Search results for: thermophilic bacteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1063

Search results for: thermophilic bacteria

943 Influence of Yeast Strains on Microbiological Stability of Wheat Bread

Authors: E. Soboleva, E. Sergachyova, S. G. Davydenko, T. V. Meledina

Abstract:

Problem of food preservation is extremely important for mankind. Viscous damage ("illness") of bread results from development of Bacillus spp. bacteria. High temperature resistant spores of this microorganism are steady against 120°C) and remain in bread during pastries, potentially causing spoilage of the final product. Scientists are interested in further characterization of bread spoiling Bacillus spp. species. Our aim was to find weather yeast Saccharomyces cerevisiae strains that are able to produce natural antimicrobial killer factor can preserve bread illness. By diffusion method, we showed yeast antagonistic activity against spore-forming bacteria. Experimental technological parameters were the same as for bakers' yeasts production on the industrial scale. Risograph test during dough fermentation demonstrated gas production. The major finding of the study was a clear indication of the presence of killer yeast strain antagonistic activity against rope in bread causing bacteria. After demonstrating antagonistic effect of S. cerevisiae on bacteria using solid nutrient medium, we tested baked bread under provocative conditions. We also measured formation of carbon dioxide in the dough, dough-making duration and quality of the final products, when using different strains of S. cerevisiae. It is determined that the use of yeast S. cerevisiae RCAM 01730 killer strain inhibits appearance of rope in bread. Thus, natural yeast antimicrobial killer toxin, produced by some S. cerevisiae strains is an anti-rope in bread protector.

Keywords: bakers' yeasts, killer toxin, rope in bread, Saccharomyces cerevisiæ

Procedia PDF Downloads 232
942 Development of Functional Dandelion (Tarazacum officinale) Beverage Using Lactobacillus acidophilus F46 with Cinnamoyl Esterase Activity

Authors: Yong Geun Yun, Jong Hui kim, Sang Ho Baik

Abstract:

This study was carried out to develop a fermented dandelion (Tarazacum officinale) beverage using lactic acid bacteria with cinnamoyl esterase (CE) activity isolated from human feces. Lactic acid bacteria were screened based on bacterial survival ability in dandelion extract and CE activity. Dandelion extract fermented by Lactobacillus acidophilus F-46 (LA-F46) maintained approximately 105-106 log CFU/mL over an 8 days period. After fermented dandelion beverage (FDB) with LA-46 for 8 days at 37oC the pH was decreased from pH 7.0 to 3.5. Antioxidant activity by using DPPH radical scavenging activity of the prepared FDB was significantly increased compared to that of non-fermented dandelion beverage (NFDB). Moreover, CE activity was significantly enhanced during fermentation and showed the approximately 4.3 times increased concentration of caffeic acid up to 9.91 mg/100 mL after 8 days of incubation compared to NFDB. Therefore, it concluded that dandelion can be a good source for preparing a functional beverage and fermentation by LA-F46 enhanced the food functionality with enhanced caffeic acids.

Keywords: cinnamoyl esterase, dandelion, fermented beverage, lactic acid bacteria

Procedia PDF Downloads 399
941 Characterization of the Queuine Salvage Pathway From Bacteria in the Human Parasite Entamoeba Histolytica

Authors: Lotem Sarid, Meirav Trebicz-Geffen, Serge Ankri

Abstract:

Queuosine (Q) is a naturally occurring modified nucleoside that occurs in the first position of transfer RNA anticodons such as Asp, Asn, His, and Tyr. As eukaryotes lack pathways to synthesize queuine, the nucleobase of queuosine, they must obtain it from their diet or gut microbiota. Our previous work investigated the effects of queuine on the physiology of the eukaryotic parasite Entamoeba histolytica and defined the enzyme EhTGT responsible for its incorporation into tRNA. To our best knowledge, it is unknown how E. histolytica salvages Q from gut bacteria. We used N-acryloyl-3-aminophenylboronic acid (APB) PAGE analysis to demonstrate that E. histolytica trophozoites can salvage queuine from Q or E. coli K12 but not from the modified E. coli QueC strain, which cannot produce queuine. Next, we examined the role of EhDUF2419, a protein with homology to DNA glycosylase, as a queuine salvage enzyme in E. histolytica. When EhDUF2419 expression is silenced, it inhibits Q's conversion to queuine, resulting in a decrease in Q-tRNA levels. We also observed that Q protects control trophozoites from oxidative stress (OS), but not siEhDUF2419 trophozoites. Overall, our data reveal that EhDUF2419 is central for the salvaging of queuine from bacteria and for the resistance of the parasite to OS.

Keywords: entamoeba histolytica, epitranscriptomics, gut microbiota, queuine, queuosine, response to oxidative stress, tRNA modification.

Procedia PDF Downloads 116
940 Algae Growth and Biofilm Control by Ultrasonic Technology

Authors: Vojtech Stejskal, Hana Skalova, Petr Kvapil, George Hutchinson

Abstract:

Algae growth has been an important issue in water management of water plants, ponds and lakes, swimming pools, aquaculture & fish farms, gardens or golf courses for last decades. There are solutions based on chemical or biological principles. Apart of these traditional principles for inhibition of algae growth and biofilm production there are also physical methods which are very competitive compared to the traditional ones. Ultrasonic technology is one of these alternatives. Ultrasonic emitter is able to eliminate the biofilm which behaves as a host and attachment point for algae and is original reason for the algae growth. The ultrasound waves prevent majority of the bacteria in planktonic form becoming strongly attached sessile bacteria that creates welcoming layer for the biofilm production. Biofilm creation is very fast – in the serene water it takes between 30 minutes to 4 hours, depending on temperature and other parameters. Ultrasound device is not killing bacteria. Ultrasound waves are passing through bacteria, which retract as if they were in very turbulent water even though the water is visually completely serene. In these conditions, bacteria does not excrete the polysaccharide glue they use to attach to the surface of the pool or pond, where ultrasonic technology is used. Ultrasonic waves decrease the production of biofilm on the surfaces in the selected area. In case there are already at the start of the application of ultrasonic technology in a pond or basin clean inner surfaces, the biofilm production is almost absolutely inhibited. This paper talks about two different pilot applications – one in Czech Republic and second in United States of America, where the used ultrasonic technology (AlgaeControl) is coming from. On both sites, there was used Mezzo Ultrasonic Algae Control System with very positive results not only on biofilm production, but also algae growth in the surrounding area. Technology has been successfully tested in two different environments. The poster describes the differences and their influence on the efficiency of ultrasonic technology application. Conclusions and lessons learned can be possibly applied also on other sites within Europe or even further.

Keywords: algae growth, biofilm production, ultrasonic solution, ultrasound

Procedia PDF Downloads 261
939 Identification and Isolation of E. Coli O₁₅₇:H₇ From Water and Wastewater of Shahrood and Neka Cities by PCR Technique

Authors: Aliasghar Golmohammadian, Sona Rostampour Yasouri

Abstract:

One of the most important intestinal pathogenic strains is E. coli O₁₅₇:H₇. This pathogenic bacterium is transmitted to humans through water and food. E. coli O₁₅₇:H₇ is the main cause of Hemorrhagic colitis (HC), Hemolytic Uremic Syndrome (HUS), Thrombotic Thrombocytopenic Purpura (TTP) and in some cases death. Since E. coli O₁₅₇:H₇ can be transmitted through the consumption of different foods, including vegetables, agricultural products, and fresh dairy products, this study aims to identify and isolate E. coli O₁₅₇:H₇ from wastewater by PCR technique. One hundred twenty samples of water and wastewater were collected by Falcom Sterile from Shahrood and Neka cities. The samples were checked for colony formation after appropriate centrifugation and cultivation in the specific medium of Sorbitol MacConkey Agar (SMAC) and other diagnostic media of E. coli O₁₅₇:H₇. Also, the plates were observed macroscopically and microscopically. Then, the necessary phenotypic tests were performed on the colonies, and finally, after DNA extraction, the PCR technique was performed with specific primers related to rfbE and stx2 genes. The number of 5 samples (6%) out of all the samples examined were determined positive by PCR technique with observing the bands related to the mentioned genes on the agarose gel electrophoresis. PCR is a fast and accurate method to identify the bacteria E. coli O₁₅₇:H₇. Considering that E. coli bacteria is a resistant bacteria and survives in water and food for weeks and months, the PCR technique can provide the possibility of quick detection of contaminated water. Moreover, it helps people in the community control and prevent the transfer of bacteria to healthy and underground water and agricultural and even dairy products.

Keywords: E. coli O₁₅₇:H₇, PCR, water, wastewater

Procedia PDF Downloads 57
938 Antibacterial Effect of Hydroalcoholic Extract of Salvia Officinalis and, Mentha Pulegium on Three Strains of Streptococcus Mutants, Lactobacillus Rhamnosus and, Actinomyces Viscosus Dental Caries in-vitro

Authors: H. Nabahat, E. Amiri, F. AzaditalabDavoudabadi, N. Zaeri

Abstract:

Tooth decay is one of the most common forms of oral and dental illness in the world, which causes huge costs of treatment, especially in high-risk groups such as people with oral dry mouth, prevention and control of it are very important. The use of traditional treatments such as extraction of drugs from medicinal plants is of paramount importance to Iran and the international community as well. The present study was conducted with the aim of investigating the antibacterial effect of the extract of Salvia officinalis and Mentha pulegium, which are the most commonly used drugs in the treatment of oral and teeth bacterial (Streptococcus mutant, Lactobacillus rhamnosis, and Actinomyces viscosis) in vitro method. In this experimental study, two herbs of Salvia and Mentha were prepared by maceration of hydroalcoholic extract, and the antibacterial effect was evaluated by broth macro dilution on streptococcal mutagen bacteria, lactobacillus rhamnosis, and viscose actinomycosis. The results were analyzed by the Whitney Mann test (P > 0.05). The results showed that the minimum inhibitory concentration (MIC) of the salmonella extract for Streptococcus mutan were 6.25 and 12.5 μg/ml, respectively, for lactobacillus of 1.56 and 3.12 μg/ml, respectively, and for actinomycosis viscose, The order of 12.5 and 100 μg/ml was obtained. As a result, broth macro dilution showed that both extracts of Salvia and Mentha had an inhibitory effect on all three species of bacteria. This effect for Salvia was significantly (P < 0.05) more than Mentha and was within the concentration range of both the extracts and had a bactericidal effect on all three bacteria.

Keywords: antibacterial effect, dental bacteria, herbal extracts , salvia officinalis, mentha pulegium

Procedia PDF Downloads 147
937 Survey of the Effect of the Probiotic Bacterium Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT/PTEN, and MAPK Signaling Pathways at Co-Culture with KB Oral Cancer Cell Line and HUVEC Cells

Authors: Negar Zaheddoust, Negin Zaheddoust, Abbas Asoudeh-Fard

Abstract:

Probiotic bacteria have been employed as a novel and less side-effect strategy for anticancer therapy. Since the oral cavity is a host for probiotic and pathogen bacteria to colonize, more investigation is needed to evaluate the effectiveness of this novel adjunctive treatment for oral cancer. We considered Lactobacillus plantarum as a probiotic and Streptococcus mutans as a pathogen bacterium in our study. The aim of this study is to examine the effect of Lactobacillus plantarum and Streptococcus mutans on Casp3, AKT / PTEN, and MAPK signaling pathway, which is involved in apoptosis or survival of oral cancer KB cells. On the other hand, to study the effects of these bacteria on normal cells, we used HUVEC cells. The KB and HUVEC cell lines were co-cultured with Lactobacillus plantarum and Streptococcus mutans isolated from traditional Iranian dairy and dental plaque, respectively. The growth-inhibitory effects of these two bacteria on KB and HUVEC cells were determined by (3-(4, 5-dimethylthiazolyl-2)-2,5diphenyltetrazolium bromide) MTT assay. MTT results demonstrated that the proliferation of KB cells was affected in a time, dose, and strain-dependent manner. In the following, the examination of induced apoptosis or necrosis in co-cultured KB cells with the best IC50 concentration of the Lactobacillus plantarum and Streptococcus mutans will be analyzed by FACS flow cytometry, and the changes in gene expression of Casp3, AKT / PTEN, MAPK genes will be evaluated using real-time polymerase chain reaction.

Keywords: cancer therapy, induced apoptosis, oral cancer, probiotics

Procedia PDF Downloads 242
936 Assessment of Lactic Acid Bacteria of Probiotic Potentials in Dairy Produce in Saudi Arabia

Authors: Rashad R. Al-Hindi

Abstract:

The aim of this study was to isolate and identify lactic acid bacteria and evaluate their therapeutic and food preservation importance. Ninety-three suspected lactic acid bacteria (LAB) were isolated from thirteen different raw and fermented milk of indigenous sources in the Kingdom of Saudi Arabia. The identification of forty-six selected LAB strains and genetic relatedness were performed based on 16S rDNA gene sequence comparison. The LAB counts in certain samples were higher under microaerobic than anaerobic conditions. The identified LAB belonged to genera Enterococcus (16 strains), Lactobacillus (9 strains), Weissella (10 strains), Streptococcus (8 strains) and Lactococcus (3 strains). Phylogenetic tree generated from the full-length (~1.6 kb) sequences confirmed previous findings. Utilization of shorter 16S rDNA sequences (~1.0 kb) also discriminated among strains of which V2 region was the most effective. None of the strains exhibited resistance to clinically relevant antibiotics or undesirable hemolytic activity, while they differed in other probiotic characteristics, e.g., tolerance to acidic pH, resistance to bile salt, and antibacterial activity. In conclusion, the isolates Lactobacillus casei MSJ1, Lactobacillus casei Dwan5, Lactobacillus plantarum EyLan2 and Enterococcus faecium Gail-BawZir8 are likely the best probiotic LAB and we speculate that studying the synergistic effects of bacterial combinations might result in the occurrence of more effective probiotic potential. We argue that the raw and fermented milk of animals hosted in Saudi Arabia, especially stirred yogurt (Laban) made from camel milk, are rich in LAB with promising probiotics potential.

Keywords: fermented foods, lactic acid bacteria, probiotics, Saudi Arabia

Procedia PDF Downloads 191
935 Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oil from the Leaves of Thymus vulgaris L.

Authors: Tsige Reda

Abstract:

Essential oil of Thymus vulgaris was extracted by means of hydro-distillation. This study was done to investigate the chemical composition, antibacterial and antioxidant activities. The chemical composition of the essential oils was determined using gas chromatography coupled to mass spectroscopy (GC-MS). Using disc diffusion assay the antibacterial activity was assessed on one Gram-positive bacteria and one Gram-negative bacteria. The percentage oil yield of the essential oil was found to be 0.97 ± 0.08% (w/w) with yellow color. The physicochemical constants of the oil were also noted. The phytochemical screening of the plant extract revealed the presence of tannins, saponins, phenol, flavonoids, terpenoids, steroids and alkaloids. A total of 18 chemical constituents were identified by Gas Chromatography-Mass Spectroscopy analysis representing 100% of the total essential oil of Thymus vulgaris, with thymol (31.977%), o-cymene (29.992%), and carvacrol (14.541%). Previous studies have revealed that the thymol, o-cymen and carvacrol components of Thymus vulgaris are responsible for their biological activities. Thymus vulgaris have been used traditionally to treat a wide variety of infections. Based on the extensive use and lack of scientific evidence, a study was embarked upon to determine its bioactivity. The essential oil of Thymus vulgaris leaves exhibited higher activity towards the Gram-positive bacteria (Staphylococcus aurous) than the Gram-negative bacteria (Escherichia coli) and also has good antioxidant activity, and can be used medicinal and therapeutic applications. This activity may be due to the high amount of thymol, o-cymen and carvacrol.

Keywords: hydro-distillation, Thymus vulgaris, essential oil composition, phytochemical screening, physicochemical constants, antioxidant activity, antibacterial activity

Procedia PDF Downloads 433
934 The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens

Authors: M. E. Abalaka, S. Y. Daniyan, S. O. Adeyemo, D. Damisa

Abstract:

Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into.

Keywords: gold nanoparticles, Gomphrena celesioides, Prunus amygdalus, pathogens

Procedia PDF Downloads 301
933 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning

Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman

Abstract:

Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.

Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning

Procedia PDF Downloads 94
932 Assessment of Spatial and Temporal Variations of Some Biological Water Quality Parameters in Mat River, Albania

Authors: Etleva Hamzaraj, Eva Kica, Anila Paparisto, Pranvera Lazo

Abstract:

Worldwide demographic developments of recent decades have been associated with negative environmental consequences. For this reason, there is a growing interest in assessing the state of natural ecosystems or assessing human impact on them. In this respect, this study aims to evaluate the change in water quality of the Mat River for a period of about ten years to highlight human impact. In one year, period of study, several biological and environmental parameters are determined to evaluate river water quality, and the data collected are compared with those of a similar study in 2007. Samples are collected every month in five stations evenly distributed along the river. Total coliform bacteria, the number of heterotrophic bacteria in water, and benthic macroinvertebrates are used as biological parameters of water quality. The most probable number index is used for evaluation of total coliform bacteria in water, while the number of heterotrophic bacteria is determined by counting colonies on plates with Plate Count Agar, cultivated with 0.1 ml sample after series dilutions. Benthic macroinvertebrates are analyzed by the number of individuals per taxa, the value of biotic index, EPT Richness Index value and tolerance value. Environmental parameters like pH, temperature, and electrical conductivity are measured onsite. As expected, the bacterial load was higher near urban areas, and the pollution increased with the course of the river. The maximum concentration of fecal coliforms was 1100 MPN/100 ml in summer and near the most urbanized area of the river. The data collected during this study show that after about ten years, there is a change in water quality of Mat River. According to a similar study carried out in 2007, the water of Mat River was of ‘excellent’ quality. But, according to this study, the water was classified as of ‘excellent’ quality only in one sampling site, near river source, while in all other stations was of ‘good’ quality. This result is based on biological and environmental parameters measured. The human impact on the quality of water of Mat River is more than evident.

Keywords: water quality, coliform bacteria, MPN index, benthic macroinvertebrates, biotic index

Procedia PDF Downloads 107
931 Isolation and Identification of Probiotic Lactic Acid Bacteria with Cholesterol Lowering Potential and Their Use in Fermented Milk Product

Authors: Preeyarach Whisetkhan, Malai Taweechotipatr, Ulisa Pachekrepapol

Abstract:

Elevated level of blood cholesterol or hypercholesterolemia may lead to atherosclerosis and poses a major risk for cardiovascular diseases. Probiotics play a crucial role in human health, and probiotic bacteria that possesses bile salt hydrolase (BSH) activity can be used to lower cholesterol level of the host. The aim of this study was to investigate whether lactic acid bacteria (LAB) isolated from traditional Thai fermented foods were able to exhibit bile salt hydrolase activity and their use in fermented milk. A total of 28 isolates were tested for BSH activity by plate method on MRS agar supplemented with 0.5% sodium salt of taurodeoxycholic acid and incubated at 37°C for 48 h under anaerobic condition. The results showed that FN1-1 and FN23-3 isolates possessed strong BSH activity. FN1-1 and FN23-3 isolates were then identified for phenotype, biochemical characteristics, and genotype (16S rRNA sequencing). FN1-1 isolate showed 99.92% similarity to Lactobacillus pentosus DSM 20314(T), while FN23-3 isolate showed 99.94% similarity to Enterococcus faecium CGMCC1.2136 (T). Lactobacillus pentosus FN1-1 and Enterococcus faecium FN23-3 were tolerant of pH 3-4 and 0.3 and 0.8% bile. Bacterial count and pH of milk fermented with Lactobacillus pentosus FN1-1 at 37°C and 43°C were investigated. The results revealed that Lactobacillus pentosus FN1-1 was able to grow in milk, which led to decrease in pH level. Fermentation at 37°C resulted in faster growth rate than at 43 °C. Lactobacillus pentosus FN1-1 was a candidate probiotic to be used in fermented milk products to reduce the risk of high-cholesterol diseases.

Keywords: probiotics, lactic acid bacteria, bile salt hydrolase, cholesterol

Procedia PDF Downloads 146
930 Nitrification Efficiency and Community Structure of Municipal Activated Sewage Sludge

Authors: Oluyemi O. Awolusi, Abimbola M. Enitan, Sheena Kumari, Faizal Bux

Abstract:

Nitrification is essential to biological processes designed to remove ammonia and/or total nitrogen. It removes the excess nitrogenous compound in wastewater which could be very toxic to the aquatic fauna or cause a serious imbalance of such aquatic ecosystem. Efficient nitrification is linked to an in-depth knowledge of the structure and dynamics of the nitrifying community structure within the wastewater treatment systems. In this study, molecular technique was employed for characterizing the microbial structure of activated sludge [ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB)] in a municipal wastewater treatment with intention of linking it to the plant efficiency. PCR-based phylogenetic analysis was also carried out for. The average operating and environmental parameters, as well as specific nitrification rate of a plant, was investigated during the study. During the investigation, the average temperature was 23±1.5oC. Other operational parameters such as mixed liquor suspended solids and chemical oxygen demand inversely correlated with ammonia removal. The dissolved oxygen level in the plant was constantly lower than the optimum (between 0.24 and 1.267 mg/l) during this study. The plant was treating wastewater with the influent ammonia concentration of 31.69 and 24.47 mg/l. The influent flow rates (ML/day) was 96.81 during the period. The dominant nitrifiers include: Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. The AOB had a correlation with nitrification efficiency and temperature. This study shows that the specific ammonia oxidizing rate and the specific nitrate formation rates can serve as a good indicator of the plant overall nitrification performance.

Keywords: Ammonia monooxygenase α-subunit gene, amoA, ammonia-oxidizing bacteria, AOB, nitrite-oxidizing bacteria, NOB, specific nitrification rate

Procedia PDF Downloads 454
929 Efficacy Enhancement of Hydrophobic Antibiotics Employing Rhamnolipid as Biosurfactant

Authors: Abdurrahim A. Elouzi, Abdurrauf M. Gusbi, Ali M. Elgerbi

Abstract:

Antibiotic resistance has become a global public-health problem, thus it is imperative that new antibiotics continue to be developed. Major problems are being experienced in human medicine from antibiotic resistant bacteria. Moreover, no new chemical class of antibiotics has been introduced into medicine in the past two decades. The aim of the current study presents experimental results that evaluate the capability of bio surfactant rhamnolipid on enhancing the efficacy of hydrophobic antibiotics. Serial dilutions of azithromycin and clarithromycin were prepared. A bacterial suspension (approximately 5 X 105 CFU) from an overnight culture in MSM was inoculated into 20 ml sterile test tube each containing a serial 10-fold dilution of the test antibiotic(s) in broth with or without 200 mgL-1 rhamnolipid. The tubes were incubated for 24 h with vigorous shaking at 37°C. Antimicrobial activity in multiple antibiotic-resistant gram-negative bacteria pathogens and gram-positive bacteria were assessed using optical density technique. The results clearly demonstrated that the presence of rhamnolipid significantly improved the efficiency of both antibiotics. We hypothesized that the addition of rhamnolipid at low concentration, causes release of LPS which results in an increase in cell surface hydrophobicity. This allows increased association of cells with hydrophobic antibiotics resulting in increased cytotoxicity rates.

Keywords: hydrophobic antibiotics, biosurfactant, rhamnolipid, azithromycin, clarithromycin

Procedia PDF Downloads 511
928 Screening and Isolation of Lead Molecules from South Indian Plant Extracts against NDM-1 Producing Escherichia coli

Authors: B. Chandar, M. K. Ramasamy, P. Madasamy

Abstract:

The discovery and development of newer antibiotics are limited with the increase in resistance of such multi-drug resistant bacteria creating the need for alternative new therapeutic agents. The recently discovered New Delhi Metallo-betalactamase-1 (NDM-1), which confers antibiotic resistance to most of the currently available β-lactams, except colistin and tigecycline, is a global concern. Several antibacterial drugs approved are natural products or their semisynthetic derivatives, but plant extracts remain to be explored to find molecules that are effective against NDM-1 bacteria. Therefore, it is necessary to explore the possibility of finding new and effective antibacterial compounds against NDM-1 bacteria. In the present study, we have screened a diverse set South Indian plant species, and report most plant species as a potential source for antimicrobial compounds against NDM-1 bacteria. Ethanol extracts from the leaves of taxonomically diverse South Indian medicinal plants were screened for antibacterial activity against NDM-1 E. coli using streak plate method. Among the plant screened against NDM-1 E. coli, the ethanol extracts from many plant extracts showed minimum bactericidal concentration between 5 and 15 mg /ml and MIC between 2.54 and 5.12 mg/ml. These extracts also showed a potent synergistic effect when combined with antibiotics colistin and tetracycline. Combretum albidum that was effective was taken for further analysis. At 5mg/L concentration, these extracts inhibited the NDM-1 enzyme in vitro, and residual activity for Combretum albidum was 33.09%. Treatment of NDM-1 E. coli with the extracts disrupted the cell wall integrity and caused 89.7% cell death. The plant extract of Combretum albidum that was effective was subjected to fractionation and the fraction was further subjected to HPLC, LC-MS for identification of antibacterial compound.

Keywords: antibacterial activity, combretum albidum, Escherichia coli, NDM-1

Procedia PDF Downloads 452
927 Impacts of Cerium Oxide Nanoparticles on Functional Bacterial Community in Activated Sludge

Authors: I. Kamika, S. Azizi, M. Tekere

Abstract:

Nanotechnology promises significant improvements of advanced materials and manufacturing techniques with a vast range of applications, which are critical for the future competitiveness of national industries. The manipulations and productions of materials, whilst, controlling the optical properties and surface area to a nanosize scale enabled a birth of a new field known as nanotechnology. However, their rapidly developing industry raises concerns about the environmental impacts of nanoparticles, as their effects on functional bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium Oxide nanoparticles (nCeO) on the bacterial microbiome of an activated sludge system, which influenced its performance of this system on nutrient removal. Out of 15875 reads sequenced, a total of 13133 reads were non-chimeric. The wastewater samples were more dominant to the unclassified bacteria (51.07% of bacteria community) followed with the classified bacteria (48.93). Proteobacteria was the most dominant phylum in both classified and unclassified bacteria, whereas 18% of bacteria could even not be assigned a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity. The bacterial operational taxonomic units (OTUs) ranged from 1014 to 2629 over the experimental period. The denitrification related species including Diaphorobacter species, Thauera species and those in the Sphaerotilus and Leptothrix group were found to be inhibited in a high concentration of CeO-NP. The diversity indices suggested that the bacterial community inhabiting the wastewater samples were less diverse as the concentration of CeO increases. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content as well as nCeO. The results provided the relationships between the microbial community and environmental variables in the wastewater samples.

Keywords: bacterial community, next generation, cerium oxide, wastewater, activated sludge, nanoparticles, nanotechnology

Procedia PDF Downloads 213
926 The Effect of Oil Pollution on Marine Microbial Populations in Israeli Coastal Waters

Authors: Yael Shai, Dror L. Angel, Dror Zurel, Peleg Astrahan, Maxim Rubin-Blum, Eyal Rahav

Abstract:

The high demand for oil and its by-products is symptomatic of the 21st century and occasionally leads to oil spills and pollution of coastal waters. Marine oil pollution may originate from a variety of sources -urban runoff, tanker cleaning, drilling activities, and oil spills. These events may release large amounts of highly toxic polycyclic aromatic hydrocarbons (PAHs) and other pollutants to coastal water, thereby threatening local marine life. Here, we investigated the effects of crude oil on the temporal dynamics of phytoplankton and heterotrophic bacteria in Israeli coastal waters. To this end, we added crude oil (500 µm thick layer, with and without additional nutrients; NO₃ and PO₄) to mesocosms (1m³ bags) containing oligotrophic surface coastal water collected near Haifa during summer and winter. Changes in phytoplankton biomass, activity and diversity were monitored daily for 5-6 days. Our results demonstrate that crude oil addition resulted in a pronounced decrease in phytoplankton biomass and production rates, while heterotrophic bacterial production increased significantly. Importantly, a few days post addition we found that the oil-degrading bacteria, Oleibacter sp. and Oleispira sp. appeared in the mesocosms and that the addition of nutrients (along with the crude oil) further increased this trend. This suggests that oil-degrading bacteria may be NO₃ and PO₄ limited in Israeli coastal waters. The results of this study should enable us to establish improved science-based environmental policy with respect to handling crude oil pollution in this region.

Keywords: heterotrophic bacteria, nutrients, mesocosm, oil pollution, oligotrophic, phytoplankton

Procedia PDF Downloads 153
925 High Rate Bio-Methane Generation from Petrochemical Wastewater Using Improved CSTR

Authors: Md. Nurul Islam Siddique, A. W. Zularisam

Abstract:

The effect of gradual increase in organic loading rate (OLR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance was measured at hydraulic retention time (HRT) of 4 to 2d, and start up procedure of the reactor was monitored for 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 ˚C Thermophilic condition was attained, and pH was adjusted at 7 ± 0.5 during the experiment. Supreme COD removal competence was 98±0.5% (r = 0.84) at an OLR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 ˚C with high COD removal efficiency and biogas production. An OLR of 7.5 g-COD/L d and HRT of 4 days were apposite for petrochemical wastewater treatment.

Keywords: anaerobic digestion, petrochemical wastewater, CSTR, methane

Procedia PDF Downloads 350
924 Protective Effect of Probiotic Lactic Acid Bacteria on Thioacetamide-Induced Liver Fibrosis in Rats: Histomorphological Study

Authors: Chittapon Jantararussamee, Malai Taweechotipatr, Udomsri Showpittapornchai, Wisuit Pradidarcheep

Abstract:

Hepatic fibrosis is characterized by collagen accumulation in hepatic lobules following wound healing process. If lefts untreated, it could progress into hepatic cirrhosis, portal hypertension, and liver failure. Probiotics comprise of lactic acid bacteria which are crucial components of the intestinal microflora and possess many beneficial properties. The objective of this study is to investigate the hepatoprotective effects of probiotic lactic acid bacteria (mixture of Lactobacillus paracasei, Lactobacillus casei, and Lactobacillus confusus at a ratio of 1: 1: 1) on thioacetamide-induced liver fibrotic rats in term of histomorphology study. Twenty-four male Wistar rats were randomly divided into four groups with 6 rats each: (A) control, (B) fibrotic, (C) fibrotic+probiotic, and (D) probiotic. Group (A) received daily oral administration of distilled water. Group (B and C) were induced by intraperitoneal injection of thioacetamide (TAA) (200 mg/kg BW) 3 times per week for consecutive 8 weeks. In probiotic-treated group (C and D), the number of a mixture of the viable microbial cells at 10⁹ CFU/ml was administered orally daily. After sacrifice, liver tissues were collected and processed for routine histological technique and stained with Sirius red. It was found that the fibrotic rats showed hepatic injury marked by area of inflammation, hydropic degeneration of hepatocytes, and accumulation of myofibroblast-like cells. The collagen fibers were substantially accumulated in the hepatic lobules. Moreover, probiotic-treated group significantly reduced the accumulation of collagen in rats treated by TAA. The liver damage was found to be lesser in the probiotic-treated group. It was noted that the liver tissues of control and probiotics groups were shown to be normal. Administration with probiotic lactic acid bacteria could improve the histomorphology in fibrotic liver and be useful for prevention of hepatic disorders.

Keywords: liver fibrosis, probiotics, lactic acid bacteria, thioacetamide

Procedia PDF Downloads 123
923 Antagonistic Potential of Epiphytic Bacteria Isolated in Kazakhstan against Erwinia amylovora, the Causal Agent of Fire Blight

Authors: Assel E. Molzhigitova, Amankeldi K. Sadanov, Elvira T. Ismailova, Kulyash A. Iskandarova, Olga N. Shemshura, Ainur I. Seitbattalova

Abstract:

Fire blight is a very harmful for commercial apple and pear production quarantine bacterial disease. To date, several different methods have been proposed for disease control, including the use of copperbased preparations and antibiotics, which are not always reliable or effective. The use of bacteria as biocontrol agents is one of the most promising and eco-friendly alternative methods. Bacteria with protective activity against the causal agent of fire blight are often present among the epiphytic microorganisms of the phyllosphere of host plants. Therefore, the main objective of our study was screening of local epiphytic bacteria as possible antagonists against Erwinia amylovora, the causal agent of fire blight. Samples of infected organs of apple and pear trees (shoots, leaves, fruits) were collected from the industrial horticulture areas in various agro-ecological zones of Kazakhstan. Epiphytic microorganisms were isolated by standard and modified methods on specific nutrient media. The primary screening of selected microorganisms under laboratory conditions to determine the ability to suppress the growth of Erwinia amylovora was performed by agar-diffusion-test. Among 142 bacteria isolated from the fire blight host plants, 5 isolates, belonging to the genera Bacillus, Lactobacillus, Pseudomonas, Paenibacillus and Pantoea showed higher antagonistic activity against the pathogen. The diameters of inhibition zone have been depended on the species and ranged from 10 mm to 48 mm. The maximum diameter of inhibition zone (48 mm) was exhibited by B. amyloliquefaciens. Less inhibitory effect was showed by Pantoea agglomerans PA1 (19 mm). The study of inhibitory effect of Lactobacillus species against E. amylovora showed that among 7 isolates tested only one (Lactobacillus plantarum 17M) demonstrated inhibitory zone (30 mm). In summary, this study was devoted to detect the beneficial epiphytic bacteria from plants organs of pear and apple trees due to fire blight control in Kazakhstan. Results obtained from the in vitro experiments showed that the most efficient bacterial isolates are Lactobacillus plantarum 17M, Bacillus amyloliquefaciens MB40, and Pantoea agglomerans PA1. These antagonists are suitable for development as biocontrol agents for fire blight control. Their efficacies will be evaluated additionally, in biological tests under in vitro and field conditions during our further study.

Keywords: antagonists, epiphytic bacteria, Erwinia amylovora, fire blight

Procedia PDF Downloads 161
922 Eradication of Gram-Positive Bacteria by Photosensitizers Immobilized in Polymers

Authors: Marina Nisnevitch, Anton Valkov, Faina Nakonechny, Kate Adar Raik, Yamit Mualem

Abstract:

Photosensitizers are dye compounds belonging to various chemical groups that in all the cases have a developed structure of conjugated double bonds. Under illumination with visible light, the photosensitizers are excited and transfer the absorbed energy to the oxygen dissolved in an aqueous phase, leading to production of a reactive oxygen species which cause irreversible damage to bacterial cells. When immobilized onto a solid phase, photosensitizers preserve their antibacterial properties. In the present study, photosensitizers were immobilized in polyethylene or propylene and tested for antimicrobial activity against Gram-positive S. aureus, S. epidermidis and Streptococcus sp. For this purpose, water-soluble photosensitizers, Rose Bengal sodium salt, and methylene blue as well as water-insoluble hematoporphyrin and Rose Bengal lactone, were immobilized by dissolution in melted polymers to yield 3 mm diameter rods and 3-5 mm beads. All four photosensitizers were found to be effective in the eradication of Gram-positive bacteria under illumination by a white luminescent lamp or sunlight. The immobilized photosensitizers can be applied for continuous water disinfection; they can be easily removed at the end of the treatment and reused.

Keywords: antimicrobial polymers, gram-positive bacteria, immobilization of photosensitizers, photodynamic antibacterial activity

Procedia PDF Downloads 234
921 Treatment of Wastewater by Constructed Wetland Eco-Technology: Plant Species Alters the Performance and the Enrichment of Bacteria Ries Alters the Performance and the Enrichment of Bacteria

Authors: Kraiem Khadija, Hamadi Kallali, Naceur Jedidi

Abstract:

Constructed wetland systems are eco-technology recognized as environmentally friendly and emerging innovative solutions remediation as these systems are cost-effective and sustainable wastewater treatment systems. The performance of these biological system is affected by various factors such as plant, substrate, wastewater type, hydraulic loading rate, hydraulic retention time, water depth, and operation mood. The objective of this study was to to assess the alters of plant species on pollutants reduction and enrichment of anammox and nitrifing denitrifing bacteria in a modified vertical flow (VFCW) constructed wetland. This tests were carried out using three modified vertical constructed wetlands with a surface of 0.23 m² and depth 80 cm. It was a saturated vertical constructed wetland at the bottom. The saturation zone is maintained by the siphon structure at the outlet. The VFCW (₁) system was unplanted, VFCW (₂) planted with Typha angustofolia, and VFCW(₃) planted with Phragmites australis. The experimental units were fed with domestic wastewater and were operated by batch mode during 8 months at an average hydraulic loading rate around 20 cm day− 1. The operation cycle was two days feeding and five days rest. Results indicated that plants presence improved the removal efficiency; the removal rates of organic matter (85.1–90.9%; COD and 81.8–88.9%; BOD5), nitrogen (54.2–73%; NTK and 66–77%; NH4 -N) were higher by 10.7–30.1% compared to the unplanted vertical constructed wetland. On the other hand, the plant species had no significant effect on removal efficiency of COD, The removal of COD was similar in VFCW (₂) and VFCW (₃) (p > 0.05), attaining average removal efficiencies of 88.7% and 85.2%, respectively. Whereas it had a significant effect on NTK removal (p > 0.05), with an average removal rate of 72% versus 51% for VFCW (₂) and VFCW (₃), respectively. Among the three sets of vertical flow constructed wetlands, the VFCW(₂) removed the highest percent of total streptococcus, fecal streptococcus total coliforms, fecal coliforms, E. coli as 59, 62, 52, 63, and 58%, respectively. The presence and the plant species alters the community composition and abundance of the bacteria. The abundance of bacteria in the planted wetland was much higher than that in the unplanted one. VFCW(₃) had the highest relative abundance of nitrifying bacteria such as Nitrosospira (18%), Nitrosospira (12%), and Nitrobacter (8%). Whereas the vertical constructed wetland planted with typha had larger number of denitrifying species, with relative abundances of Aeromonas (13%), Paracoccus (11%), Thauera (7%), and Thiobacillus (6%). However, the abundance of nitrifying bacteria was very lower in this system than VFCW(₂). Interestingly, the presence of Thypha angustofolia species favored the enrichment of anammox bacteria compared to unplanted system and system planted with phragmites australis. The results showed that the middle layer had the most accumulation of anammox bacteria, which the anaerobic condition is better and the root system is moderate. Vegetation has several characteristics that make it an essential component of wetlands, but its exact effects are complex and debated.

Keywords: wastawater, constructed wetland, anammox, removal

Procedia PDF Downloads 97
920 Impact of Bacillus subtilis Exotoxins on Fecundity, Sex Hormones and Release of Schistosoma mansoni cercariae in Biomphalaria alexandrina Snails

Authors: Alaa A. Youssef, Mohamed A. El-Emam, Momeana B. Mahmoud, Mona Ragheb

Abstract:

Schistosomiasis, also known as bilharzia, is a disease caused by a parasitic trematode worm called Schistosoma. Biological control of the snail intermediate hosts of Schistosoma is one of the promising methods for eliminating this disease in Egypt. The molluscicidal activity of exotoxins secreted from Bacillus subtilis bacteria was studied. The effect of these exotoxins was studied on the fecundity of Biomphalaria alexandrina snails the intermediate host of Schistosoma mansoni; the fecundity includes the reproductive rate (R0) of B. alexandrina snails and levels of sex hormones (progesterone, testosterone, and estradiol). Moreover, the cercarial production of S. mansoni was determined. The results showed a significant reduction in the egg-laying capacity of the treated snails after exposure to sublethal concentrations ( LC10 and LC25) of B. Subtilis exotoxins; this reduction reached 70% at LC25. Moreover, B. Subtilis exotoxins' significantly suppressed the cercarial production of B. alexandrina snails. It is concluded that the exotoxins of Bacillus subtilis bacteria play an important role in the interference of the Schistosomiasis transmission, hence should be applied in the strategy of schistosomiasis control.

Keywords: schistosomiasis, Biomphalaria alexandrina snails, Bacillus subtilis bacteria, fecundity, sex hormones

Procedia PDF Downloads 129
919 Effects of Ophiocordyceps dipterigena BCC 2073 β-Glucan as a Prebiotic on the in vitro Growth of Probiotic and Pathogenic Bacteria

Authors: Wai Prathumpai, Pranee Rachtawee, Sutamat Khajeeram, Pariya Na Nakorn

Abstract:

The  β-glucan produced by Ophiocordyceps dipterigena BCC 2073 is a (1, 3)-β-D-glucan with highly branching O-6-linkedside chains that is resistant to acid hydrolysis (by hydrochloric acid and porcine pancreatic alpha-amylase). This β-glucan can be utilized as a prebiotic due to its advantageous structural and biological properties. The effects of using this β-glucan as the sole carbon source for the in vitro growth of two probiotic bacteria (L. acidophilus BCC 13938 and B. animalis ATCC 25527) were investigated. Compared with the effect of using 1% glucose or fructo-oligosaccharide (FOS) as the sole carbon source, using 1% β-glucan for this purpose showed that this prebiotic supported and stimulated the growth of both types of probiotic bacteria and induced them to produce the highest levels of metabolites during their growth. The highest levels of lactic and acetic acid, 10.04 g·L-1 and 2.82 g·L-1, respectively, were observed at 2 h of cultivation using glucose as the sole carbon source. Furthermore, the fermentation broth obtained using 1% β-glucan as the sole carbon source had greater antibacterial activity against selected pathogenic bacteria (B. subtilis TISTR 008, E. coli TISTR 780, and S. typhimurium TISTR 292) than did the broths prepared using glucose or FOS as the sole carbon source. The fermentation broth obtained by growing L. acidophilus BCC 13938 in the presence of β-glucan inhibited the growth of B. subtilis TISTR 008 by more than 70% and inhibited the growth of both S. typhimurium TISTR 292 and E. coli TISTR 780 by more than 90%. In conclusion, O. dipterigena BCC 2073 is a potential source of a β-glucan prebiotic that could be used for commercial production in the near future.

Keywords: beta-glucan, Ophiocordyceps dipterigena, prebiotic, probiotic, antimicrobial

Procedia PDF Downloads 140
918 Carbohydrates Quantification from Agro-Industrial Waste and Fermentation with Lactic Acid Bacteria

Authors: Prittesh Patel, Bhavika Patel, Ramar Krishnamurthy

Abstract:

Present study was conducted to isolate lactic acid bacteria (LAB) from Oreochromis niloticus and Nemipterus japonicus fish gut. The LAB isolated were confirmed through 16s rRNA sequencing. It was observed that isolated Lactococcus spp. were able to tolerate NaCl and bile acid up to certain range. The isolated Lactococcus spp. were also able to survive in acidic and alkaline conditions. Further agro-industrial waste like peels of pineapple, orange, lemon, sugarcane, pomegranate; sweet lemon was analyzed for their polysaccharide contents and prebiotic properties. In the present study, orange peels, sweet lemon peels, and pineapple peels give maximum indigestible polysaccharide. To evaluate synbiotic effect combination of probiotic and prebiotic were analyzed under in vitro conditions. Isolates Lactococcus garvieae R3 and Lactococcus sp. R4 reported to have better fermentation efficiency with orange, sweet lemon and pineapple compare to lemon, sugarcane and pomegranate. The different agro-industrial waste evaluated in this research resulted in being a cheap and fermentable carbon source by LAB.

Keywords: agro-industrial waste, lactic acid bacteria, prebiotic, probiotic, synbiotic

Procedia PDF Downloads 156
917 Potential Application of Selected Halotolerant PSB Isolated from Rhizospheric Soil of Chenopodium quinoa in Plant Growth Promotion

Authors: Ismail Mahdi, Nidal Fahsi, Mohamed Hafidi, Abdelmounaim Allaoui, Latefa Biskri

Abstract:

To meet the worldwide demand for food, smart management of arable lands is needed. This could be achieved through sustainable approaches such as the use of plant growth-promoting microorganisms including bacteria. Phosphate (P) solubilization is one of the major mechanisms of plant growth promotion by associated bacteria. In the present study, we isolated and screened 14 strains from the rhizosphere of Chenopodium quinoa wild grown in the experimental farm of UM6P and assessed their plant growth promoting properties. Next, they were identified by using 16S rRNA and Cpn60 genes sequencing as Bacillus, Pseudomonas and Enterobacter. These strains showed dispersed capacities to solubilize P (up to 346 mg L−1) following five days of incubation in NBRIP broth. We also assessed their abilities for indole acetic acid (IAA) production (up to 795,3 µg ml−1) and in vitro salt tolerance. Three Bacillus strains QA1, QA2, and S8 tolerated high salt stress induced by NaCl with a maximum tolerable concentration of 8%. Three performant isolates, QA1, S6 and QF11, were further selected for seed germination assay because of their pronounced abilities in terms of P solubilization, IAA production and salt tolerance. The early plant growth potential of tested strains showed that inoculated quinoa seeds displayed greater germination rate and higher seedlings growth under bacterial treatments. The positive effect on seed germination traits strongly suggests that the tested strains are growth promoting, halotolerant and P solubilizing bacteria which could be exploited as biofertilizers.

Keywords: phosphate solubilizing bacteria, IAA, Seed germination, salt tolerance, quinoa

Procedia PDF Downloads 127
916 Antimicrobial Activity of Biosynthesized Silver Nanoparticles Using Different Bacteria

Authors: Malalage Mudara Peiris

Abstract:

Objectives of the study are: the biosynthesis of silver nanoparticles (AgNPs) using Escherichia coli, Acinetobacter baumannii and Staphylococcus aureus, characterization of silver nanoparticles and determination of antimicrobial activity against E. coli, P. aeruginosa, S. aureus, MRSA, and C. Albicans. Methods: E. coli (ATCC 25922), A. baumanii (clinical strain), S. aureus (clinical strain) cultured in nutrient broth medium were used for biosynthesis of AgNPs. Culture conditions (AgNO3 concentration, pH, incubation time and temperature) were optimized. Characterization of synthesized NPs was done by UV-Visible spectroscopy. The antimicrobial activity of the synthesized NPs was studied using the good diffusion assay against E. coli, S. aureus, MRSA (Methicillin-resistant Staphylococcus aureus), P. aeruginosa and C. Albicans. Results: All the selected bacteria produced silver nanoparticles at alkaline pH above 0.3 g/L AgNO3 concentration. The optimum reaction temperature was 60oC. According to the UV-Visible spectroscopy, the maximum absorbance was found to be around 420 - 430 nm indicating the presence of AgNPs. According to the good diffusion results, AgNPs produced by S. aureus resulted in the larger zone of inhibition (ZOI) against the selected pathogens, while AgNPs produced by E. coli showed comparatively smaller ZOI. In general, biosynthesized AgNPs were highly effective against gram-negative bacteria compared to gram-positive bacterial and fungal species. Conclusions: Green AgNPs produced by each bacterium show antimicrobial activity against the selected pathogens. AgNPs produced by S. aureus are the most effective NPs among tested AgNPs, while AgNPs produced by E. coli are the least effective. Further characterization of NPs is required to study the physical properties of silver NPs.

Keywords: green nanotechnology, silver nanoparticles, bacteria, antimicrobial activity

Procedia PDF Downloads 201
915 Identification and Antibiotic Susceptibility of Bacteria Isolated from the Intestines of Slaughtered Goat and Cattle

Authors: Latifat Afolake Ogunfolabo, Hakeem Babafemi Ogunfolabo

Abstract:

The gastrointestinal tract is densely populated with micro-organism which closely and intensively interacts with the host and ingested feed. Food borne infections are some of the major international challenges that lead to high mortality and also, antimicrobial resistance, which has been classified as a serious threat by World Health Organization. Samples of slaughtered cattle and goats intestines were collected and standard culture methods were used for bacteria isolation and identification. Minimum inhibitory concentration of commonly used antibiotic using modification of the disk diffusion method was carried out on isolates. The samples cultured were all positive to Pseudomonas aeruginosa (95% and 90%), Escherichia coli (85%), Salmonella typhi (70% and 60%), Staphylococcus aureus (75%and 100%), Micrococcus luteus (55% and35%), Bacillus macerans (60% and 5%), Bacillus cereus (25% and 20%), Clostridium perfringens (20% and 5%), Micrococcus varians (20% and 5%), Bacillus subtilis (25% and 5%), Streptococcus faecalis (40% and 25%) and Streptococcus faecium (15% and 10%) in goat and cattle respectively. Also, Proteus mirabilis (40%), Micrococcus luteus (35%), Proteus vulgaris (30%), Klebsiella aerogenes(15%) were isolated from cattle. The total coliform (13.55 x10⁵cfu/gm ± 1.77) and (20.30 x10⁵cfu/gm ± 1.27) counts were significantly higher than the total bacteria count (8.3 x10⁵cfu/gm ± 1.41) and (16.60 x10⁵cfu/gm ±0.49) for goat and cattle respectively. Selected Bacteria count of isolates showed that Staphylococcus aureus had the highest significant value (6.9 x10⁵cfu/gm ± 0.57) and (16.80 x10⁵cfu/gm ± 0.57) Escherichia coli (4.60 x10⁵cfu/gm ± 0.42) and (7.05 x10⁵cfu/gm ± 0.64) while the lowest significant value was obtained in Salmonella/Shigella (1.7 x10⁵cfu/gm ± 0.00) and (1.5 x10⁵cfu/gm ± 0.00) for goat and cattle respectively. Susceptibility of bacteria isolated from slaughtered goat and cattle intestine to commonly used antibiotics showed that the highest statistical significant value for zone of inhibition for goat was obtained for Ciprofloxacin (30.00 ± 2.25, 23.75 ± 2.49, 17.17 ± 1.40) followed by Augmentin (28.33 ± 1.22, 21. 83 ± 2.44, 16.67 ± 1.49), Erythromycin (27.75 ±1.48, 20.25 ± 1.29, 16.67 ± 1.26) while the lowest values were obtained for Ofloxacin (27.17 ± 1.89, 21.42 ± 2.19, 16.83 ± 1.26) respectively and values obtained for cattle are Ciprofloxacin (30.64 ± 1.6, 25.79 ± 1.76, 8.07 ± 11.49) followed by Augmentin (28.29 ± 1.33, 22.64 ± 1.82, 17.43 ± 1.55) Ofloxacin (26.57 ± 2.02, 20.79 ± 2.75, 16.21 ± 1.19) while the lowest values were obtained for Erythromycin (26.64 ± 1.49, 20.29 ± 1.49, 16.29 ± 1.33) at different dilution factor (10⁻¹, 10⁻², 10⁻³) respectively. The isolates from goat and cattle were all susceptible to Augmentin at the three different dilution factors. Some goat isolates are intermediate to Ciprofloxacin and Erythromycin at 10⁻² and 10⁻³, while resistance to Ciprofloxacin at 10⁻³ dilution factor. Ciprofloxacin and Ofloxacin at the dilution factors of 10⁻³ and 10⁻¹ for some cattle isolate and resistance were observed for Ofloxacin and Erythromycin at dilution of 10⁻³. These results indicate the susceptibilities and the antimicrobial resistance to commonly used antibiotic.

Keywords: antibiotic susceptibility, bacteria, cattle, goat, identification

Procedia PDF Downloads 116
914 Microbial Evaluation of Geophagic and Cosmetic Clays from Southern and Western Nigeria: Potential Natural Nanomaterials

Authors: Bisi-Johnson, Mary A., Hamzart A. Oyelade, Kehinde A. Adediran, Saheed A. Akinola

Abstract:

Geophagic and cosmetic clays are among potential nano-material which occur naturally and are of various forms. The use of these nano-clays is a common practice in both rural and urban areas mostly due to tradition and medicinal reasons. These naturally occurring materials can be valuable sources of nano-material by serving as nano-composites. The need to ascertain the safety of these materials is the motivation for this research. Physical Characterization based on the hue value and microbiological qualities of the nano-clays were carried out. The Microbial analysis of the clay samples showed considerable contamination with both bacteria and fungi with fungal contaminants taking the lead. This observation may not be unlikely due to the ability of fungi species to survive harsher growth conditions than bacteria. 'Atike pupa' showed no bacterial growth. The clay with the largest bacterial count was Calabash chalk (Igbanke), while that with the highest fungal count was 'Eko grey'. The most commonly isolated bacteria in this study were Clostridium spp. and Corynebacterium spp. while fungi included Aspergillus spp. These results are an indication of the need to subject these clay materials to treatments such as heating before consumption or topical usage thereby ascertaining their safety.

Keywords: nano-material, clay, microorganism, quality

Procedia PDF Downloads 385