Search results for: tyrosine kinases
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 103

Search results for: tyrosine kinases

13 Treatment of Papillary Thyroid Carcinoma Metastasis to the Sternum: A Case Report

Authors: Geliashvili T. M., Tyulyandina A. S., Valiev A. K., Kononets P. V., Kharatishvili T. K., Salkov A. G., Pronin A. I., Gadzhieva E. H., Parnas A. V., Ilyakov V. S.

Abstract:

Aim/Introduction: Metastasis (Mts) to the sternum, while extremely rare in differentiated thyroid cancer (DTC) (1), requires a personalized, multidisciplinary treatment approach. In aggressively growing Mts to the sternum, which rapidly become unresectable, a comprehensive therapeutic and diagnostic approach is particularly important. Materials and methods: We present a clinical case of solitary Mts to the sternum as first manifestation of a papillary thyroid microcarcinoma in a 55-year-old man. Results: 18F-FDG PET/CT after thyroidectomy confirmed the solitary Mts to the sternum with extremely high FDG uptake (SUVmax=71,1), which predicted its radioiodine-refractory (RIR). Due to close attachment to the mediastinum and rapid growth, Mts was considered unresectable. During the next three months, the patient received targeted therapy with the tyrosine kinase inhibitor (TKI) Lenvatinib 24 mg per day. 1st course of radioiodine therapy (RIT) 6 GBq was also performed, the results of which confirmed the RIR of the tumor process. As a result of systemic therapy (targeted therapy combined with RIT and suppressive hormone therapy with L-thyroxine), there was a significant biochemical response (decrease of serum thyroglobulin level from 50,000 ng/ml to 550 ng/ml) and a partial response with decrease of tumor size (from 80x69x123 mm to 65x50x112 mm) and decrease of FDG accumulation (SUVmax from 71.1 to 63). All of this made possible to perform surgical treatment of Mts - sternal extirpation with its replacement by an individual titanium implant. At the control examination, the stimulated thyroglobulin level was only 134 ng/ml, and PET/CT revealed postoperative areas of 18F-FDG metabolism in the removed sternal Mts. Also, 18F-FDG PET/CT in the early (metabolic) stage revealed two new bone Mts (in the area of L3 SUVmax=17,32 and right iliac bone SUVmax=13,73), which, as well as the removed sternal Mts, appeared to be RIRs at the 2nd course of RIT 6 GBq. Subsequently, on 02.2022, external beam radiation therapy (EBRT) was performed on the newly identified oligometastatic bone foci. At present, the patient is under dynamic monitoring and in the process of suppressive hormone therapy with L-thyroxine. Conclusion: Thus, only due to the early prescription of targeted TKI therapy was it possible to perform surgical resection of Mts to the sternum, thereby improve the patient's quality of life and preserve the possibility of radical treatment in case of oligometastatic disease progression.

Keywords: differentiated thyroid cancer, metastasis to the sternum, radioiodine therapy, radioiodine-refractory cancer, targeted therapy, lenvatinib

Procedia PDF Downloads 81
12 Risk of Mortality and Spectrum of Second Primary Malignancies in Mantle Cell Lymphoma before and after Ibrutinib Approval: A Population-Based Study

Authors: Karthik Chamari, Vasudha Rudraraju, Gaurav Chaudhari

Abstract:

Background: Mantle cell lymphoma (MCL) is one of the mature B cell non-Hodgkin lymphomas (NHL). The course of MCL is moderately aggressive and variable, and it has median overall survival of 8 to 10 years. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, was approved by the United States (US) Food and Drug Administration in November of 2013 for the treatment of MCL patients who have received at least one prior therapy. In this study, we aimed to evaluate whether there has been a change in survival and patterns of second primary malignancies (SPMs) among the MCL population in the US after ibrutinib approval. Methods: Using the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)-18, we conducted a retrospective study with patients diagnosed with MCL (ICD-0-3 code 9673/3) between 2007 and 2018. We divided patients into two six-year cohorts, pre-ibrutinib approval (2007-2012) and post-ibrutinib approval (2013-2018), and compared relative survival rates (RSRs) and standardized incidence ratios (SIRs) of SPMs between cohorts. Results: We included 9,257 patients diagnosed with MCL between 2007 and 2018 in the SEER-18 survival and SIR registries. Of these, 4,205 (45%) patients were included in the pre-ibrutinib cohort, and 5052 (55%) patients were included in the post-ibrutinib cohort. The median follow-up duration for the pre-ibrutinib cohort was 54 months (range 0 to 143 months), and the post-ibrutinib cohort was 20 months (range 0 to 71 months). There was a significant difference in the five-year RSRs between pre-ibrutinib and post-ibrutinib cohorts (57.5% vs. 62.6%, p < 0.005). Out of the 9,257 patients diagnosed with MCL, 920 developed SPMs. A higher proportion of SPMs occurred in the post-ibrutinib cohort (63%) when compared with the pre-ibrutinib cohort (37%). Non-hematological malignancies comprised most of all SPMs. A higher incidence of non-hematological malignancies occurred in the post-ibrutinib cohort (SIR 1.42, 95% CI 1.29 to 1.56) when compared with the pre-ibrutinib cohort (SIR 1.14, 95% CI 1 to 1.3). There was a statistically significant increase in the incidence of cancers of the respiratory tract (SIR 1.77, 95% CI 1.43 to 2.18), urinary tract (SIR 1.61, 95% CI 1.23 to 2.06) when compared with other non-hematological malignancies in post-ibrutinib cohort. Conclusions: Our study results suggest the relative survival rates have increased since the approval of ibrutinib for mantle cell lymphoma patients. Additionally, for some unclear reasons, the incidence of SPM’s (non-hematological malignancies), mainly cancers of the respiratory tract, urinary tract, have increased in the six years following the approval of ibrutinib. Further studies should be conducted to determine the cause of these findings.

Keywords: mantle cell lymphoma, Ibrutinib, relative survival analysis, secondary primary cancers

Procedia PDF Downloads 151
11 Efficacy and Safety of Updated Target Therapies for Treatment of Platinum-Resistant Recurrent Ovarian Cancer

Authors: John Hang Leung, Shyh-Yau Wang, Hei-Tung Yip, Fion, Ho Tsung-chin, Agnes LF Chan

Abstract:

Objectives: Platinum-resistant ovarian cancer has a short overall survival of 9–12 months and limited treatment options. The combination of immunotherapy and targeted therapy appears to be a promising treatment option for patients with ovarian cancer, particularly to patients with platinum-resistant recurrent ovarian cancer (PRrOC). However, there are no direct head-to-head clinical trials comparing their efficacy and toxicity. We, therefore, used a network to directly and indirectly compare seven newer immunotherapies or targeted therapies combined with chemotherapy in platinum-resistant relapsed ovarian cancer, including antibody-drug conjugates, PD-1 (Programmed death-1) and PD-L1 (Programmed death-ligand 1), PARP (Poly ADP-ribose polymerase) inhibitors, TKIs (Tyrosine kinase inhibitors), and antiangiogenic agents. Methods: We searched PubMed (Public/Publisher MEDLINE), EMBASE (Excerpta Medica Database), and the Cochrane Library electronic databases for phase II and III trials involving PRrOC patients treated with immunotherapy or targeted therapy plus chemotherapy. The quality of included trials was assessed using the GRADE method. The primary outcomes compared were progression-free survival, the secondary outcomes were overall survival and safety. Results: Seven randomized controlled trials involving a total of 2058 PRrOC patients were included in this analysis. Bevacizumab plus chemotherapy showed statistically significant differences in PFS (Progression-free survival) but not OS (Overall survival) for all interested targets and immunotherapy regimens; however, according to the heatmap analysis, bevacizumab plus chemotherapy had a statistically significant risk of ≥grade 3 SAEs (Severe adverse effects), particularly hematological severe adverse events (neutropenia, anemia, leukopenia, and thrombocytopenia). Conclusions: Bevacizumab plus chemotherapy resulted in better PFS as compared with all interested regimens for the treatment of PRrOC. However, statistical differences in SAEs as bevacizumab plus chemotherapy is associated with a greater risk for hematological SAE.

Keywords: platinum-resistant recurrent ovarian cancer, network meta-analysis, immune checkpoint inhibitors, target therapy, antiangiogenic agents

Procedia PDF Downloads 47
10 Profiling of the Cell-Cycle Related Genes in Response to Efavirenz, a Non-Nucleoside Reverse Transcriptase Inhibitor in Human Lung Cancer

Authors: Rahaba Marima, Clement Penny

Abstract:

The Health-related quality of life (HRQoL) for HIV positive patients has improved since the introduction of the highly active antiretroviral treatment (HAART). However, in the present HAART era, HIV co-morbidities such as lung cancer, a non-AIDS (NAIDS) defining cancer have been documented to be on the rise. Under normal physiological conditions, cells grow, repair and proliferate through the cell-cycle as cellular homeostasis is important in the maintenance and proper regulation of tissues and organs. Contrarily, the deregulation of the cell-cycle is a hallmark of cancer, including lung cancer. The association between lung cancer and the use of HAART components such as Efavirenz (EFV) is poorly understood. This study aimed at elucidating the effects of EFV on the cell-cycle genes’ expression in lung cancer. For this purpose, the human cell-cycle gene array composed of 84 genes was evaluated on both normal lung fibroblasts (MRC-5) cells and adenocarcinoma (A549) lung cells, in response to 13µM EFV or 0.01% vehicle. The ±2 up or down fold change was used as a basis of target selection, with p < 0.05. Additionally, RT-qPCR was done to validate the gene array results. Next, In-silico bio-informatics tools, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), Reactome, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Ingenuity Pathway Analysis (IPA) were used for gene/gene interaction studies as well as to map the molecular and biological pathways influenced by the identified targets. Interestingly, the DNA damage response (DDR) pathway genes such as p53, Ataxia telangiectasia mutated and Rad3 related (ATR), Growth arrest and DNA damage inducible alpha (GADD45A), HUS1 checkpoint homolog (HUS1) and Role of radiation (RAD) genes were shown to be upregulated following EFV treatment, as revealed by STRING analysis. Additionally, functional enrichment analysis by the KEGG pathway revealed that most of the differentially expressed gene targets function at the cell-cycle checkpoint such as p21, Aurora kinase B (AURKB) and Mitotic Arrest Deficient-Like 2 (MAD2L2). Core analysis by IPA revealed that p53 downstream targets such as survivin, Bcl2, and cyclin/cyclin dependent kinases (CDKs) complexes are down-regulated, following exposure to EFV. Furthermore, Reactome analysis showed a significant increase in cellular response to stress genes, DNA repair genes, and apoptosis genes, as observed in both normal and cancerous cells. These findings implicate the genotoxic effects of EFV on lung cells, provoking the DDR pathway. Notably, the constitutive expression of this pathway (DDR) often leads to uncontrolled cell proliferation and eventually tumourigenesis, which could be the attribute of HAART components’ (such as EFV) effect on human cancers. Targeting the cell-cycle and its regulation holds a promising therapeutic intervention to the potential HAART associated carcinogenesis, particularly lung cancer.

Keywords: cell-cycle, DNA damage response, Efavirenz, lung cancer

Procedia PDF Downloads 119
9 Zoledronic Acid with Neoadjuvant Chemotherapy in Advanced Breast Cancer Prospective Study 2011–2014

Authors: S. Sakhri

Abstract:

Background: The use of Zoledronic acid (ZA) is an established place in the treatment of malignant tumors with a predilection for the skeleton of interest (in particular metastasis). Although the main target of Zoledronic acid was osteoclasts, there are preclinical data suggest that Zoledronic acid may have an antitumor effect on cells other than osteoclasts, including tumor cells. Antitumor activity, including the inhibition of tumor cell growth and the induction of apoptosis of tumor cells, inhibition of tumor cell adhesion and invasion, and anti-angiogenic effects have been demonstrated. Methods. From (2012 to 2014), 438 patients were included respondents the inclusion criteria, respectively. This is a prospective study over a 4 year period. Of all patients (N=438), 432 received neoadjuvant chemotherapy with Zoledronic acid. The primary end point was the pathologic complete response in advancer breast cancer stage. The secondary end point is to evaluate Clinical response according to RECIST criteria; estimate the bone density before and at the end of chemotherapy in women with locally advanced breast cancer, Toxicity Evaluation and Overall survival using Kaplan-Meier and log test. Result: The Objective response rate was 97% after (C4) with 3% stabilizations and 99, 3% of which 0.7% C8 after stabilization. The clinical complete response was 28% after C4 respectively, and 46.8% after C8, the pathologic complete response rate was 40.13% according to the classification Sataloff. We observed that the pathologic complete response rate was the most raised in the group including Her2 (luminal Her2 and Her2) the lowest in the triple negative group as classified by Sataloff. We found that the pCR is significantly higher in the age group (35-50 years) with 53.17%. Those who have more than 50 years in 2nd place with 27.7% and the lower in young woman 35 years pCR was 19%, not statistically significant, -The pCR was also in favor of the menopausal group in 51, 4%, and 48, 55% for non-menopausal women. The average duration of overall survival was also significantly in the subgroup (Luminal -Her2, Her2) compared with triple negative. It is 47.18 months in the luminal group vs. 38.95 in the triple negative group. -Was observed in our study a difference in quality of life between (C1) was the admission of the patient, and after (C8), we found an increase in general signs and a deterioration in the psychological state C1, in contrast to the C8 these general signs and mental status improves, up to 12, and 24 months. Conclusion The results of this study suggest that the addition of ZA to néoadjuvant CT has potential anti-cancer benefit in patients (Luminal -Her2, Her2) compared with triple negative with or without menopause status.

Keywords: HER2+, RH+, breast cancer, tyrosine kinase

Procedia PDF Downloads 189
8 Capability of a Single Antigen to Induce Both Protective and Disease Enhancing Antibody: An Obstacle in the Creation of Vaccines and Passive Immunotherapies

Authors: Parul Kulshreshtha, Subrata Sinha, Rakesh Bhatnagar

Abstract:

This study was conducted by taking B. anthracis as a model pathogen. On infecting a host, B. anthracis secretes three proteins, namely, protective antigen (PA, 83kDa), edema factor (EF, 89 kDa) and lethal factor (LF, 90 kDa). These three proteins are the components of two anthrax toxins. PA binds to the cell surface receptors, namely, tumor endothelial marker (TEM) 8 and capillary morphogenesis protein (CMG) 2. TEM8 and CMG2 interact with LDL-receptor related protein (LRP) 6 for endocytosis of EF and LF. On entering the cell, EF acts as a calmodulin-dependent adenylate cyclase that causes a prolonged increase of cytosolic cyclic adenosine monophosphate (cAMP). LF is a metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MAPKK/MEK) close to their N-terminus. By secreting these two toxins, B.anthracis ascertains death of the host. Once the systemic levels of the toxins rise, antibiotics alone cannot save the host. Therefore, toxin-specific inhibitors have to be developed. In this wake, monoclonal antibodies have been developed for the neutralization of toxic effects of anthrax toxins. We created hybridomas by using spleen of mice that were actively immunized with rLFn (recombinant N-terminal domain of lethal factor of B. anthracis) to obtain anti-toxin antibodies. Later on, separate group of mice were immunized with rLFn to obtain a polyclonal control for passive immunization studies of monoclonal antibodies. This led to the identification of one cohort of rLFn-immunized mice that harboured disease-enhancing polyclonal antibodies. At the same time, the monoclonal antibodies from all the hybridomas were being tested. Two hybridomas secreted monoclonal antibodies (H8 and H10) that were cross-reactive with EF (edema factor) and LF (lethal factor), while the other two hybridomas secreted LF-specific antibodies (H7 and H11). The protective efficacy of H7, H8, H10 and H11 was investigated. H7, H8 and H10 were found to be protective. H11 was found to have disease enhancing characteristics in-vitro and in mouse model of challenge with B. anthracis. In this study the disease enhancing character of H11 monoclonal antibody and anti-rLFn polyclonal sera was investigated. Combination of H11 with protective monoclonal antibodies (H8 and H10) reduced its disease enhancing nature both in-vitro and in-vivo. But combination of H11 with LETscFv (an scFv with VH and VL identical to H10 but lacking Fc region) could not abrogate the disease-enhancing character of H11 mAb. Therefore it was concluded that for suppression of disease enhancement, Fc portion was absolutely essential for interaction of H10 with H11. Our study indicates that the protective potential of an antibody depends equally on its idiotype/ antigen specificity and its isotype. A number of monoclonal and engineered antibodies are being explored as immunotherapeutics but it is absolutely essential to characterize each one for their individual and combined protective potential. Although new in the sphere of toxin-based diseases, it is extremely important to characterize the disease-enhancing nature of polyclonal as well as monoclonal antibodies. This is because several anti-viral therapeutics and vaccines have failed in the face of this phenomenon. The passive –immunotherapy thus needs to be well formulated to avoid any contraindications.

Keywords: immunotherapy, polyclonal, monoclonal, antibody-dependent disease enhancement

Procedia PDF Downloads 354
7 Novel EGFR Ectodomain Mutations and Resistance to Anti-EGFR and Radiation Therapy in H&N Cancer

Authors: Markus Bredel, Sindhu Nair, Hoa Q. Trummell, Rajani Rajbhandari, Christopher D. Willey, Lewis Z. Shi, Zhuo Zhang, William J. Placzek, James A. Bonner

Abstract:

Purpose: EGFR-targeted monoclonal antibodies (mAbs) provide clinical benefit in some patients with H&N squamous cell carcinoma (HNSCC), but others progress with minimal response. Missense mutations in the EGFR ectodomain (ECD) can be acquired under mAb therapy by mimicking the effect of large deletions on receptor untethering and activation. Little is known about the contribution of EGFR ECD mutations to EGFR activation and anti-EGFR response in HNSCC. Methods: We selected patient-derived HNSCC cells (UM-SCC-1) for resistance to mAb Cetuximab (CTX) by repeated, stepwise exposure to mimic what may occur clinically and identified two concurrent EGFR ECD mutations (UM-SCC-1R). We examined the competence of the mutants to bind EGF ligand or CTX. We assessed the potential impact of the mutations through visual analysis of space-filling models of the native sidechains in the original structures vs. their respective side-chain mutations. We performed CRISPR in combination with site-directed mutagenesis to test for the effect of the mutants on ligand-independent EGFR activation and sorting. We determined the effects on receptor internalization, endocytosis, downstream signaling, and radiation sensitivity. Results: UM-SCC-1R cells carried two non-synonymous missense mutations (G33S and N56K) mapping to domain I in or near the EGF binding pocket of the EGFR ECD. Structural modeling predicted that these mutants restrict the adoption of a tethered, inactive EGFR conformation while not permitting association of EGFR with the EGF ligand or CTX. Binding studies confirmed that the mutant, untethered receptor displayed a reduced affinity for both EGF and CTX but demonstrated sustained activation and presence at the cell surface with diminished internalization and sorting for endosomal degradation. Single and double-mutant models demonstrated that the G33S mutant is dominant over the N56K mutant in its effect on EGFR activation and EGF binding. CTX-resistant UM-SCC-1R cells demonstrated cross-resistance to mAb Panitumuab but, paradoxically, remained sensitive to the reversible receptor tyrosine kinase inhibitor Erlotinib. Conclusions: HNSCC cells can select for EGFR ECD mutations under EGFR mAb exposure that converge to trap the receptor in an open, constitutively activated state. These mutants impede the receptor’s competence to bind mAbs and EGF ligand and alter its endosomal trafficking, possibly explaining certain cases of clinical mAb and radiation resistance.

Keywords: head and neck cancer, EGFR mutation, resistance, cetuximab

Procedia PDF Downloads 58
6 Ibrutinib and the Potential Risk of Cardiac Failure: A Review of Pharmacovigilance Data

Authors: Abdulaziz Alakeel, Roaa Alamri, Abdulrahman Alomair, Mohammed Fouda

Abstract:

Introduction: Ibrutinib is a selective, potent, and irreversible small-molecule inhibitor of Bruton's tyrosine kinase (BTK). It forms a covalent bond with a cysteine residue (CYS-481) at the active site of Btk, leading to inhibition of Btk enzymatic activity. The drug is indicated to treat certain type of cancers such as mantle cell lymphoma (MCL), chronic lymphocytic leukaemia and Waldenström's macroglobulinaemia (WM). Cardiac failure is a condition referred to inability of heart muscle to pump adequate blood to human body organs. There are multiple types of cardiac failure including left and right-sided heart failure, systolic and diastolic heart failures. The aim of this review is to evaluate the risk of cardiac failure associated with the use of ibrutinib and to suggest regulatory recommendations if required. Methodology: Signal Detection team at the National Pharmacovigilance Center (NPC) of Saudi Food and Drug Authority (SFDA) performed a comprehensive signal review using its national database as well as the World Health Organization (WHO) database (VigiBase), to retrieve related information for assessing the causality between cardiac failure and ibrutinib. We used the WHO- Uppsala Monitoring Centre (UMC) criteria as standard for assessing the causality of the reported cases. Results: Case Review: The number of resulted cases for the combined drug/adverse drug reaction are 212 global ICSRs as of July 2020. The reviewers have selected and assessed the causality for the well-documented ICSRs with completeness scores of 0.9 and above (35 ICSRs); the value 1.0 presents the highest score for best-written ICSRs. Among the reviewed cases, more than half of them provides supportive association (four probable and 15 possible cases). Data Mining: The disproportionality of the observed and the expected reporting rate for drug/adverse drug reaction pair is estimated using information component (IC), a tool developed by WHO-UMC to measure the reporting ratio. Positive IC reflects higher statistical association while negative values indicates less statistical association, considering the null value equal to zero. The results of (IC=1.5) revealed a positive statistical association for the drug/ADR combination, which means “Ibrutinib” with “Cardiac Failure” have been observed more than expected when compared to other medications available in WHO database. Conclusion: Health regulators and health care professionals must be aware for the potential risk of cardiac failure associated with ibrutinib and the monitoring of any signs or symptoms in treated patients is essential. The weighted cumulative evidences identified from causality assessment of the reported cases and data mining are sufficient to support a causal association between ibrutinib and cardiac failure.

Keywords: cardiac failure, drug safety, ibrutinib, pharmacovigilance, signal detection

Procedia PDF Downloads 102
5 The Role of Cholesterol Oxidase of Mycobacterium tuberculosis in the Down-Regulation of TLR2-Signaling Pathway in Human Macrophages during Infection Process

Authors: Michal Kielbik, Izabela Szulc-Kielbik, Anna Brzostek, Jaroslaw Dziadek, Magdalena Klink

Abstract:

The goal of many research groups in the world is to find new components that are important for survival of mycobacteria in the host cells. Mycobacterium tuberculosis (Mtb) possesses a number of enzymes degrading cholesterol that are considered to be an important factor for its survival and persistence in host macrophages. One of them - cholesterol oxidase (ChoD), although not being essential for cholesterol degradation, is discussed as a virulence compound, however its involvement in macrophages’ response to Mtb is still not sufficiently determined. The recognition of tubercle bacilli antigens by pathogen recognition receptors is crucial for the initiation of the host innate immune response. An important receptor that has been implicated in the recognition and/or uptake of Mtb is Toll-like receptor type 2 (TLR2). Engagement of TLR2 results in the activation and phosphorylation of intracellular signaling proteins including IRAK-1 and -4, TRAF-6, which in turn leads to the activation of target kinases and transcription factors responsible for bactericidal and pro-inflammatory response of macrophages. The aim of these studies was a detailed clarification of the role of Mtb cholesterol oxidase as a virulence factor affecting the TLR2 signaling pathway in human macrophages. As human macrophages the THP-1 differentiated cells were applied. The virulent wild-type Mtb strain (H37Rv), its mutant lacking a functional copy of gene encoding cholesterol oxidase (∆choD), as well as complimented strain (∆choD–choD) were used. We tested the impact of Mtb strains on the expression of TLR2-depended signaling proteins (mRNA level, cytosolic level and phosphorylation status). The cytokine and bactericidal response of THP-1 derived macrophages infected with Mtb strains in relation to TLR2 signaling pathway dependence was also determined. We found that during the 24-hours of infection process the wild-type and complemented Mtb significantly reduced the cytosolic level and phosphorylation status of IRAK-4 and TRAF-6 proteins in macrophages, that was not observed in the case of ΔchoD mutant. Decreasement of TLR2-dependent signaling proteins, induced by wild-type Mtb, was not dependent on the activity of proteasome. Blocking of TLR2 expression, before infection, effectively prevented the induced by wild-type strain reduction of cytosolic level and phosphorylation of IRAK-4. None of the strains affected the surface expression of TLR2. The mRNA level of IRAK-4 and TRAF-6 genes were significantly increased in macrophages 24 hours post-infection with either of tested strains. However, the impact of wild-type Mtb strain on both examined genes was significantly stronger than its ΔchoD mutant. We also found that wild-type strain stimulated macrophages to release high amount of immunosuppressive IL-10, accompanied by low amount of pro-inflammatory IL-8 and bactericidal nitric oxide in comparison to mutant lacking cholesterol oxidase. The influence of wild-type Mtb on this type of macrophages' response strongly dependent on fully active IRAK-1 and IRAK-4 signaling proteins. In conclusion, Mtb using cholesterol oxidase causes the over-activation of TLR2 signaling proteins leading to the reduction of their cytosolic level and activity resulting in the modulation of macrophages response to allow its intracellular survival. Supported by grant: 2014/15/B/NZ6/01565, National Science Center, Poland

Keywords: Mycobacterium tuberculosis, cholesterol oxidase, macrophages, TLR2-dependent signaling pathway

Procedia PDF Downloads 394
4 Effect of Endurance Training on Serum Chemerin Levels and Lipid Profile of Plasma in Obese Women

Authors: A. Moghadasein, M. Ghasemi, S. Fazelifar

Abstract:

Aim: Chemerin is a novel adipokine that play an important role in regulating lipid metabolism and abiogenesis. Chemerin is dependent on autocrine and paracrine signals for the differentiation and maturation of fat cells; it also regulates glucose uptake in fat cells and stimulates lipolysis. It has been reported that in adipocytes, chemerin enhances the insulin-stimulated glucose and causes the phosphorylation of tyrosine in Insulin receptor substrate. According to the studies, Chemerin may increase insulin sensitivity in adipose tissue and is largely associated with Body mass index, triglycerides, and blood pressure in those with normal glucose tolerance. There is limited information available regarding the effect of exercise training on serum chemerin concentrations. The purpose of this study was to investigate the effect of endurance training on serum chemerin levels and lipids of plasma in overweight women. Methodology: This study was a quasi-experimental research with a pre-post test design. After required examination and verification of high pressure by the physician, 22 obese subjects (age: 35.64±5.55 yr, weight: 75.62±9.30 kg, body mass index: 32.4±1.6 kg/m2) were randomly assigned to aerobic training (n= 12) and control (n= 12) groups. Participants completed a questionnaire indicating the lack of sports history during the past six months, the lack of anti-hypertension drugs use, hormone therapy, cardiovascular problems, and complete stoppage of menstrual cycle. Aerobic training was performed 3 times weekly for 8 weeks. Resting levels of chemerin plasma, metabolic parameters were measured prior to and after the intervention. The control group did not participate in any training program. In this study, ethical considerations included the complete description of the objectives to the study participants, ensuring the confidentiality of their information. Kolmogorov-Smirnov and Levin test were used for determining the normal distribution of data and homogeneity of variances, respectively. Analyze of variance with repeated measure were used to investigate the changes in the intra-group and the differences in inter-group of variables. Statistical operations were performed using SPSS 16 and the significance level of the tests was considered at P < 0.05. Results: After an 8 week aerobic training, levels of chemerin plasma were significantly decreased in aerobic trained group when compared with their control groups (p < 0.05).Concurrently, levels of HDL-c were significantly decreased (p < 0.05) whereas, levels of cholesterol, TG and LDL-c, showed no significant changes (p > 0.05). No significant correlations between chemerin levels and weight loss were observed in subjects with overweight women. Conclusion: The present study demonstrated, 8 weeks aerobic training, reduced serum chemerin concentrations in overweight women. Whereas, aerobic training exercise programmers affected the lipid profile response of obese subjects differently. However further research is warranted in order to unravel the molecular mechanism for the range of responses and the role of serum chemerin.

Keywords: chemerin, aerobic training, lipid profile, obese women

Procedia PDF Downloads 469
3 Welfare and Sustainability in Beef Cattle Production on Tropical Pasture

Authors: Andre Pastori D'Aurea, Lauriston Bertelli Feranades, Luis Eduardo Ferreira, Leandro Dias Pinto, Fabiana Ayumi Shiozaki

Abstract:

The aim of this study was to improve the production of beef cattle on tropical pasture without harming this environment. On tropical pastures, cattle's live weight gain is lower than feedlot, and forage production is seasonable, changing from season to season. Thus, concerned with sustainable livestock production, the Premix Company has developed strategies to improve the production of beef cattle on tropical pasture to ensure sustainability of welfare and production. There are two important principles in this productivity system: 1) increase individual gains with use of better supplementation and 2) increase the productivity units with better forage quality like corn silage or other forms of forage conservations, actually used only in winter, and adding natural additives in the diet. This production system was applied from June 2017 to May 2018 in the Research Center of Premix Company, Patrocínio Paulista, São Paulo State, Brazil. The area used had 9 hectares of pasture of Brachiaria brizantha. 36 steers Nellore were evaluated for one year. The initial weight was 253 kg. The parameters used were daily average gain and gain per area. This indicated the corrections to be made and helped design future fertilization. In this case, we fertilized the pasture with 30 kg of nitrogen per animal divided into two parts. The diet was pasture and protein-energy supplements (0.4% of live weight). The supplement used was added with natural additive Fator P® – Premix Company). Fator P® is an additive composed by amino acids (lysine, methionine and tyrosine, 16400, 2980 and 3000 mg.kg-1 respectively), minerals, probiotics (Saccharomyces cerevisiae, 7 x 10E8 CFU.kg-1) and essential fatty acids (linoleic and oleic acids, 108.9 and 99g.kg-1 respectively). Due to seasonal changes, in the winter we supplemented the diet by increasing the offer of forage, supplementing with maize silage. It was offered 1% of live weight in silage corn and 0.4% of the live weight in protein-energetic supplements with additive Fator P ®. At the end of the period, the productivity was calculated by summing the individual gains for the area used. The average daily gain of the animals were 693 grams per day and was produced 1.005 kg /hectare/year. This production is about 8 times higher than the average of Brazilian meat national production. To succeed in this project, it is necessary to increase the gains per area, so it is necessary to increase the capacity per area. Pasture management is very important to the project's success because the dietary decisions were taken from the quantity and quality of the forage. We, therefore, recommend the use of animals in the growth phase because the response to supplementation is greater in that phase and we can allocate more animals per area. This system's carbon footprint reduces emissions by 61.2 percent compared to the Brazilian average. This beef cattle production system can be efficient and environmentally friendly to the natural. Another point is that bovines will benefit from their natural environment without competing or having an impact on human food production.

Keywords: cattle production, environment, pasture, sustainability

Procedia PDF Downloads 108
2 Exploiting the Tumour Microenvironment in Order to Optimise Sonodynamic Therapy for Cancer

Authors: Maryam Mohammad Hadi, Heather Nesbitt, Hamzah Masood, Hashim Ahmed, Mark Emberton, John Callan, Alexander MacRobert, Anthony McHale, Nikolitsa Nomikou

Abstract:

Sonodynamic therapy (SDT) utilises ultrasound in combination with sensitizers, such as porphyrins, for the production of cytotoxic reactive oxygen species (ROS) and the confined ablation of tumours. Ultrasound can be applied locally, and the acoustic waves, at frequencies between 0.5-2 MHz, are transmitted efficiently through tissue. SDT does not require highly toxic agents, and the cytotoxic effect only occurs upon ultrasound exposure at the site of the lesion. Therefore, this approach is not associated with adverse side effects. Further highlighting the benefits of SDT, no cancer cell population has shown resistance to therapy-triggered ROS production or their cytotoxic effects. This is particularly important, given the as yet unresolved issues of radiation and chemo-resistance, to the authors’ best knowledge. Another potential future benefit of this approach – considering its non-thermal mechanism of action – is its possible role as an adjuvant to immunotherapy. Substantial pre-clinical studies have demonstrated the efficacy and targeting capability of this therapeutic approach. However, SDT has yet to be fully characterised and appropriately exploited for the treatment of cancer. In this study, a formulation based on multistimulus-responsive sensitizer-containing nanoparticles that can accumulate in advanced prostate tumours and increase the therapeutic efficacy of SDT has been developed. The formulation is based on a polyglutamate-tyrosine (PGATyr) co-polymer carrying hematoporphyrin. The efficacy of SDT in this study was demonstrated using prostate cancer as the translational exemplar. The formulation was designed to respond to the microenvironment of advanced prostate tumours, such as the overexpression of the proteolytic enzymes, cathepsin-B and prostate-specific membrane antigen (PSMA), that can degrade the nanoparticles, reduce their size, improving both diffusions throughout the tumour mass and cellular uptake. The therapeutic modality was initially tested in vitro using LNCaP and PC3 cells as target cell lines. The SDT efficacy was also examined in vivo, using male SCID mice bearing LNCaP subcutaneous tumours. We have demonstrated that the PGATyr co-polymer is digested by cathepsin B and that digestion of the formulation by cathepsin-B, at tumour-mimicking conditions (acidic pH), leads to decreased nanoparticle size and subsequent increased cellular uptake. Sonodynamic treatment, at both normoxic and hypoxic conditions, demonstrated ultrasound-induced cytotoxic effects only for the nanoparticle-treated prostate cancer cells, while the toxicity of the formulation in the absence of ultrasound was minimal. Our in vivo studies in immunodeficient mice, using the hematoporphyrin-containing PGATyr nanoparticles for SDT, showed a 50% decrease in LNCaP tumour volumes within 24h, following IV administration of a single dose. No adverse effects were recorded, and body weight was stable. The results described in this study clearly demonstrate the promise of SDT to revolutionize cancer treatment. It emphasizes the potential of this therapeutic modality as a fist line treatment or in combination treatment for the elimination or downstaging of difficult to treat cancers, such as prostate, pancreatic, and advanced colorectal cancer.

Keywords: sonodynamic therapy, nanoparticles, tumour ablation, ultrasound

Procedia PDF Downloads 117
1 LncRNA-miRNA-mRNA Networks Associated with BCR-ABL T315I Mutation in Chronic Myeloid Leukemia

Authors: Adenike Adesanya, Nonthaphat Wong, Xiang-Yun Lan, Shea Ping Yip, Chien-Ling Huang

Abstract:

Background: The most challenging mutation of the oncokinase BCR-ABL protein T315I, which is commonly known as the “gatekeeper” mutation and is notorious for its strong resistance to almost all tyrosine kinase inhibitors (TKIs), especially imatinib. Therefore, this study aims to identify T315I-dependent downstream microRNA (miRNA) pathways associated with drug resistance in chronic myeloid leukemia (CML) for prognostic and therapeutic purposes. Methods: T315I-carrying K562 cell clones (K562-T315I) were generated by the CRISPR-Cas9 system. Imatinib-treated K562-T315I cells were subjected to small RNA library preparation and next-generation sequencing. Putative lncRNA-miRNA-mRNA networks were analyzed with (i) DESeq2 to extract differentially expressed miRNAs, using Padj value of 0.05 as cut-off, (ii) STarMir to obtain potential miRNA response element (MRE) binding sites of selected miRNAs on lncRNA H19, (iii) miRDB, miRTarbase, and TargetScan to predict mRNA targets of selected miRNAs, (iv) IntaRNA to obtain putative interactions between H19 and the predicted mRNAs, (v) Cytoscape to visualize putative networks, and (vi) several pathway analysis platforms – Enrichr, PANTHER and ShinyGO for pathway enrichment analysis. Moreover, mitochondria isolation and transcript quantification were adopted to determine the new mechanism involved in T315I-mediated resistance of CML treatment. Results: Verification of the CRISPR-mediated mutagenesis with digital droplet PCR detected the mutation abundance of ≥80%. Further validation showed the viability of ≥90% by cell viability assay, and intense phosphorylated CRKL protein band being detected with no observable change for BCR-ABL and c-ABL protein expressions by Western blot. As reported by several investigations into hematological malignancies, we determined a 7-fold increase of H19 expression in K562-T315I cells. After imatinib treatment, a 9-fold increment was observed. DESeq2 revealed 171 miRNAs were differentially expressed K562-T315I, 112 out of these miRNAs were identified to have MRE binding regions on H19, and 26 out of the 112 miRNAs were significantly downregulated. Adopting the seed-sequence analysis of these identified miRNAs, we obtained 167 mRNAs. 6 hub miRNAs (hsa-let-7b-5p, hsa-let-7e-5p, hsa-miR-125a-5p, hsa-miR-129-5p, and hsa-miR-372-3p) and 25 predicted genes were identified after constructing hub miRNA-target gene network. These targets demonstrated putative interactions with H19 lncRNA and were mostly enriched in pathways related to cell proliferation, senescence, gene silencing, and pluripotency of stem cells. Further experimental findings have also shown the up-regulation of mitochondrial transcript and lncRNA MALAT1 contributing to the lncRNA-miRNA-mRNA networks induced by BCR-ABL T315I mutation. Conclusions: Our results have indicated that lncRNA-miRNA regulators play a crucial role not only in leukemogenesis but also in drug resistance, considering the significant dysregulation and interactions in the K562-T315I cell model generated by CRISPR-Cas9. In silico analysis has further shown that lncRNAs H19 and MALAT1 bear several complementary miRNA sites. This implies that they could serve as a sponge, hence sequestering the activity of the target miRNAs.

Keywords: chronic myeloid leukemia, imatinib resistance, lncRNA-miRNA-mRNA, T315I mutation

Procedia PDF Downloads 126