Search results for: textile reinforced concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3003

Search results for: textile reinforced concrete

2733 Strengthening Reinforced Concrete Beams Using Carbon Fibre Reinforced Polymer Strips

Authors: Mina Iskander, Mina Melad, Mourad Yasser, Waleed Abdel Rahim, Amr Mosa, Mohamed El Lahamy, Ezzeldin Sayed-Ahmed, Mohamed Abou-Zeid

Abstract:

Strengthening of reinforced concrete beams in flexure using externally bonded composite laminate of high tensile strength is easy and of the minimum cost compared to traditional methods such as increasing the concrete section depth or reinforcement that requires formwork and curing which affect the structure usability. One of the main limitations of this technique is debonding of the externally bonded laminate, either by end delamination or by mid-span flexural crack-induced debonding. ACI 440.2-08 suggests that using side-bonded FRP laminate in the flexural strengthening of RC beams may serve to limit the extent and width of flexural cracks. Consequently, this technique may decrease the effect of flexural cracks on initiating the mid-span debonding; i.e. delays the flexural crack-induced debonding. Furthermore, bonding the FRP strips to the side of the beam may offer an attractive, practical solution when the soffit of this beam is not accessible. This paper presents an experimental programme designed to investigate the effect of using externally bonded CFRP laminate on the sides of reinforced concrete beams and compares the results to those of bonding the CFRP laminate to the soffit of the beams. In addition, the paper discusses the effect of using end anchorage by U-wrapping the CFRP strips at their end zones with CFRP sheets for beams strengthened with soffit-bonded and side-bonded CFRP strips. Thus, ten rectangular reinforced concrete beams were tested to failure in order to study the effect of changing the location of the externally bonded laminate on the flexural capacity and ductility of the strengthened beams. Pultruded CFRP strips were bonded to the soffit of the beams or their sides to check the possibility of limiting the flexural cracking in mid-span region, which is the main reason for mid-span debonding. Pre-peg CFRP sheets were used near the support as U-wrap for the beam to act as an end-anchorage for the externally bonded strips in order to delay/prevent the end delamination. Strength gains of 38% and 43% were recorded for the soffit-bonded and the side-bonded composite strips with end U-wrapped sheets, respectively. Furthermore, beams with end sheets applied as an end anchorage showed higher ductility than those without these sheets.

Keywords: flexural strengthening, externally bonded CFRP, side-bonded CFRP, CFRP laminates

Procedia PDF Downloads 330
2732 Vermicomposting of Textile Industries’ Dyeing Sludge by Using Eisenia foetida

Authors: Kunwar D. Yadav, Dayanand Sharma

Abstract:

Surat City in India is famous for textile and dyeing industries which generate textile sludge in huge quantity. Textile sludge contains harmful chemicals which are poisonous and carcinogenic. The safe disposal and reuse of textile dyeing sludge are challenging for owner of textile industries and government of the state. The aim of present study was the vermicomposting of textile industries dyeing sludge with cow dung and Eisenia foetida as earthworm spices. The vermicompost reactor of 0.3 m3 capacity was used for vermicomposting. Textile dyeing sludge was mixed with cow dung in different proportion, i.e., 0:100 (C1), 10:90 (C2), 20:80 (C3), 30:70 (C4). Vermicomposting duration was 120 days. All the combinations of the feed mixture, the pH was increased to a range 7.45-7.78, percentage of total organic carbon was decreased to a range of 31-33.3%, total nitrogen was decreased to a range of 1.15-1.32%, total phosphorus was increased in the range of 6.2-7.9 (g/kg).

Keywords: cow dung, Eisenia foetida, textile sludge, vermicompost

Procedia PDF Downloads 190
2731 Behavior of Reinforced Concrete Structures Subjected to Multiple Floor Fire Loads

Authors: Suresh Narayana, Chaitanya Akkannavar

Abstract:

Assessment of behavior of reinforced concrete structures subjected to fire load, and its behavior for the multi-floor fire have been presented in this paper. This research is the part of the study to evaluate the performance of ten storied RC structure when it is subjected to fire loads at multiple floors and to evaluate the post-fire effects on structure such as deflection and stresses occurring due to combined effect of static and thermal loading. Thermal loading has been assigned to different floor levels to estimate the critical floors that initiate the collapse of the structure. The structure has been modeled and analyzed in Solid Works and commercially available Finite Element Software ABAQUS. Results are analyzed, and particular design solution has been suggested.

Keywords: collapse mechanism, fire analysis, RC structure, stress vs temperature

Procedia PDF Downloads 441
2730 Pull-Out Analysis of Composite Loops Embedded in Steel Reinforced Concrete Retaining Wall Panels

Authors: Pierre van Tonder, Christoff Kruger

Abstract:

Modular concrete elements are used for retaining walls to provide lateral support. Depending on the retaining wall layout, these precast panels may be interlocking and may be tied into the soil backfill via geosynthetic strips. This study investigates the ultimate pull-out load increase, which is possible by adding varied diameter supplementary reinforcement through embedded anchor loops within concrete retaining wall panels. Full-scale panels used in practice have four embedded anchor points. However, only one anchor loop was embedded in the center of the experimental panels. The experimental panels had the same thickness but a smaller footprint (600mm x 600mm x 140mm) area than the full-sized panels to accommodate the space limitations of the laboratory and experimental setup. The experimental panels were also cast without any bending reinforcement as would typically be obtained in the full-scale panels. The exclusion of these reinforcements was purposefully neglected to evaluate the impact of a single bar reinforcement through the center of the anchor loops. The reinforcement bars had of 8 mm, 10 mm, 12 mm, and 12 mm. 30 samples of concrete panels with embedded anchor loops were tested. The panels were supported on the edges and the anchor loops were subjected to an increasing tensile force using an Instron piston. Failures that occurred were loop failures and panel failures and a mixture thereof. There was an increase in ultimate load vs. increasing diameter as expected, but this relationship persisted until the reinforcement diameter exceeded 10 mm. For diameters larger than 10 mm, the ultimate failure load starts to decrease due to the dependency of the reinforcement bond strength to the concrete matrix. Overall, the reinforced panels showed a 14 to 23% increase in the factor of safety. Using anchor loops of 66kN ultimate load together with Y10 steel reinforcement with bent ends had shown the most promising results in reducing concrete panel pull-out failure. The Y10 reinforcement had shown, on average, a 24% increase in ultimate load achieved. Previous research has investigated supplementary reinforcement around the anchor loops. This paper extends this investigation by evaluating supplementary reinforcement placed through the panel anchor loops.

Keywords: supplementary reinforcement, anchor loops, retaining panels, reinforced concrete, pull-out failure

Procedia PDF Downloads 155
2729 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete

Procedia PDF Downloads 277
2728 Experimental Research on Ductility of Regional Confined Concrete Beam

Authors: Qinggui Wu, Xinming Cao, Guyue Guo, Jiajun Ding

Abstract:

In efforts to study the shear ductility of regional confined concrete beam, 5 reinforced concrete beams were tested to examine its shear performance. These beams has the same shear span ratio, concrete strength, different ratios of tension reinforcement and shapes of stirrup. The purpose of the test is studying the effects of stirrup shape and tension reinforcement ratio on failure mode and shear ductility. The test shows that the regional confined part can be used as an independent part and the rest of the beam is good to work together so that the ductility of the beam is more one time higher than that of the normal confined concrete beam. The related laws of the effect of tension reinforcement ratio and stirrup shapes on beam’s shear ductility are founded.

Keywords: ratio of tension reinforcement, stirrup shapes, shear ductility, failure mode

Procedia PDF Downloads 297
2727 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading

Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera

Abstract:

For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.

Keywords: blast phenomenon, experimental methods, material models, numerical methods

Procedia PDF Downloads 132
2726 Flexural Fatigue Performance of Self-Compacting Fibre Reinforced Concrete

Authors: Surinder Pal Singh, Sanjay Goel

Abstract:

The paper presents results of an investigation conducted to study the flexural fatigue characteristics of Self Compacting Concrete (SCC) and Self Compacting Fibre Reinforced Concrete (SCFRC). In total 360 flexural fatigue tests and 270 static flexural strength tests were conducted on SCC and SCFRC specimens to obtain the fatigue test data. The variability in the distribution of fatigue life of SCC and SCFRC have been analyzed and compared with that of NVC and NVFRC containing steel fibres of comparable size and shape. The experimental coefficients of fatigue equations have been estimated to represent relationship between stress level (S) and fatigue life (N) for SCC and SCFRC containing different fibre volume fractions. The probability of failure (Pf) has been incorporated in S-N relationships to obtain families of S-N-Pf relationships. A good agreement between the predicted curves and those obtained from the test data has been observed. The fatigue performance of SCC and SCFRC has been evaluated in terms of two-million cycles fatigue strength/endurance limit. The theoretic fatigue lives were also estimated using single-log fatigue equation for 10% probability of failure to estimate the enhanced extent of theoretic fatigue lives of SCFRC with reference to SCC and NVC. The reduction in variability in the fatigue life, increased endurance limit and increased theoretiac fatigue lives demonstrates an overall better fatigue performance for SCC and SCFRC.

Keywords: fatigue life, fibre, probability of failure, self-compacting concrete

Procedia PDF Downloads 329
2725 Flexural Behaviour of Normal Strength and High Strength Fibre Concrete Beams

Authors: Mostefa Hamrat, Bensaid Boulekbache, Mohamed Chemrouk, Sofiane Amziane

Abstract:

The paper presents the results of an experimental work on the flexural behaviour of two types of concrete in terms of the progressive cracking process until failure and the crack opening, and beam deflection, using Digital Image Correlation (DIC) technique. At serviceability limit states, comparisons of the building code equations and the equations developed by some researchers for the short-term deflections and crack widths have been made using the reinforced concrete test beams. The experimental results show that the addition of steel fibers increases the first cracking load and amplify the number of cracks that conducts to a remarkable decreasing in the crack width with an increasing in ductility. This study also shows that there is a good agreement between the deflection values for RC beams predicted by the major codes (Eurocode2, ACI 318, and the CAN/CSA-S806) and the experimental results for beams with steel fibers at service load. The most important added benefit of the DIC technique is that it allows detecting the first crack with a high precision easily measures the crack opening and follows the progressive cracking process until failure of reinforced concrete members.

Keywords: beams, digital image correlation (DIC), deflection, crack width, serviceability, codes provisions

Procedia PDF Downloads 309
2724 Simplifying Seismic Vulnerability Analysis for Existing Reinforced Concrete Buildings

Authors: Maryam Solgi, Behzad Shahmohammadi, Morteza Raissi Dehkordi

Abstract:

One of the main steps for seismic retrofitting of buildings is to determine the vulnerability of structures. While current procedures for evaluating existing buildings are complicated, and there is no limitation between short, middle-high, and tall buildings. This research utilizes a simplified method for assessing structures, which is adequate for existing reinforced concrete buildings. To approach this aim, Simple Lateral Mechanisms Analysis (SLaMA) procedure proposed by NZSEE (New Zealand Society for Earthquake Engineering) has been carried out. In this study, three RC moment-resisting frame buildings are determined. First, these buildings have been evaluated by inelastic static procedure (Pushover) based on acceptance criteria. Then, Park-Ang Damage Index is determined for the whole members of each building by Inelastic Time History Analysis. Next, the Simple Lateral Mechanisms Analysis procedure, a hand method, is carried out to define the capacity of structures. Ultimately, existing procedures are compared with Peak Ground Acceleration caused to fail (PGAfail). The results of this comparison emphasize that the Pushover procedure and SLaMA method define a greater value of PGAfail than the Park-Ang Damage model.

Keywords: peak ground acceleration caused to fail, reinforced concrete moment-frame buildings, seismic vulnerability analysis, simple lateral mechanisms analysis

Procedia PDF Downloads 57
2723 Influence of Magnetized Water on the Split Tensile Strength of Concrete

Authors: Justine Cyril E. Nunag, Nestor B. Sabado Jr., Jienne Chester M. Tolosa

Abstract:

Concrete has high compressive strength but a low-tension strength. The small tensile strength of concrete is regarded as its primary weakness, which is why it is typically reinforced with steel, a material that is resistant to tension. Even with steel, however, cracking can occur. In strengthening concrete, only a few researchers have modified the water to be used in a concrete mix. This study aims to compare the split tensile strength of normal structural concrete to concrete prepared with magnetic water and a quick setting admixture. In this context, magnetic water is defined as tap water that has undergone a magnetic process to become magnetized water. To test the hypothesis that magnetized concrete leads to higher split tensile strength, twenty concrete specimens were made. There were five groups, each with five samples, that were differentiated by the number of cycles (0, 50, 100, and 150). The data from the Universal Testing Machine's split tensile strength were then analyzed using various statistical models and tests to determine the significant effect of magnetized water. The result showed a moderate (+0.579) but still significant degree of correlation. The researchers also discovered that using magnetic water for 50 cycles did not result in a significant increase in the concrete's split tensile strength, which influenced the analysis of variance. These results suggest that a concrete mix containing magnetic water and a quick-setting admixture alters the typical split tensile strength of normal concrete. Magnetic water has a significant impact on concrete tensile strength. The hardness property of magnetic water influenced the split tensile strength of concrete. In addition, a higher number of cycles results in a strong water magnetism. The laboratory test results show that a higher cycle translates to a higher tensile strength.

Keywords: hardness property, magnetic water, quick-setting admixture, split tensile strength, universal testing machine

Procedia PDF Downloads 107
2722 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece

Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos

Abstract:

The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.

Keywords: earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening

Procedia PDF Downloads 259
2721 Creep Behaviour of Heterogeneous Timber-UHPFRC Beams Assembled by Bonding: Experimental and Analytical Investigation

Authors: K. Kong, E. Ferrier, L. Michel

Abstract:

The purpose of this research was to investigate the creep behaviour of the heterogeneous Timber-UHPFRC beams. New developments have been done to further improve the structural performance, such as strengthening of the timber (glulam) beam by bonding composite material combine with an ultra-high performance fibre reinforced concrete (UHPFRC) internally reinforced with or without carbon fibre reinforced polymer (CFRP) bars. However, in the design of wooden structures, in addition to the criteria of strengthening and stiffness, deformability due to the creep of wood, especially in horizontal elements, is also a design criterion. Glulam, UHPFRC and CFRP may be an interesting composite mix to respond to the issue of creep behaviour of composite structures made of different materials with different rheological properties. In this paper, we describe an experimental and analytical investigation of the creep performance of the glulam-UHPFRC-CFRP beams assembled by bonding. The experimental investigations creep behaviour was conducted for different environments: in- and outside under constant loading for approximately a year. The measured results are compared with numerical ones obtained by an analytical model. This model was developed to predict the creep response of the glulam-UHPFRC-CFRP beams based on the creep characteristics of the individual components. The results show that heterogeneous glulam-UHPFRC beams provide an improvement in both the strengthening and stiffness, and can also effectively reduce the creep deflection of wooden beams.

Keywords: carbon fibre-reinforced polymer (CFRP) bars, creep behaviour, glulam, ultra-high performance fibre reinforced concrete (UHPFRC)

Procedia PDF Downloads 375
2720 Investigating the Capacity of Cracking Torsion of Rectangular and Cylindrical RC Beams with Spiral and Normal Stirrups

Authors: Hadi Barghlame, M. A. Lotfollahi-Yaghin, Mehdi Mohammad Rezaei, Saeed Eskanderzadeh

Abstract:

In this paper, the capacity of cracking torsion on rectangular and cylindrical beams with spiral and normal stirrups in similar properties are investigated. Also, in the beams with spiral stirrups, stirrups are not wrapping and spiral stirrups similar to normal stirrups in ACI code. Therefore, models of above-mentioned beams have been numerically analyzed under various loads using ANSYS software. In this research, the behavior of rectangular reinforced concrete beams is compared with the cylindrical reinforced concrete beams. The capacity of cracking torsion of rectangular and cylindrical RC beams with spiral and normal stirrups are same. In the other words, the behavior of rectangular RC beams is similar to cylindrical beams.

Keywords: cracking torsion, RC beams, spiral stirrups, normal stirrups

Procedia PDF Downloads 253
2719 Patterns Obtained by Using Knitting Technique in Textile Crafts

Authors: Özlem Erzurumlu, Nazan Oskay, Ece Melek

Abstract:

Knitting which is one of the textile manufacturing techniques is manufactured by using the system of single yarn. Knitting wares consisting of loops structurally have flexible structures. Knitting can be shaped and given volume easily due to increasing or decreasing the number of loops, being manufactured in circular form and its flexible structure. While the knitting wares are basically being manufactured to meet the requirements, it takes its place in the art field overflowing outside of industrial production later. Textile artist ensures his ideas to convert into artistic product by using textiles and non-textiles with aesthetic concerns and creative impulses. When textile crafts are observed at the present time we see that knitting technique has an extensive area of use such as sculpture, panel, installation art and performing art. It is examined how the knitting technique is used in textile crafts observing patterns obtained by this technique in textile crafts in this study.

Keywords: art, textile, knitting art, textile crafts

Procedia PDF Downloads 675
2718 Experimental Investigation of Damaged Reinforced Concrete Beams Repaired with Carbon Fibre Reinforced Polymer (CFRP) Strip under Impact Loading

Authors: M. Al-Farttoosi, M. Y. Rafiq, J. Summerscales, C. Williams

Abstract:

Many buildings and bridges are damaged due to impact loading, explosions, terrorist attacks and wars. Most of the damaged structures members such as beams, columns and slabs are not totally failed and it can be repaired. Nowadays, carbon fibre reinforced polymer CFRP has been wildly used in strengthening and retrofitting the structures members. CFRP can rector the load carrying capacity of the damaged structures members to make them serviceable. An experimental investigation was conducted to investigate the impact behaviour of the damaged beams repaired with CFRP. The tested beams had different degrees of damage and near surface mounted technique NSM was used to install the CFRP. A heavy drop weight impact test machine was used to conduct the experimental work. The study investigated the impact strength, stiffness, cracks and deflection of the CFRP repaired beams. The results show that CFRP significantly increased the impact resistance of the damaged beams. CFRP increased the damaged beams stiffness and reduced the deflection. The results showed that the NSM technique is more effective in repairing beams and preventing the debonding of the CFRP.

Keywords: damaged, concrete, impact, repaired

Procedia PDF Downloads 315
2717 Waterproofing Agent in Concrete for Tensile Improvement

Authors: Muhamad Azani Yahya, Umi Nadiah Nor Ali, Mohammed Alias Yusof, Norazman Mohamad Nor, Vikneswaran Munikanan

Abstract:

In construction, concrete is one of the materials that can commonly be used as for structural elements. Concrete consists of cement, sand, aggregate and water. Concrete can be added with admixture in the wet condition to suit the design purpose such as to prolong the setting time to improve workability. For strength improvement, concrete is being added with other hybrid materials to increase strength; this is because the tensile strength of concrete is very low in comparison to the compressive strength. This paper shows the usage of a waterproofing agent in concrete to enhance the tensile strength. High tensile concrete is expensive because the concrete mix needs fiber and also high cement content to be incorporated in the mix. High tensile concrete being used for structures that are being imposed by high impact dynamic load such as blast loading that hit the structure. High tensile concrete can be defined as a concrete mix design that achieved 30%-40% tensile strength compared to its compression strength. This research evaluates the usage of a waterproofing agent in a concrete mix as an element of reinforcement to enhance the tensile strength. According to the compression and tensile test, it shows that the concrete mix with a waterproofing agent enhanced the mechanical properties of the concrete. It is also show that the composite concrete with waterproofing is a high tensile concrete; this is because of the tensile is between 30% and 40% of the compression strength. This mix is economical because it can produce high tensile concrete with low cost.

Keywords: high tensile concrete, waterproofing agent, concrete, rheology

Procedia PDF Downloads 295
2716 Numerical Simulation of Encased Composite Column Bases Subjected to Cyclic Loading

Authors: Eman Ismail, Adnan Masri

Abstract:

Energy dissipation in ductile moment frames occurs mainly through plastic hinge rotations in its members (beams and columns). Generally, plastic hinge locations are pre-determined and limited to the beam ends, where columns are designed to remain elastic in order to avoid premature instability (aka story mechanisms) with the exception of column bases, where a base is 'fixed' in order to provide higher stiffness and stability and to form a plastic hinge. Plastic hinging at steel column bases in ductile moment frames using conventional base connection details is accompanied by several complications (thicker and heavily stiffened connections, larger embedment depths, thicker foundation to accommodate anchor rod embedment, etc.). An encased composite base connection is proposed where a segment of the column beginning at the base up to a certain point along its height is encased in reinforced concrete with headed shear studs welded to the column flanges used to connect the column to the concrete encasement. When the connection is flexurally loaded, stresses are transferred to a reinforced concrete encasement through the headed shear studs, and thereby transferred to the foundation by reinforced concrete mechanics, and axial column forces are transferred through the base-plate assembly. Horizontal base reactions are expected to be transferred by the direct bearing of the outer and inner faces of the flanges; however, investigation of this mechanism is not within the scope of this research. The inelastic and cyclic behavior of the connection will be investigated where it will be subjected to reversed cyclic loading, and rotational ductility will be observed in cases of yielding mechanisms where yielding occurs as flexural yielding in the beam-column, shear yielding in headed studs, and flexural yielding of the reinforced concrete encasement. The findings of this research show that the connection is capable of achieving satisfactory levels of ductility in certain conditions given proper detailing and proportioning of elements.

Keywords: seismic design, plastic mechanisms steel structure, moment frame, composite construction

Procedia PDF Downloads 102
2715 Reinforced Concrete Box Girder Bridge Hinge Replacement and Horizontal and Vertical Earthquake Restrainers

Authors: Kumars ZandParsa, Quynh Nguyen, Hadi Moradi

Abstract:

There are old cast-in-place concrete box girder bridges in California with inter-span hinges that are designed based on old earthquake codes. Hinge removal is part of the bridges’ earthquake retrofitting project, and hinges were removed and replaced with modified hinges per new earthquake codes. The span that has a hinge is divided into short and long cantilevers in which the short cantilever supports the long cantilever. In the recent bridge hinge replacement, the length of the short and long cantilevers were 20ft and 80ft, respectively. The seat in the new design is wider than the old design, and the horizontal and vertical movements of the deck at the hinge location must be computed to check if restraints are needed. In this paper, besides considering the conventional reinforced concrete box girder bridges, the hinge removal operations, along with the response spectrum analysis based on the El Centro 1940 earthquake, will be presented to verify if vertical and horizontal restrainers are needed.

Keywords: hinge replacement, restrainers, vertical earthquake, response spectrum analysis

Procedia PDF Downloads 522
2714 Effect of Concrete Strength and Aspect Ratio on Strength and Ductility of Concrete Columns

Authors: Mohamed A. Shanan, Ashraf H. El-Zanaty, Kamal G. Metwally

Abstract:

This paper presents the effect of concrete compressive strength and rectangularity ratio on strength and ductility of normal and high strength reinforced concrete columns confined with transverse steel under axial compressive loading. Nineteen normal strength concrete rectangular columns with different variables tested in this research were used to study the effect of concrete compressive strength and rectangularity ratio on strength and ductility of columns. The paper also presents a nonlinear finite element analysis for these specimens and another twenty high strength concrete square columns tested by other researchers using ANSYS 15 finite element software. The results indicate that the axial force – axial strain relationship obtained from the analytical model using ANSYS are in good agreement with the experimental data. The comparison shows that the ANSYS is capable of modeling and predicting the actual nonlinear behavior of confined normal and high-strength concrete columns under concentric loading. The maximum applied load and the maximum strain have also been confirmed to be satisfactory. Depending on this agreement between the experimental and analytical results, a parametric numerical study was conducted by ANSYS 15 to clarify and evaluate the effect of each variable on strength and ductility of the columns.

Keywords: ANSYS, concrete compressive strength effect, ductility, rectangularity ratio, strength

Procedia PDF Downloads 480
2713 Performance Based Design of Masonry Infilled Reinforced Concrete Frames for Near-Field Earthquakes Using Energy Methods

Authors: Alok Madan, Arshad K. Hashmi

Abstract:

Performance based design (PBD) is an iterative exercise in which a preliminary trial design of the building structure is selected and if the selected trial design of the building structure does not conform to the desired performance objective, the trial design is revised. In this context, development of a fundamental approach for performance based seismic design of masonry infilled frames with minimum number of trials is an important objective. The paper presents a plastic design procedure based on the energy balance concept for PBD of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames subjected to near-field earthquakes. The proposed energy based plastic design procedure was implemented for trial performance based seismic design of representative masonry infilled reinforced concrete frames with various practically relevant distributions of masonry infill panels over the frame elevation. Non-linear dynamic analyses of the trial PBD of masonry infilled R/C frames was performed under the action of near-field earthquake ground motions. The results of non-linear dynamic analyses demonstrate that the proposed energy method is effective for performance based design of masonry infilled R/C frames under near-field as well as far-field earthquakes.

Keywords: masonry infilled frame, energy methods, near-fault ground motions, pushover analysis, nonlinear dynamic analysis, seismic demand

Procedia PDF Downloads 264
2712 A Study on Behaviour of Normal Strength Concrete and High Strength Concrete Subjected to Elevated Temperatures

Authors: Butchi Kameswara Rao Chittem, Rooban Kumar

Abstract:

Cement concrete is a complex mixture of different materials. Concrete is believed to have a good fire resistance. Behaviour of concrete depends on its mix proportions and its constituent materials when it is subjected to elevated temperatures. Loss in compressive strength, loss in weight or mass, change in colour and spall of concrete are reported in literature as effects of elevated temperature on concrete. In this paper results are reported on the behaviour of normal strength concrete and high strength concrete subjected to temperatures 200°C, 400°C, 600°C, and 800°C and different cooling regimes viz. air cooling, water quenching. Rebound hammer test was also conducted to study the changes in surface hardness of concrete specimens subjected to elevated temperatures.

Keywords: normal strength concrete, high-strength concrete, temperature, NDT

Procedia PDF Downloads 405
2711 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams

Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim

Abstract:

As the number of fire incidents has been increased, fire incidents significantly damage economy and human lives. Especially when high strength reinforced concrete is exposed to high temperature due to a fire, deterioration occurs such as loss in strength and elastic modulus, cracking, and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. After heated, the fire damaged reinforced concrete (RC) beams having different cover thicknesses and fire exposure time periods are rehabilitated by removing damaged part of cover thickness and filling polymeric mortar into the removed part. From four-point loading test, results show that maximum loads of the rehabilitated RC beams are 1.8~20.9% higher than those of the non-fire damaged RC beam. On the other hand, ductility ratios of the rehabilitated RC beams are decreased than that of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. For the rehabilitated RC beam models, integrated temperature–structural analyses are performed in advance to obtain geometries of the fire damaged RC beams. After spalled and damaged parts are removed, rehabilitated part is added to the damaged model with material properties of polymeric mortar. Three dimensional continuum brick elements are used for both temperature and structural analyses. The same loading and boundary conditions as experiments are implemented to the rehabilitated beam models and nonlinear geometrical analyses are performed. Structural analytical results show good rehabilitation effects, when the result predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric mortar. From four point loading tests, it is found that such rehabilitation is able to make the structural performance of fire damaged beams similar to non-damaged RC beams. The predictions from the finite element models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.

Keywords: fire, high strength concrete, rehabilitation, reinforced concrete beam

Procedia PDF Downloads 425
2710 Flexural Properties of RC Beams Strengthened with A Composite Reinforcement Layer: FRP Grid and ECC

Authors: Yu-Zhou Zheng, Wen-Wei Wang

Abstract:

In this paper, a new strengthening technique for reinforced concrete (RC) beams is proposed by combining Basalt Fibre Reinforced Polymer (BFRP) grid and Engineered Cementitious Composites (ECC) as a composite reinforcement layer (CRL). Five RC beams externally bonded with the CRL at the soffit and one control RC beam was tested to investigate their flexural behaviour. The thickness of BFRP grids (i.e., 1mm, 3mm and 5mm) and the sizes of CRL in test program were selected as the test parameters, while the thickness of CRL was fixed approximately at 30mm. The test results showed that there is no debonding of CRL to occur obviously in the strengthened beams. The final failure modes were the concrete crushing or the rupture of BFRP grids, indicating that the proposed technique is effective in suppressing the debonding of externally bonded materials and fully utilizing the material strengths. Compared with the non-strengthened beam, the increments of crack loading for strengthened beams were 58%~97%, 15%~35% for yield loading and 4%~33% for the ultimate loading, respectively. An analytical model is also presented to predict the full-range load-deflection responses of the strengthened beams and validated through comparisons with the test results.

Keywords: basalt fiber-reinforced polymer (BFRP) grid, ECC, RC beams, strengthening

Procedia PDF Downloads 302
2709 Assessment of Bridge Performance with Laminated versus Spring Seismic Isolation

Authors: M. Z. Ramli, A. Adnan, Chee Wei Tan

Abstract:

To gain a better understanding of earthquake forces on reinforced concrete bridge piers with different bearing condition, a series of experiments was conducted on a realistic, 1:4 scale reinforced concrete bridge pier. The normal practices of laminated seismic isolation bearing is compared with the new design spring seismic isolation bearing where invented by Engineering Seismology and Earthquake Engineering Research (e-SEER), Universiti Teknologi Malaysia. The nonlinear behavior of piers is modeled using the fibre beam theory to verify the experimental works. The hysteresis of bridge pier with different bearing condition was illustrated under different Peak Ground Acceleration (PGAs). The average slope of the hysteresis respectively to the global stiffness was also investigated.

Keywords: bridge, laminated seismic isolation, spring seismic isolation, Peak Ground Acceleration, stiffness

Procedia PDF Downloads 525
2708 Evaluating the Methods of Retrofitting and Renovating the Masonry Schools of Ahvaz City

Authors: Navid Khayat, Babak Mombeni

Abstract:

This study investigates the retrofitting of schools in Ahvaz City. Three schools, namely, Enghelab, Sherafat, and Golchehreh, in Ahvaz City, are initially examined through Schmidt hammer and ultrasonic tests. Given the tests and controls on the structures of these schools, the methods are presented for their reconstruction. The plan is presented for each school by estimating the cost and generally the feasibility and estimated the duration of project reconstruction. After reconstruction, the mentioned tests are re-performed for rebuilt parts and the results indicate a significant improvement in performance of structure because of reconstruction. According to the results, despite the fact that the use of fiber reinforced polymers (FRP) for structure retrofitting is costly, due to the low executive costs and also other benefits of FRP, it is generally considered as one of the most effective ways of retrofitting. Building the concrete coating on walls is another effective method in retrofitting the buildings. According to this method, a grid of horizontal and vertical bars is installed on the wall and then the concrete is poured on it. The use of concrete coating on the concrete and brick structures leads to the useful results and the experience indicates that the poured concrete filled the joints well and provides the appropriate bonding and adhesion.

Keywords: renovation, retrofitting, masonry structures, concrete coating

Procedia PDF Downloads 419
2707 Analysis of a Damage-Control Target Displacement of Reinforced Concrete Bridge Pier for Seismic Design

Authors: Mohd Ritzman Abdul Karim, Zhaohui Huang

Abstract:

A current focus in seismic engineering practice is the development of seismic design approach that focuses on the performance-based design. Performance-based design aims to design the structures to achieve specified performance based on the damage limit states. This damage limit is more restrictive limit than life safety and needs to be carefully estimated to avoid damage in piers due to failure in transverse reinforcement. In this paper, a different perspective of damage limit states has been explored by integrating two damage control material limit state, concrete and reinforcement by introduced parameters such as expected yield stress of transverse reinforcement where peak tension strain prior to bar buckling is introduced in a recent study. The different perspective of damage limit states with modified yield displacement and the modified plastic-hinge length is used in order to predict damage-control target displacement for reinforced concreate (RC) bridge pier. Three-dimensional (3D) finite element (FE) model has been developed for estimating damage target displacement to validate proposed damage limit states. The result from 3D FE analysis was validated with experimental study found in the literature. The validated model then was applied to predict the damage target displacement for RC bridge pier and to validate the proposed study. The tensile strain on reinforcement and compression on concrete were used to determine the predicted damage target displacement and compared with the proposed study. The result shows that the proposed damage limit states were efficient in predicting damage-control target displacement consistent with FE simulations.

Keywords: damage-control target displacement, damage limit states, reinforced concrete bridge pier, yield displacement

Procedia PDF Downloads 123
2706 Wood Ashes from Electrostatic Filter as a Replacement for the Fly Ashes in Concrete

Authors: Piotr-Robert Lazik, Harald Garrecht

Abstract:

Many concrete technologists are looking for a solution to replace Fly Ashes that would be unavailable in a few years as an element that occurs as a major component of many types of concrete. The importance of such component is clear - it saves cement and reduces the amount of CO2 in the atmosphere that occurs during cement production. Wood Ashes from electrostatic filter can be used as a valuable substitute in concrete. The laboratory investigations showed that the wood ash concrete had a compressive strength comparable to coal fly ash concrete. These results indicate that wood ash can be used to manufacture normal concrete.

Keywords: wood ashes, fly ashes, electric filter, replacement, concrete technology

Procedia PDF Downloads 103
2705 Effects of CFRP Confinement on PCC and Glass Fiber Reinforced Concrete

Authors: Muhammad Jahangeer Munir, Liaqat Ali Qureshi, Junaid Ahmed

Abstract:

This paper presents the investigation regarding use of glass fibers in structural concrete members and determining the behavior of normal PCC, GFRC and retrofitted GFRC under different tests performed in the laboratory. Effect of retrofitting on the GFRC & PCC was investigated by using three patterns of CFRP wrapping. Properties like compressive, split tensile and flexural strength of normal GFRC and retrofitted GFRC were investigated and compared with their PCC counterparts. It was found that GFRC has more compressive strength as compared to PCC. At lower confinement pressures PCC behaves better than GFRC. Confinement efficiency was lower in GFRC as compared to PCC in terms of Split tensile strength. In case of GFRC all the patterns of wrapped CFRP strips showed more strength than their PCC counterparts.

Keywords: carbon fiber reinforced polymers, confinement, glass fibers, retrofitting

Procedia PDF Downloads 568
2704 Seismic Performance of Two-Storey RC Frame Designed EC8 under In-Plane Cyclic Loading

Authors: N. H. Hamid, A. Azmi, M. I. Adiyanto

Abstract:

This main purpose of this paper is to evaluate the seismic performance of double bay two-storey reinforced concrete frame under in-plane lateral cyclic loading which designed using Eurocode 8 (EC8) by taking into account of seismic loading. The prototype model of reinforced concrete frame was constructed in one-half scale tested under in-plane lateral cyclic loading starts with ±0.2% drift, ±0.25% up to ±3.0% drift with the increment of ±0.25%. The performance of the RC frame is evaluated in terms of the hysteresis loop (load vs. displacement), stiffness, ductility, lateral strength, stress-strain relationship and equivalent viscous damping. Visual observation of the crack pattern after testing were observed where the beam- column joint suffer the most severe damage as it is the critical part in moment resisting frame. Spalling of concrete starts occurred at ±2.0% drift and become worse at ±2.5% drift. The experimental result shows that the maximum lateral strength of specimen is 99.98 kN and ductility of the specimen is µ=4.07 which lies between 3≤µ≤6 in order to withstand moderate to severe earthquakes.

Keywords: ductility, equivalent viscous damping, hysteresis loops, lateral strength, stiffness

Procedia PDF Downloads 327