickel silicide and non-silicide contact. Nickel silicide techniques are widely used for high-performance devices as the device scaling due to the source/drain sheet resistance issue. Therefore, the self-aligned silicide (salicide) technique is presented to reduce the series resistance of the device. Nickel silicide has several advantages including low-temperature process, low silicon consumption, no bridging failure property, smaller mechanical stress, and smaller contact resistance. The junctionless thin-film transistor (JL-TFT) is fabricated simply by heavily doping the channel and source/drain (S/D) regions simultaneously. Owing to the special doping profile, JL-TFT has some advantages such as lower thermal the budget which can integrate with high-k/metal-gate easier than conventional MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), longer effective channel length than conventional MOSFETs, and avoidance of complicated source/drain engineering. To solve JL-TFT has turn-off problem, JL-TFT needs ultra-thin body (UTB) structure to reach fully depleted channel region in off-state. On the other hand, the drive current (Iᴅ) is declined as transistor features are scaled. Therefore, this work demonstrates ultra thin poly-Si nanowire junctionless thin film transistors with nickel silicide contact. This work investigates the low-temperature formation of nickel silicide layer by physical-chemical deposition (PVD) of a 15nm Ni layer on the poly-Si substrate. Notably, this work designs to use two-step annealing to form ultrathin, uniform and low sheet resistance (Rs) Ni silicide film. The first step was promoted Ni diffusion through a thin interfacial amorphous layer. Then, the unreacted metal was lifted off after the first step. The second step was annealing for lower sheet resistance and firmly merged the phase.The ultra-thin poly-Si nanowire junctionless thin film transistors NWs JL-TFT with nickel silicide contact is demonstrated, which reveals high driving current (>10⁷ Å), subthreshold slope (186 mV/dec.), and low parasitic resistance. In silicide film analysis, the second step of annealing was applied to form lower sheet resistance and firmly merge the phase silicide film. In short, the NWs JL-TFT with nickel silicide contact has exhibited a competitive short-channel behavior and improved drive current.

Keywords: poly-Si, nanowire, junctionless, thin-film transistors, nickel silicide

Procedia PDF Downloads 214
7140 Grain Growth in Nanocrystalline and Ultra-Fine Grained Materials

Authors: Haiming Wen

Abstract:

Grain growth is an important and consequential phenomenon that generally occurs in the presence of thermal and/or stress/strain fields. Thermally activated grain growth has been extensively studied and similarly, there are numerous experimental and theoretical studies published describing stress-induced grain growth in single-phase materials. However, studies on grain growth during the simultaneous presence of an elevated temperature and an external stress are very limited, and moreover, grain growth phenomena in materials containing second-phase particles and solute segregation at GBs have received limited attention. This lecture reports on a study of grain growth in the presence of second-phase particles and solute/impurity segregation at grain boundaries (GBs) during high-temperature deformation of an ultra-fine grained (UFG) Al alloy synthesized via consolidation of mechanically milled powders. The mechanisms underlying the grain growth were identified as GB migration and grain rotation, which were accompanied by dynamic recovery and geometric dynamic recrystallization, while discontinuous dynamic recrystallization was not operative. A theoretical framework that incorporates the influence of second-phase particles and solute/impurity segregation at GBs on grain growth in presence of both elevated temperature and external stress is formulated and discussed. The effect of second-phase particles and solute/impurity segregation at GBs on GB migration and grain rotation was quantified using the proposed theoretical framework, indicating that both second-phase particles and solutes/impurities segregated GBs reduce the velocities of GB migration and grain rotation as compared to those in commercially pure Al. Our results suggest that grain growth predicted by the proposed theoretical framework is in agreement with experimental results. Hence, the developed theoretical framework can be applied to quantify grain growth in simultaneous presence of external stress, elevated temperature, GB segregation and second-phase particles, or in presence of one or more of the aforementioned factors.

Keywords: nanocrystalline materials, ultra-fine grained materials, grain growth, grain boundary migration, grain rotation

Procedia PDF Downloads 285
7139 Feasibility of a Biopolymer as Lightweight Aggregate in Perlite Concrete

Authors: Ali A. Sayadi, Thomas R. Neitzert, G. Charles Clifton

Abstract:

Lightweight concrete is being used in the construction industry as a building material in its own right. Ultra-lightweight concrete can be applied as a filler and support material for the manufacturing of composite building materials. This paper is about the development of a stable and reproducible ultra-lightweight concrete with the inclusion of poly-lactic acid (PLA) beads and assessing the feasibility of PLA as a lightweight aggregate that will deliver advantages such as a more eco-friendly concrete and a non-petroleum polymer aggregate. In total, sixty-three samples were prepared and the effectiveness of mineral admixture, curing conditions, water-cement ratio, PLA ratio, EPS ratio and perlite ratio on compressive strength of perlite concrete are studied. The results show that PLA particles are sensitive to alkali environment of cement paste and considerably shrank and lost their strength. A higher compressive strength and a lower density was observed when expanded polystyrene (EPS) particles replaced PLA beads. In addition, a set of equations is proposed to estimate the water-cement ratio, cement content and compressive strength of perlite concrete.

Keywords: perlite concrete, poly-lactic acid (pla), expanded polystyrene (eps), concrete

Procedia PDF Downloads 280
7138 Use of Anti-Stick to Reduce Bitterness in Ultra Filtrated Chees-es(Single Packaged)

Authors: B. Khorram, M. Taslikh, R. Sattarzadeh, M. Ghazanfari

Abstract:

Bitterness is one of the most important problems in cheese processing industry all over the world. There are several reasons that bitterness may develop in cheese. With a few exceptions bitterness is generally associated with proteolysis. In this investigation, anti-stick as a neutral substance in proteolysis were considered and studied for reducing the problem. This vast survey was conducted in a big cheese production factory (in Neyshabur) and in the same procedure anti-stick as interested factor in cheeses packaging compared to standard cheeses production, one line productions (65200 packs with anti-stick were tested by 2953 persons for bitterness and another line was included the same procedure with standard cheese. In this investigate: 83% of standard packaging cheeses, compared with only28% of consumers cheese with anti-stick which confirmed bitterness. Although bitterness is generally associated with proteolysis and Microbial factors, Somatic cell, Starters play important role in generating bitterness in ultra filtrated cheeses, but based on the results the other factors such as anti-stick in packaging can be effective methods for reducing and removing unfavorable bitterness in cheese production.

Keywords: bitterness, uf cheese, anti-stick, single packaged

Procedia PDF Downloads 445
7137 Ultra-Fast Growth of ZnO Nanorods from Aqueous Solution: Technology and Applications

Authors: Bartlomiej S. Witkowski, Lukasz Wachnicki, Sylwia Gieraltowska, Rafal Pietruszka, Marek Godlewski

Abstract:

Zinc oxide is extensively studied II-VI semiconductor with a direct energy gap of about 3.37 eV at room temperature and high transparency in visible light spectral region. Due to these properties, ZnO is an attractive material for applications in photovoltaic, electronic and optoelectronic devices. ZnO nanorods, due to a well-developed surface, have potential of applications in sensor technology and photovoltaics. In this work we present a new inexpensive method of the ultra-fast growth of ZnO nanorods from the aqueous solution. This environment friendly and fully reproducible method allows growth of nanorods in few minutes time on various substrates, without any catalyst or complexing agent. Growth temperature does not exceed 50ºC and growth can be performed at atmospheric pressure. The method is characterized by simplicity and allows regulation of size of the ZnO nanorods in a large extent. Moreover the method is also very safe, it requires organic, non-toxic and low-price precursors. The growth can be performed on almost any type of substrate through the homo-nucleation as well as hetero-nucleation. Moreover, received nanorods are characterized by a very high quality - they are monocrystalline as confirmed by XRD and transmission electron microscopy. Importantly oxygen vacancies are not found in the photoluminescence measurements. First results for obtained by us ZnO nanorods in sensor applications are very promising. Resistance UV sensor, based on ZnO nanorods grown on a quartz substrates shows high sensitivity of 20 mW/m2 (2 μW/cm2) for point contacts, especially that the results are obtained for the nanorods array, not for a single nanorod. UV light (below 400 nm of wavelength) generates electron-hole pairs, which results in a removal from the surfaces of the water vapor and hydroxyl groups. This reduces the depletion layer in nanorods, and thus lowers the resistance of the structure. The so-obtained sensor works at room temperature and does not need the annealing to reset to initial state. Details of the technology and the first sensors results will be presented. The obtained ZnO nanorods are also applied in simple-architecture photovoltaic cells (efficiency over 12%) in conjunction with low-price Si substrates and high-sensitive photoresistors. Details informations about technology and applications will be presented.

Keywords: hydrothermal method, photoresistor, photovoltaic cells, ZnO nanorods

Procedia PDF Downloads 410
7136 A Novel Design of Inset Feed Patch Antenna for Ultra Wide Band Application

Authors: Priyanka Aggarwal, Priyanka Mangla

Abstract:

This work has focused on the aspect of UWB antenna design, which is very suitable for portable UWB applications. The design of new UWB antenna faces some challenges. The antenna should be compact, preferably conformal, and low cost for manufacture, and have good electrical performance, such as good matching, directional radiation performance over a wide band, good time response, etc. Keeping these goals in mind a compact and directional compact open-slot antenna was built. The antenna radiating structure is in the form of two exponentially tapered arms that lie on the opposite sides of the substrate. The antenna operates over the frequency band from 2.95 GHz to more than 12.1 GHz. It exhibits a directive radiation performance with a peak gain which is between 5.4 dBi and 8.3 dBi in the specified band. The antenna has linear phase response over the entire UWB frequency range and hence constant group delay which is vital for transmission and reception of sub-nanosecond pulses. Due to its planar profile, physically compact size, wide impedance bandwidth, directive performance over a wide bandwidth proposed antenna is a good candidate for portable UWB applications and other UWB integrated circuits.

Keywords: inset feed patch antenna, ultra wide band, radiation performance, geometry, antenna

Procedia PDF Downloads 411
7135 Thermal Property of Multi-Walled-Carbon-Nanotube Reinforced Epoxy Composites

Authors: Min Ye Koo, Gyo Woo Lee

Abstract:

In this study, epoxy composite specimens reinforced with multi-walled carbon nanotube filler were fabricated using shear mixer and ultra-sonication processor. The mechanical and thermal properties of the fabricated specimens were measured and evaluated. From the electron microscope images and the results from the measurements of tensile strengths, the specimens having 0.6 wt% nanotube content show better dispersion and higher strength than those of the other specimens. The Young’s moduli of the specimens increased as the contents of the nanotube filler in the matrix were increased. The specimen having a 0.6 wt% nanotube filler content showed higher thermal conductivity than that of the other specimens. While, in the measurement of thermal expansion, specimens having 0.4 and 0.6 wt% filler contents showed a lower value of thermal expansion than that of the other specimens. On the basis of the measured and evaluated properties of the composites, we believe that the simple and time-saving fabrication process used in this study was sufficient to obtain improved properties of the specimens.

Keywords: carbon nanotube filler, epoxy composite, ultra-sonication, shear mixer, mechanical property, thermal property

Procedia PDF Downloads 345
7134 Metal-Organic Chemical Vapor Deposition (MOCVD) Process Investigation for Co Thin Film as a TSV Alternative Seed Layer

Authors: Sajjad Esmaeili, Robert Krause, Lukas Gerlich, Alireza Mohammadian Kia, Benjamin Uhlig

Abstract:

This investigation aims to develop the feasible and qualitative process parameters for the thin films fabrication into ultra-large through-silicon-vias (TSVs) as vertical interconnections. The focus of the study is on TSV metallization and its challenges employing new materials for the purpose of rapid signal propagation in the microsystems technology. Cobalt metal-organic chemical vapor deposition (Co-MOCVD) process enables manufacturing an adhesive and excellent conformal ultra-thin film all the way through TSVs in comparison with the conventional non-conformal physical vapor deposition (PVD) process of copper (Cu) seed layer. Therefore, this process provides a Cu seed-free layer which is capable of direct Cu electrochemical deposition (Cu-ECD) on top of it. The main challenge of this metallization module is to achieve the proper alternative seed layer with less roughness, sheet resistance and granular organic contamination (e.g. carbon) which intensify the Co corrosion under the influence of Cu electrolyte.

Keywords: Cobalt MOCVD, direct Cu electrochemical deposition (ECD), metallization technology, through-silicon-via (TSV)

Procedia PDF Downloads 127
7133 Molecular Dynamics Simulation Studies of Thermal Effects Created by High-Intensity, Ultra-Short Pulses Induced Cell Membrane Electroporation

Authors: Jiahui Song

Abstract:

The use of electric fields with high intensity (~ 100kV/cm or higher) and ultra short pulse durations (nanosecond range) has been a recent development. Most of the studies of electroporation have ignored possible thermal effects because of the small duration of the applied voltage pulses. However, it has been predicted membrane temperature gradients ranging from 0.2×109 to 109 K/m. This research focuses on thermal effects that drive for electroporative enhancements, even though the actual temperature values might not have changed appreciably from their equilibrium levels. The dynamics of pore formation with the application of an externally applied electric field is studied on the basis of molecular dynamics (MD) simulations using the GROMACS package. MD simulations of a lipid layer with constant electric field strength of 0.5 V/nm at 25 °C and 47 °C are implemented to simulate the appropriate thermal effects. The GROMACS provides the force fields for the lipid membranes, which is taken to comprise of dipalmitoyl-phosphatidyl-choline (DPPC) molecules. The water model mimicks the aqueous environment surrounding the membrane. Velocities of water and membrane molecules are generated randomly at each simulation run according to a Maxwellian distribution. The high background electric field is typically used in MD simulations to probe electroporation. It serves as an accelerated test of the pore formation process since low electric fields would take inordinately long simulation time. MD simulation shows no pore is formed in a 1-ns snapshot for a DPPC membrane set at a temperature of 25°C after a 0.5 V/nm electric field is applied. A nano-sized pore is clearly seen in a 0.75-ns snapshot on the same geometry, but with the membrane surfaces kept at temperatures of 47°C. And the pore increases at 1 ns. The MD simulation results suggest the possibility that the increase in temperature can result in different degrees of electrically stimulated bio-effects. The results points to the role of thermal effects in facilitating and accelerating the electroporation process.

Keywords: high-intensity, ultra-short, electroporation, thermal effects, molecular dynamics

Procedia PDF Downloads 23
7132 Identifying the Traditional Color Scheme in Decorative Patterns Used by the Bahnar Ethnic Group in the Central Highlands of Vietnam

Authors: Nguyen Viet Tan

Abstract:

The Bahnar is one of 11 indigenous groups living in the Central Highlands of Vietnam. It is one among the four most popular groups in this area, including the Mnong who speak the same language of Mon Khmer family, while both groups of the Jrai and the Rhade belong to the Malayo-Polynesian language family. These groups once captured fertile plateaus, left their cultural and artistic heritage which affected the remaining small groups. Despite the difference in ethnic origins, these groups seem to share similar beliefs, customs and related folk arts after a very long time living beside each other. However, through an in-depth study, this paper points out the fact that the decorative patterns used by the Bahnar are different from the other ethnic groups, especially in color. Based on historical materials from the local museums and some studies in 1980s when all of the ethnic groups in this area had still lived in self-sufficient condition, this paper characterizes the traditional color scheme used by the Bahnar and identifies the difference in decorative motifs of this group compared to the others by pointing out they do not use green in their usual decorative patterns. Moreover, combined with some field surveys recently, through comparative analysis, it also discovers stylistic variations of these patterns in the process of cultural exchange with the other ethnic groups, both in and out of the region, in modern living conditions. This study helps to preserve and promote the traditional values and cultural identity of the Bahnar people in the Central Highlands of Vietnam, avoiding the fusion of styles among groups during the cultural exchange.

Keywords: Bahnar ethnic group, decorative patterns, the central highlands of Vietnam, the traditional color scheme

Procedia PDF Downloads 97
7131 Effect of Fenugreek Seed with Aerobic Exercise Training on Insulin Resistance in Women with Type 2 Diabetes

Authors: M. Nasiri

Abstract:

Aim: Considering the hypoglisimic ad hipolipidimic effect of the fenugreek seed and aerobic exercise training, this study was conducted to evaluate the effect of fenugreek and aerobic exercise training on insulin resistance in women with type 2 diabetes. Methodology: 32 patients with type II diabetes were selected and randomly divided into four groups: control, fenugreek, training and fenugreek - training. Fenugreek groups used 10 grams of fenugreek seeds daily for eight weeks on two occasions before noon and evening meal. Training of groups is also performed a regular program of aerobic exercise 65-55% of maximum heart rate (4 days per week).Two days before and after the training period, blood samples were taken from their brachial veins in a fasting state (12 hours prior to the test) in a sitting position. The data was analyzed used of t-independent and ANOVA at a significance level of α < 0.05. Results: Intra-group changes in all experimental groups showed that significant decrease insulin resistance, and the difference between groups showed significant difference between the groups of fenugreek - training than other groups there. Conclusions: According to the research findings to fenugreek combined with aerobic exercise more beneficial effect on the inhibition of insulin resistance in women with diabetes are recommended to them.

Keywords: fenugreek, training, insulin resistance, diabetes

Procedia PDF Downloads 425
7130 Shear Strength Evaluation of Ultra-High-Performance Concrete Flexural Members Using Adaptive Neuro-Fuzzy System

Authors: Minsu Kim, Hae-Chang Cho, Jae Hoon Chung, Inwook Heo, Kang Su Kim

Abstract:

For safe design of the UHPC flexural members, accurate estimations of their shear strengths are very important. However, since the shear strengths are significantly affected by various factors such as tensile strength of concrete, shear span to depth ratio, volume ratio of steel fiber, and steel fiber factor, the accurate estimations of their shear strengths are very challenging. In this study, therefore, the Adaptive Neuro-Fuzzy System (ANFIS), which has been widely used to solve many complex problems in engineering fields, was introduced to estimate the shear strengths of UHPC flexural members. A total of 32 experimental results has been collected from previous studies for training of the ANFIS algorithm, and the well-trained ANFIS algorithm provided good estimations on the shear strengths of the UHPC test specimens. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(NRF-2016R1A2B2010277).

Keywords: ultra-high-performance concrete, ANFIS, shear strength, flexural member

Procedia PDF Downloads 165
7129 Ultra-Wideband (45-50 GHz) mm-Wave Substrate Integrated Waveguide Cavity Slots Antenna for Future Satellite Communications

Authors: Najib Al-Fadhali, Huda Majid

Abstract:

In this article, a substrate integrated waveguide cavity slot antenna was designed using a computer simulation technology software tool to address the specific design challenges for millimeter-wave communications posed by future satellite communications. Due to the symmetrical structure, a high-order mode is generated in SIW, which yields high gain and high efficiency with a compact feed structure. The antenna has dimensions of 20 mm x 20 mm x 1.34 mm. The proposed antenna bandwidth ranges from 45 GHz to 50 GHz, covering a Q-band application such as satellite communication. Antenna efficiency is above 80% over the operational frequency range. The gain of the antenna is above 9 dB with a peak value of 9.4 dB at 47.5 GHz. The proposed antenna is suitable for various millimeter-wave applications such as sensing, body imaging, indoor scenarios, new generations of wireless networks, and future satellite communications. The simulated results show that the SIW antenna resonates throughout the bands of 45 to 50 GHz, making this new antenna cover all applications within this range. The reflection coefficients are below 10 dB in most ranges from 45 to 50 GHz. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for future satellite communications.

Keywords: ultra-wideband, Q-band, SIW, mm-wave, satellite communications

Procedia PDF Downloads 52
7128 Molecular Modeling of 17-Picolyl and 17-Picolinylidene Androstane Derivatives with Anticancer Activity

Authors: Sanja Podunavac-Kuzmanović, Strahinja Kovačević, Lidija Jevrić, Evgenija Djurendić, Jovana Ajduković

Abstract:

In the present study, the molecular modeling of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives whit significant anticancer activity was carried out. Modelling of studied compounds was performed by CS ChemBioDraw Ultra v12.0 program for drawing 2D molecular structures and CS ChemBio3D Ultra v12.0 for 3D molecular modelling. The obtained 3D structures were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. Full geometry optimization was done by the Austin Model 1 (AM1) until the root mean square (RMS) gradient reached a value smaller than 0.0001 kcal/Åmol using Molecular Orbital Package (MOPAC) program. The obtained physicochemical, lipophilicity and topological descriptors were used for analysis of molecular similarities and dissimilarities applying suitable chemometric methods (principal component analysis and cluster analysis). These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1306.

Keywords: androstane derivatives, anticancer activity, chemometrics, molecular descriptors

Procedia PDF Downloads 328
7127 The Pile Group Efficiency for Different Embedment Lengths in Dry Sand

Authors: Mohamed M. Shahin

Abstract:

This study investigated the design of the pile foundation to support heavy structures-especially bridges for highways-in the Sahara, which contains many dunes of medium dense sand in different levels, where the foundation is supposed to be piles. The base resistance of smooth model pile groups in sand under static loading is investigated experimentally in a pile soil test apparatus. Improvement were made to the sand around the piles in order to increase the shaft resistance of the single pile and the pile groups, and also base resistance especially for the central pile in pile groups. The study outlines the behaviour of a single-pile, 4-, 5-, and 9- pile groups arranged in a doubly symmetric [square] layout with different embedment lengths and pile spacing in loose dry sand [normal] and dense dry sand [compacted] around the piles. This study evaluate the variation of the magnitude and the proportion of end bearing capacity of individual piles in different pile groups. Also to investigate the magnitude of the efficiency coefficient in the case of different pile groups.

Keywords: pile group, base resistance, efficiency coefficient, pile spacing, pile-soil interaction

Procedia PDF Downloads 331
7126 The Simulation of Superfine Animal Fibre Fractionation: The Strength Variation of Fibre

Authors: Sepehr Moradi

Abstract:

This study investigates the contribution of individual Australian Superfine Merino Wool (ASFW) and Inner Mongolia Cashmere (IMC) fibres strength behaviour to the breaking force variation (CVBF) and minimum fibre diameter (CVₘFD) induced by actual single fibre lengths and the combination of length and diameter groups. Mid-side samples were selected for the ASFW (n = 919) and IMC (n = 691) since it is assumed to represent the average of the whole fleece. The average (LₘFD) varied for ASFW and IMC by 36.6 % and 33.3 % from shortest to longest actual single fibre length and -21.2 % and -21.7 % between longest-coarsest and shortest-finest groups, respectively. The tensile properties of single animal fibres were characterised using Single Fibre Analyser (SIFAN 4). After normalising for diversity in fibre diameter at the position of breakage, the parameters, which explain the strength behaviour within actual fibre lengths and combination of length-diameter groups, were the Intrinsic Fibre Strength (IFS) (MPa), Min IFS (MPa), Max IFS (MPa) and Breaking force (BF) (cN). The average strength of single fibres varied extensively within actual length groups and within a combination of length-diameter groups. IFS ranged for ASFW and IMC from 419 to 355 MPa (-15.2 % range) and 353 to 319 (-9.6 % range) and BF from 2.2 to 3.6 (63.6 % range) and 3.2 to 5.3 cN (65.6 % range) from shortest to longest groups, respectively. Single fibre properties showed no differences within actual length groups and within a combination of length-diameter groups, or was there a strong interaction between the strength of single fibre (P > 0.05) within remaining and removing length-diameter groups. Longer-coarser fibre fractionation had a significant effect on BF and IFS and all of the length groups showed a considerable variance in single fibre strength that is accounted for by diversity in the diameter variation along the fibre. There are many concepts for the improvement of the stress-strain properties of animal fibres as a means of raising a single fibre strength by simultaneous changes in fibre length and diameter. Fibre fractionation over a given length directly for single fibre strength or using the variation traits of fibre diameter is an important process used to increase the strength of the single fibre.

Keywords: single animal fibre fractionation, actual length groups, strength variation, length-diameter groups, diameter variation along fibre

Procedia PDF Downloads 168
7125 Substantiate the Effects of Reactive Dyes and Aloe Vera on the Ultra Violet Protective Properties on Cotton Woven and Knitted Fabrics

Authors: Neha Singh

Abstract:

The incidence of skin cancer has been rising worldwide due to excessive exposure to sun light. Climatic changes and depletion of ozone layer allow the easy entry of UV rays on earth, resulting skin damages such as sunburn, premature skin ageing, allergies and skin cancer. Researches have suggested many modes for protection of human skin against ultraviolet radiation; avoidance to outdoor activities, using textiles for covering the skin, sunscreen and sun glasses. However, this paper gives an insight about how textile material specially woven and knitted cotton can be efficiently utilized for protecting human skin from the harmful ultraviolet radiations by combining reactive dyes with Aloe Vera. Selection of the fabric was based on their utility and suitability as per the climate condition of the country for the upper and lower garment. A standard dyeing process was used, and Aloe Vera molecules were applied by in-micro encapsulation technique. After combining vat dyes with Aloe Vera excellent UPF (Ultra violet Protective Factor) was observed. There is a significant change in the UPF of vat dyed cotton fabric after treatment with Aloe Vera.

Keywords: UV protection, aloe vera, protective clothing, reactive dyes, cotton, woven and knits

Procedia PDF Downloads 221
7124 Observations of Magnetospheric Ulf Waves in Connection to the Kelvin-Helmholtz Instability at Mercury

Authors: Elisabet Liljeblad, Tomas Karlsson, Torbjorn Sundberg, Anita Kullen

Abstract:

The magnetospheric magnetic field data from the MESSENGER spacecraft is investigated to establish the presence of ultra-low frequency (ULF) waves in connection to 131 previously observed nonlinear Kelvin-Helmholtz waves (KHWs) at Mercury. Distinct ULF signatures are detected in 44 out of the 131 magnetospheric traversals prior to or after observing a KHW. In particular, 39 of these 44 ULF events are highly coherent at the frequency of maximum power spectral density. The waves observed at the dayside, which appears mainly at the duskside and naturally following the KHW occurrence asymmetry, are significantly different to the events behind the dawn-dusk terminator and have the following distinct wave characteristics: they oscillate clearly in the perpendicular (azimuthal) direction to the mean magnetic field with a wave normal angle more in the parallel than the perpendicular direction, increase in absolute ellipticity with distance from noon, are almost exclusively right-hand polarized, and are observed mainly for frequencies in the range 0.02-0.04 Hz. These results indicate that the dayside ULF waves are likely to shear Alfvén waves driven by KHWs at the magnetopause, which in turn manifests the importance of the Kelvin-Helmholtz instability in terms of mass transport throughout the Mercury magnetosphere.

Keywords: ultra-low frequency waves, kelvin-Helmholtz instability, magnetospheric processes, mercury, messenger, energy and momentum transfer in planetary environments

Procedia PDF Downloads 212
7123 An UHPLC (Ultra High Performance Liquid Chromatography) Method for the Simultaneous Determination of Norfloxacin, Metronidazole, and Tinidazole Using Monolithic Column-Stability Indicating Application

Authors: Asmaa Mandour, Ramzia El-Bagary, Asmaa El-Zaher, Ehab Elkady

Abstract:

Background: An UHPLC (ultra high performance liquid chromatography) method for the simultaneous determination of norfloxacin (NOR), metronidazole (MET) and tinidazole (TNZ) using monolithic column is presented. Purpose: The method is considered an environmentally friendly method with relatively low organic composition of the mobile phase. Methods: The chromatographic separation was performed using Phenomenex® Onyex Monolithic C18 (50mmx 20mm) column. An elution program of mobile phase consisted of 0.5% aqueous phosphoric acid : methanol (85:15, v/v). Where elution of all drugs was completed within 3.5 min with 1µL injection volume. The UHPLC method was applied for the stability indication of NOR in the presence of its acid degradation product ND. Results: Retention times were 0.69, 1.19 and 3.23 min for MET, TNZ and NOR, respectively. While ND retention time was 1.06 min. Linearity, accuracy, and precision were acceptable over the concentration range of 5-50µg mL-1for all drugs. Conclusions: The method is simple, sensitive and suitable for the routine quality control and dosage form assay of the three drugs and can also be used for the stability indication of NOR in the presence of its acid degradation product.

Keywords: antibacterial, monolithic cilumn, simultaneous determination, UHPLC

Procedia PDF Downloads 213