Search results for: surface stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9849

Search results for: surface stress

9699 Influence of Machining Process on Surface Integrity of Plasma Coating

Authors: T. Zlámal, J. Petrů, M. Pagáč, P. Krajkovič

Abstract:

For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.

Keywords: machining, plasma sprayed coating, surface integrity, strengthening

Procedia PDF Downloads 230
9698 Topology Optimization of Heat Exchanger Manifolds for Aircraft

Authors: Hanjong Kim, Changwan Han, Seonghun Park

Abstract:

Heat exchanger manifolds in aircraft play an important role in evenly distributing the fluid entering through the inlet to the heat transfer unit. In order to achieve this requirement, the manifold should be designed to have a light weight by withstanding high internal pressure. Therefore, this study aims at minimizing the weight of the heat exchanger manifold through topology optimization. For topology optimization, the initial design space was created with the inner surface extracted from the currently used manifold model and with the outer surface having a dimension of 243.42 mm of X 74.09 mm X 65 mm. This design space solid model was transformed into a finite element model with a maximum tetrahedron mesh size of 2 mm using ANSYS Workbench. Then, topology optimization was performed under the boundary conditions of an internal pressure of 5.5 MPa and the fixed support for rectangular inlet boundaries by SIMULIA TOSCA. This topology optimization produced the minimized finial volume of the manifold (i.e., 7.3% of the initial volume) based on the given constraints (i.e., 6% of the initial volume) and the objective function (i.e., maximizing manifold stiffness). Weight of the optimized model was 6.7% lighter than the currently used manifold, but after smoothing the topology optimized model, this difference would be bigger. The current optimized model has uneven thickness and skeleton-shaped outer surface to reduce stress concentration. We are currently simplifying the optimized model shape with spline interpolations by reflecting the design characteristics in thickness and skeletal structures from the optimized model. This simplified model will be validated again by calculating both stress distributions and weight reduction and then the validated model will be manufactured using 3D printing processes.

Keywords: topology optimization, manifold, heat exchanger, 3D printing

Procedia PDF Downloads 216
9697 To Estimate the Association between Visual Stress and Visual Perceptual Skills

Authors: Vijay Reena Durai, Krithica Srinivasan

Abstract:

Introduction: The two fundamental skills involved in the growth and wellbeing of any child can be categorized into visual motor and perceptual skills. Visual stress is a disorder which is characterized by visual discomfort, blurred vision, misspelling words, skipping lines, letters bunching together. There is a need to understand the deficits in perceptual skills among children with visual stress. Aim: To estimate the association between visual stress and visual perceptual skills Objective: To compare visual perceptual skills of children with and without visual stress Methodology: Children between 8 to 15 years of age participated in this cross-sectional study. All children with monocular visual acuity better than or equal to 6/6 were included. Visual perceptual skills were measured using test for visual perceptual skills (TVPS) tool. Reading speed was measured with the chosen colored overlay using Wilkins reading chart and pattern glare score was estimated using a 3cpd gratings. Visual stress was defined as change in reading speed of greater than or equal to 10% and a pattern glare score of greater than or equal to 4. Results: 252 children participated in this study and the male: female ratio of 3:2. Majority of the children preferred Magenta (28%) and Yellow (25%) colored overlay for reading. There was a significant difference between the two groups (MD=1.24±0.6) (p<0.04, 95% CI 0.01-2.43) only in the sequential memory skills. The prevalence of visual stress in this group was found to be 31% (n=78). Binary logistic regression showed that odds ratio of having poor visual perceptual skills was OR: 2.85 (95% CI 1.08-7.49) among children with visual stress. Conclusion: Children with visual stress are found to have three times poorer visual perceptual skills than children without visual stress.

Keywords: visual stress, visual perceptual skills, colored overlay, pattern glare

Procedia PDF Downloads 354
9696 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting

Authors: Nader Khalafian, Mohsen Ghaderi

Abstract:

Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.

Keywords: reverse faulting, surface deformation, numerical, neural network

Procedia PDF Downloads 400
9695 Identification of High Stress Regions in Proximal Femur During Single-Leg Stance and Sideways Fall Using QCT-Based Finite Element Model

Authors: Hossein Kheirollahi, Yunhua Luo

Abstract:

Studying stress and strain trends in the femur and recognizing femur failure mechanism is very important for preventing hip fracture in the elderly. The aim of this study was to identify high stress and strain regions in the femur during normal walking and falling to find the mechanical behavior and failure mechanism of the femur. We developed a finite element model of the femur from the subject’s quantitative computed tomography (QCT) image and used it to identify potentially high stress and strain regions during the single-leg stance and the sideways fall. It was found that fracture may initiate from the superior region of femoral neck and propagate to the inferior region during a high impact force such as sideways fall. The results of this study showed that the femur bone is more sensitive to strain than stress which indicates the effect of strain, in addition to effect of stress, should be considered for failure analysis.

Keywords: finite element analysis, hip fracture, strain, stress

Procedia PDF Downloads 477
9694 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression

Authors: Siqi Lin, Yangang Zhao

Abstract:

Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.

Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency

Procedia PDF Downloads 379
9693 Inversion of PROSPECT+SAIL Model for Estimating Vegetation Parameters from Hyperspectral Measurements with Application to Drought-Induced Impacts Detection

Authors: Bagher Bayat, Wouter Verhoef, Behnaz Arabi, Christiaan Van der Tol

Abstract:

The aim of this study was to follow the canopy reflectance patterns in response to soil water deficit and to detect trends of changes in biophysical and biochemical parameters of grass (Poa pratensis species). We used visual interpretation, imaging spectroscopy and radiative transfer model inversion to monitor the gradual manifestation of water stress effects in a laboratory setting. Plots of 21 cm x 14.5 cm surface area with Poa pratensis plants that formed a closed canopy were subjected to water stress for 50 days. In a regular weekly schedule, canopy reflectance was measured. In addition, Leaf Area Index (LAI), Chlorophyll (a+b) content (Cab) and Leaf Water Content (Cw) were measured at regular time intervals. The 1-D bidirectional canopy reflectance model SAIL, coupled with the leaf optical properties model PROSPECT, was inverted using hyperspectral measurements by means of an iterative optimization method to retrieve vegetation biophysical and biochemical parameters. The relationships between retrieved LAI, Cab, Cw, and Cs (Senescent material) with soil moisture content were established in two separated groups; stress and non-stressed. To differentiate the water stress condition from the non-stressed condition, a threshold was defined that was based on the laboratory produced Soil Water Characteristic (SWC) curve. All parameters retrieved by model inversion using canopy spectral data showed good correlation with soil water content in the water stress condition. These parameters co-varied with soil moisture content under the stress condition (Chl: R2= 0.91, Cw: R2= 0.97, Cs: R2= 0.88 and LAI: R2=0.48) at the canopy level. To validate the results, the relationship between vegetation parameters that were measured in the laboratory and soil moisture content was established. The results were totally in agreement with the modeling outputs and confirmed the results produced by radiative transfer model inversion and spectroscopy. Since water stress changes all parts of the spectrum, we concluded that analysis of the reflectance spectrum in the VIS-NIR-MIR region is a promising tool for monitoring water stress impacts on vegetation.

Keywords: hyperspectral remote sensing, model inversion, vegetation responses, water stress

Procedia PDF Downloads 190
9692 Investigating the Relationship Between Iranian EFL Teachers’ Motivation, Creativity and Job Stress

Authors: Mehrab Karimian

Abstract:

The present study was designed to find the relationship between Iranian teachers' motivation, their creativity and their job stress. To achieve such goals, 101 EFL teachers, through convenient sampling from different institutes of Shiraz and Fasa, took part in this study. The researcher utilized three instruments, including the Motivation to Teach Questionnaire (MTQ), the Teacher Creativity Questionnaire, and the Job Stress Questionnaire. By running the Pearson correlation coefficient, the findings emphasized that there was a statistically significant positive relationship between Iranian EFL teachers' motivation and their creativity. Moreover, the finding of this study revealed that there was a statistically significant positive relationship between Iranian EFL teachers' motivation and their job stress. Also, according to the results of this study, there was no statistically significant relationship between Iranian EFL teachers' creativity and their job stress. Besides, by utilizing multiple regression analyses, the finding highlighted that just teachers' creativity was able to strongly predict the variance in teachers' motivation. Each of the other variables, namely gender, teachers' job stress, and years of teaching experience individually and collectively, did not predict teachers' motivation. The pedagogical implications of the findings are thoroughly presented.

Keywords: creativity, job stress, gender, years of teaching experience

Procedia PDF Downloads 23
9691 Protection against the Hazards of Stress on Health in Older Adults through Mindfulness

Authors: Cindy de Frias, Erum Whyne

Abstract:

Objectives: The current study examined whether the link between stress and health-related quality of life was buffered by protective factors, namely mindfulness, in a sample of middle-aged and older adults. Method: In this cross-sectional study, 134 healthy, community-dwelling adults (aged 50–85 years) were recruited from Dallas, Texas. The participants were screened for depressive symptoms and severity (using the Patient Health Questionnaire [PHQ-9]). All participants completed measures of self-reported health status (i.e., SF-36v2: mental and physical health composites), life stress (using the Elder’s Life Stress Inventory [ELSI]), and trait mindfulness (i.e., Mindful Attention Awareness Scale). Results: Hierarchical regressions (covarying for age, gender, and education) showed that life stress was inversely related to physical and mental health. Mindfulness was positively related to mental health. The negative effect of life stress on mental health was weakened for those individuals with greater trait mindfulness. Discussion: The results suggest that mindfulness is a powerful, adaptive strategy that may protect middle-aged and older adults from the well-known harmful effects of stress on healthy aging.

Keywords: health, stress, mindfulness, aging

Procedia PDF Downloads 436
9690 Numerical Simulation of Hydraulic Fracture Propagation in Marine-continental Transitional Tight Sandstone Reservoirs by Boundary Element Method: A Case Study of Shanxi Formation in China

Authors: Jiujie Cai, Fengxia LI, Haibo Wang

Abstract:

After years of research, offshore oil and gas development now are shifted to unconventional reservoirs, where multi-stage hydraulic fracturing technology has been widely used. However, the simulation of complex hydraulic fractures in tight reservoirs is faced with geological and engineering difficulties, such as large burial depths, sand-shale interbeds, and complex stress barriers. The objective of this work is to simulate the hydraulic fracture propagation in the tight sandstone matrix of the marine-continental transitional reservoirs, where the Shanxi Formation in Tianhuan syncline of the Dongsheng gas field was used as the research target. The characteristic parameters of the vertical rock samples with rich beddings were clarified through rock mechanics experiments. The influence of rock mechanical parameters, vertical stress difference of pay-zone and bedding layer, and fracturing parameters (such as injection rates, fracturing fluid viscosity, and number of perforation clusters within single stage) on fracture initiation and propagation were investigated. In this paper, a 3-D fracture propagation model was built to investigate the complex fracture propagation morphology by boundary element method, considering the strength of bonding surface between layers, vertical stress difference and fracturing parameters (such as injection rates, fluid volume and viscosity). The research results indicate that on the condition of vertical stress difference (3 MPa), the fracture height can break through and enter the upper interlayer when the thickness of the overlying bedding layer is 6-9 m, considering effect of the weak bonding surface between layers. The fracture propagates within the pay zone when overlying interlayer is greater than 13 m. Difference in fluid volume distribution between clusters could be more than 20% when the stress difference of each cluster in the segment exceeds 2MPa. Fracture cluster in high stress zones cannot initiate when the stress difference in the segment exceeds 5MPa. The simulation results of fracture height are much higher if the effect of weak bonding surface between layers is not involved. By increasing the injection rates, increasing fracturing fluid viscosity, and reducing the number of clusters within single stage can promote the fracture height propagation through layers. Optimizing the perforation position and reducing the number of perforations can promote the uniform expansion of fractures. Typical curves of fracture height estimation were established for the tight sandstone of the Lower Permian Shanxi Formation. The model results have good consistency with micro-seismic monitoring results of hydraulic fracturing in Well 1HF.

Keywords: fracture propagation, boundary element method, fracture height, offshore oil and gas, marine-continental transitional reservoirs, rock mechanics experiment

Procedia PDF Downloads 90
9689 Assessing Moisture Adequacy over Semi-arid and Arid Indian Agricultural Farms using High-Resolution Thermography

Authors: Devansh Desai, Rahul Nigam

Abstract:

Crop water stress (W) at a given growth stage starts to set in as moisture availability (M) to roots falls below 75% of maximum. It has been found that ratio of crop evapotranspiration (ET) and reference evapotranspiration (ET0) is an indicator of moisture adequacy and is strongly correlated with ‘M’ and ‘W’. The spatial variability of ET0 is generally less over an agricultural farm of 1-5 ha than ET, which depends on both surface and atmospheric conditions, while the former depends only on atmospheric conditions. Solutions from surface energy balance (SEB) and thermal infrared (TIR) remote sensing are now known to estimate latent heat flux of ET. In the present study, ET and moisture adequacy index (MAI) (=ET/ET0) have been estimated over two contrasting western India agricultural farms having rice-wheat system in semi-arid climate and arid grassland system, limited by moisture availability. High-resolution multi-band TIR sensing observations at 65m from ECOSTRESS (ECOsystemSpaceborne Thermal Radiometer Experiment on Space Station) instrument on-board International Space Station (ISS) were used in an analytical SEB model, STIC (Surface Temperature Initiated Closure) to estimate ET and MAI. The ancillary variables used in the ET modeling and MAI estimation were land surface albedo, NDVI from close-by LANDSAT data at 30m spatial resolution, ET0 product at 4km spatial resolution from INSAT 3D, meteorological forcing variables from short-range weather forecast on air temperature and relative humidity from NWP model. Farm-scale ET estimates at 65m spatial resolution were found to show low RMSE of 16.6% to 17.5% with R2 >0.8 from 18 datasets as compared to reported errors (25 – 30%) from coarser-scale ET at 1 to 8 km spatial resolution when compared to in situ measurements from eddy covariance systems. The MAI was found to show lower (<0.25) and higher (>0.5) magnitudes in the contrasting agricultural farms. The study showed the potential need of high-resolution high-repeat spaceborne multi-band TIR payloads alongwith optical payload in estimating farm-scale ET and MAI for estimating consumptive water use and water stress. A set of future high-resolution multi-band TIR sensors are planned on-board Indo-French TRISHNA, ESA’s LSTM, NASA’s SBG space-borne missions to address sustainable irrigation water management at farm-scale to improve crop water productivity. These will provide precise and fundamental variables of surface energy balance such as LST (Land Surface Temperature), surface emissivity, albedo and NDVI. A synchronization among these missions is needed in terms of observations, algorithms, product definitions, calibration-validation experiments and downstream applications to maximize the potential benefits.

Keywords: thermal remote sensing, land surface temperature, crop water stress, evapotranspiration

Procedia PDF Downloads 43
9688 Impact of Social Stress on Mental Health: A Study on Sanitation Workers of India and Social Work

Authors: Farhat Nigar

Abstract:

Social stress is stress which arises from one's relationships with others and from the social environment. When a person finds that they are not capable of coping with a situation, stress arises. Sanitation workers faces a lot of discrimination from the society which leads to stress and have severe impact on their mental health. Sanitation workers face lot of work pressure which sometimes leads to mental health problems, but there is lack of proper data of sanitation workers dealing with mental health problems which is a big obstacle before evolving policies for the welfare of sewage and septic tank workers which needs attention. The objective of the study is to find out the effect of social stress on the mental health of sanitation workers and to explore the scope of social work in coping with mental health problems of workers. This descriptive and analytical study was conducted on 100 sanitation workers of Aligarh city through convenience sampling. Data were collected from respondents by schedule and interview method. Most of the respondents said that they don’t enjoy equal status in society and at the workplace as well which leads to stress. Many of them said that social stress leads to poor performance in the workplace. Some of the workers feel depressed when their work is not appreciated and recognized in society. Majority of respondents has stress in financial and employment-related difficulties. Thus it can be said that social stress has several impacts on mental health which leads to poor performance, lack of confidence, and motivation which sometimes leads to depression. Social work can play a very important and challenging role in overcoming these difficulties by providing education, motivation and guiding them and by making them aware of their rights and duties.

Keywords: discrimination, health, stress, sanitation workers

Procedia PDF Downloads 123
9687 Influence of Plant Cover and Redistributing Rainfall on Green Roof Retention and Plant Drought Stress

Authors: Lubaina Soni, Claire Farrell, Christopher Szota, Tim D. Fletcher

Abstract:

Green roofs are a promising engineered ecosystem for reducing stormwater runoff and restoring vegetation cover in cities. Plants can contribute to rainfall retention by rapidly depleting water in the substrate; however, this increases the risk of plant drought stress. Green roof configurations, therefore, need to provide plants the opportunity to efficiently deplete the substrate but also avoid severe drought stress. This study used green roof modules placed in a rainout shelter during a six-month rainfall regime simulated in Melbourne, Australia. Rainfall was applied equally with an overhead irrigation system on each module. Aside from rainfall, modules were under natural climatic conditions, including temperature, wind, and radiation. A single species, Ficinia nodosa, was planted with five different treatments and three replicates of each treatment. In this experiment, we tested the impact of three plant cover treatments (0%, 50% and 100%) on rainfall retention and plant drought stress. We also installed two runoff zone treatments covering 50% of the substrate surface for additional modules with 0% and 50% plant cover to determine whether directing rainfall resources towards plant roots would reduce drought stress without impacting rainfall retention. The retention performance for the simulated rainfall events was measured, quantifying all components for hydrological performance and survival on green roofs. We found that evapotranspiration and rainfall retention were similar for modules with 50% and 100% plant cover. However, modules with 100% plant cover showed significantly higher plant drought stress. Therefore, planting at a lower cover/density reduced plant drought stress without jeopardizing rainfall retention performance. Installing runoff zones marginally reduced evapotranspiration and rainfall retention, but by approximately the same amount for modules with 0% and 50% plant cover. This indicates that reduced evaporation due to the installation of the runoff zones likely contributed to reduced evapotranspiration and rainfall retention. Further, runoff occurred from modules with runoff zones faster than those without, indicating that we created a faster pathway for water to enter and leave the substrate, which also likely contributed to lower overall evapotranspiration and retention. However, despite some loss in retention performance, modules with 50% plant cover installed with runoff zones showed significantly lower drought stress in plants compared to those without runoff zones. Overall, we suggest that reducing plant cover represents a simple means of optimizing green roof performance but creating runoff zones may reduce plant drought stress at the cost of reduced rainfall retention.

Keywords: green roof, plant cover, plant drought stress, rainfall retention

Procedia PDF Downloads 89
9686 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm

Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park

Abstract:

For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.

Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure

Procedia PDF Downloads 502
9685 The Role of Lifetime Stress in the Relation between Socioeconomic Status and Health-Risk Behaviors

Authors: Teresa Smith, Farrah Jacquez

Abstract:

Health-risk behaviors (e.g., smoking, poor diet) directly increase the risk for chronic disease and morbidity. There is substantial evidence of a negative association between socioeconomic status (SES) and engagement in health-risk behaviors. However, due to the complexity of SES, researchers have suggested looking beyond this factor to fully understand the mechanisms that underlie engagement in health-risk behaviors. Stress is one plausible mechanism through which SES impacts health-risk behaviors. Currently, it remains unclear how stress occurring across the life course might impact health behaviors and explain the association between SES and these behaviors. To address the gaps in the literature, 172 adults between the ages of 18-49 were surveyed about their lifetime stress exposure, sociodemographic variables, and health-risk behaviors via an online recruitment portal, Prolific. Five major findings emerged from the current study. First, SES was negatively associated with engagement in health-risk behaviors and lifetime stress above and beyond current stress and other relevant demographics. Second, lifetime stress was significantly associated with health-risk behaviors above and beyond current stress and relevant demographic variables. Third, lifetime stress fully mediated the association between SES and health-risk behaviors above and beyond current stress and other demographics. Fourth, the severity of stress experienced emerged as the most significant lifetime stress variable that explains the relation between SES and health-risk behaviors. Fifth and finally, lower SES and experiencing financial and legal/crime stressors increased the likelihood of engaging in health-risk behaviors. The current study results align with previous research and suggest that stress occurring over the lifespan impacts the relation between SES and health-risk behaviors, which are in turn known to impact health outcomes. However, our findings move the current literature forward by providing a more nuanced understanding of the specific aspects of stress that influence this association. Specifically, the severity of stress experienced across the entire lifespan was the most important aspect of stress when examining the association between SES and health-risk behaviors. Further, individuals most at risk for engaging in health-risk behaviors are those of the lowest SES and experience financial and legal/crime stressors. These findings have the potential to inform interventions and policies aimed at addressing health-risk behaviors by providing a more sophisticated understanding of the impact of stress.

Keywords: stress, health behaviors, socioeconomic status, health

Procedia PDF Downloads 123
9684 Shear Modulus Degradation of a Liquefiable Sand Deposit by Shaking Table Tests

Authors: Henry Munoz, Muhammad Mohsan, Takashi Kiyota

Abstract:

Strength and deformability characteristics of a liquefiable sand deposit including the development of earthquake-induced shear stress and shear strain as well as soil softening via the progressive degradation of shear modulus were studied via shaking table experiments. To do so, a model of a liquefiable sand deposit was constructed and densely instrumented where accelerations, pressures, and displacements at different locations were continuously monitored. Furthermore, the confinement effects on the strength and deformation characteristics of the liquefiable sand deposit due to an external surcharge by placing a heavy concrete slab (i.e. the model of an actual structural rigid pavement) on the ground surface were examined. The results indicate that as the number of seismic-loading cycles increases, the sand deposit softens progressively as large shear strains take place in different sand elements. Liquefaction state is reached after the combined effects of the progressive degradation of the initial shear modulus associated with the continuous decrease in the mean principal stress, and the buildup of the excess of pore pressure takes place in the sand deposit. Finally, the confinement effects given by a concrete slab placed on the surface of the sand deposit resulted in a favorable increasing in the initial shear modulus, an increase in the mean principal stress and a decrease in the softening rate (i.e. the decreasing rate in shear modulus) of the sand, thus making the onset of liquefaction to take place at a later stage. This is, only after the sand deposit having a concrete slab experienced a higher number of seismic loading cycles liquefaction took place, in contrast to an ordinary sand deposit having no concrete slab.

Keywords: liquefaction, shear modulus degradation, shaking table, earthquake

Procedia PDF Downloads 359
9683 Assessing the Benefits of Recreation to Management of Stress among Executives of an Institutional Organisation

Authors: Mamman Jimoh Ahmadu, Sanusi Abubakar Sadiq, Eldah Ephraim Buba

Abstract:

In modern societies, stress has become a widespread phenomenon and therefore an issue of major concern to employees, organizations, and the state. As senior management of an organization, executives are not immune to this problem because they carry out lots of activities while on duty. This paper is centered on the benefits of Tourism, Leisure and Recreation to the management of executive stress. Executives work has always been considered to be stressful. The key objective of the research is to gain a better understanding of the causes of stress among executives and to find out how tourism, leisure, and recreational activities could be used as a means to managing stress. Interview and observation data were analyzed using SPSS. The major finding revealed that that human system has specific limitations and nature cannot be cheated. It is recommended that executives should take regular and mandatory vacation of least forty days in a year. The only answer then is rest. The research recommends that a break tends to improves and relaxes, refreshes the mind and enhances performance.

Keywords: executive, recreation, stress, tourism

Procedia PDF Downloads 307
9682 Effect of Psychological Stress to the Mucosal IL-6 and Helicobacter pylori Activity in Functional Dyspepsia and Myocytes

Authors: Eryati Darwin, Arina Widya Murni, Adnil Edwin Nurdin

Abstract:

Background: Functional dyspepsia (FD) is a highly prevalent and heterogeneous disorder. Most patients with FD complain of symptoms related to the intake of meals. Psychological stress may promote peptic ulcer and had an effect on ulcers associated Hp, and may also trigger worsen symptoms in inflammatory disorders of the gastrointestinal. Cells in mucosal gastric stimulate the production of several cytokines, which might associated with Helicobacter pylori infection. The cascade of biological events leading to stress-induced FD remains poorly understood. Aim of Study: To determine the prion-flammatory cytokine IL-6, and Helicobacter pylori activity on mucosal gastric of FD and their association with psychological stress. Methods: The subjects of this study were dyspeptic patients who visited M. Djamil General Hospital and in two Community Health Centers in Padang. On the basis of the stress index scale to identify psychological stress by using Depression Anxiety and Stress Scale (DASS 42), subjects were divided into two groups of 20 each, stress groups and non-stress groups. All diagnoses were confirmed by review of cortisol and esophagogastroduodenoscopy reports. Gastric biopsy samples and peripheral blood were taken during diagnostic procedures. Immunohistochemistry methods were used to determine the expression of IL-6 and Hp in gastric mucosal. The data were statistically analyzed by univariate and bivariate analysis. All procedures of this study were approved by Research Ethics Committee of Medical Faculty Andalas University. Results: In this study, we enrolled 40 FD patients (26 woman and 14 men) in range between 35-56 years old. Cortisol level of blood FD patients as parameter of stress hormone which taken in the morning was significantly higher in stress group than non-stress group. The expression of IL-6 in gastric mucosa was significantly higher in stress group in compared to non-stress group (p<0,05). Helicobacter pylori activity in gastric mucosal in stress group were significantly higher than non-stress group. Conclusion: The present study showed that psychological stress can induce gastric mucosal inflammation and increase of Helicobacter pylori activity.

Keywords: functional dyspepsia, Helicobacter pylori, interleukin-6, psychological stress

Procedia PDF Downloads 257
9681 The Evaluation of Surface Integrity during Machining of Inconel 718 with Various Laser Assistance Strategies

Authors: Szymon Wojciechowski, Damian Przestacki, Tadeusz Chwalczuk

Abstract:

The paper is focused on the evaluation of surface integrity formed during turning of Inconel 718 with the application of various laser assistance strategies. The primary objective of the work was to determine the relations between the applied machining strategy and the obtained surface integrity, in order to select the effective cutting conditions allowing the obtainment of high surface quality. The carried out experiment included the machining of Inconel 718 in the conventional turning conditions, as well as during the continuous laser assisted machining and sequential laser assistance. The surface integrity was evaluated by the measurements of machined surface topographies, microstructures and the microhardness. Results revealed that surface integrity of Inconel 718 is strongly affected by the selected machining strategy. The significant improvement of the surface roughness formed during machining of Inconel 718, can be reached by the application of simultaneous laser heating and cutting (LAM).

Keywords: Inconel 718, laser assisted machining, surface integrity, turning

Procedia PDF Downloads 254
9680 Non-Linear Behavior of Granular Materials in Pavement Design

Authors: Mounir Tichamakdj, Khaled Sandjak, Boualem Tiliouine

Abstract:

The design of flexible pavements is currently carried out using a multilayer elastic theory. However, for thin-surface pavements subject to light or medium traffic volumes, the importance of the non-linear stress-strain behavior of unbound granular materials requires the use of more sophisticated numerical models for the structural design of these pavements. The simplified analysis of the nonlinear behavior of granular materials in pavement design will be developed in this study. To achieve this objective, an equivalent linear model derived from a volumetric shear stress model is used to simulate the nonlinear elastic behavior of two unlinked local granular materials often used in pavements. This model is included here to adequately incorporate material non-linearity due to stress dependence and stiffness of the granular layers in the flexible pavement analysis. The sensitivity of the pavement design criteria to the likely variations in asphalt layer thickness and the mineralogical nature of unbound granular materials commonly used in pavement structures are also evaluated.

Keywords: granular materials, linear equivalent model, non-linear behavior, pavement design, shear volumetric strain model

Procedia PDF Downloads 147
9679 Quality of Working Life and Occupational Stress in High School Teachers

Authors: S. Silva

Abstract:

Some professions had an increased risk for occupational stress and less quality of working life. Among several professions this risk is particularly preoccupant in teachers, namely high school teachers. This study aims to characterize the work stress in teachers and understand how the work stress influences their quality of working life. One hundred teachers, 60 women and 40 men with mean age of 43,2 years (SD=7,8), from North Portugal teaching in several high schools filled in the following questionnaires: Social-Demographic Questionnaire, Teacher Stress Questionnaire and the Survey of Professional Life, during January to March 2015. The results of our study show that high school teachers have several occupational stressors (M=5) and poor perceived quality of working life. They are unsatisfied with their current job and they refer to a considerable job frustration. 33% referred to no expectations about a better future in these profession and 40% have no career development. There is a strong negative correlation between stress and teacher quality of working life (r=-.775). Moderate levels of stress are related to more favorable quality of working life (r=.632). Stress, frequent in teachers, is a significant predictor of poor quality of working life. There are several stressors affecting the teachers’ performance. Career development is not considered among this professional class and it seems related to current job frustration. Considering the role of high school teacher in the development and learning of students, these results should be taken in consideration when planning the graduation and interventions with teachers.

Keywords: career, quality of working life, stress, teachers

Procedia PDF Downloads 336
9678 Interactions between Water-Stress and VA Mycorrhizal Inoculation on Plant Growth and Leaf-Water Potential in Tomato

Authors: Parisa Alizadeh Oskuie, Shahram Baghban Ciruse

Abstract:

The influence of arbuscular mycorrhizal (AM) fungus(Glomus mossea) on plant growth and leaf-water potential of tomato (lycopersicum esculentum L.cv.super star) were studied in potted culture water stress stress period of 3 months in greenhouse conditions with the soil matric potential maintained at Fc1, Fc2, Fc3, and Fc4 respectively (0.8,0.7,0.6,0.5 Fc). Seven-day-old seedlings of tomato were transferred to pots containing Glomus mossea or non-AMF. AM colonization significantly stimulated shoot dry matter and leaf-water potential but water stress significantly decreased leaf area, shoot dry matter colonization and leaf-water potential.

Keywords: leaf-water potential, plant growth, tomato, VA mycorrhiza, water-stress

Procedia PDF Downloads 394
9677 A Comparative Study of the Effects of Vibratory Stress Relief and Thermal Aging on the Residual Stress of Explosives Materials

Authors: Xuemei Yang, Xin Sun, Cheng Fu, Qiong Lan, Chao Han

Abstract:

Residual stresses, which can be produced during the manufacturing process of plastic bonded explosive (PBX), play an important role in weapon system security and reliability. Residual stresses can and do change in service. This paper mainly studies the influence of vibratory stress relief (VSR) and thermal aging on residual stress of explosives. Firstly, the residual stress relaxation of PBX via different physical condition of VSR, such as vibration time, amplitude and dynamic strain, were studied by drill-hole technique. The result indicated that the vibratory amplitude, time and dynamic strain had a significant influence on the residual stress relief of PBX. The rate of residual stress relief of PBX increases first and then decreases with the increase of dynamic strain, amplitude and time, because the activation energy is too small to make the PBX yield plastic deformation at first. Then the dynamic strain, time and amplitude exceed a certain threshold, the residual stress changes show the same rule and decrease sharply, this sharply drop of residual stress relief rate may have been caused by over vibration. Meanwhile, the comparison between VSR and thermal aging was also studied. The conclusion is that the reduction ratio of residual stress after VSR process with applicable vibratory parameters could be equivalent to 73% of thermal aging with 7 days. In addition, the density attenuation rate, mechanical property, and dimensional stability with 3 months after VSR process was almost the same compared with thermal aging. However, compared with traditional thermal aging, VSR only takes a very short time, which greatly improves the efficiency of aging treatment for explosive materials. Therefore, the VSR could be a potential alternative technique in the industry of residual stress relaxation of PBX explosives.

Keywords: explosives, residual stresses, thermal aging, vibratory stress relief, VSR

Procedia PDF Downloads 125
9676 Rheological Behavior of Fresh Activated Sludge

Authors: Salam K. Al-Dawery

Abstract:

Despite of few research works on municipal sludge, still there is a lack of actual data. Thus, this work was focused on the conditioning and rheology of fresh activated sludge. The effect of cationic polyelectrolyte has been investigated at different concentrations and pH values in a comparative fashion. Yield stress is presented in all results indicating the minimum stress that necessary to reach flow conditions. Connections between particle-particle is the reason for this yield stress, also, the addition of polyelectrolyte causes strong bonds between particles and water resulting in the aggregation of particles which required higher shear stress in order to flow. The results from the experiments indicate that the cationic polyelectrolytes have significant effluence on the sludge characteristic and water quality such as turbidity, SVI, zone settling rate and shear stress.

Keywords: rheology, polyelectrolyte, settling volume index, turbidity

Procedia PDF Downloads 329
9675 Fatigue Influence on the Residual Stress State in Shot Peened Duplex Stainless Steel

Authors: P. D. Pedrosa, J. M. A. Rebello, M. P. Cindra Fonseca

Abstract:

Duplex stainless steels (DSS) exhibit a biphasic microstructure consisting of austenite and delta ferrite. Their high resistance to oxidation, and corrosion, even in H2S containing environments, allied to low cost when compared to conventional stainless steel, are some properties which make this material very attractive for several industrial applications. However, several of these industrial applications imposes cyclic loading to the equipments and in consequence fatigue damage needs to be a concern. A well-known way of improving the fatigue life of a component is by introducing compressive residual stress in its surface. Shot peening is an industrial working process which brings the material directly beneath component surface in a high mechanical compressive state, so inhibiting fatigue crack initiation. However, one must take into account the fact that the cyclic loading itself can reduce and even suppress these residual stresses, thus having undesirable consequences in the process of improving fatigue life by the introduction of compressive residual stresses. In the present work, shot peening was used to introduce residual stresses in several DSS samples. These were thereafter submitted to three different fatigue regimes: low, medium and high cycle fatigue. The evolution of the residual stress during loading were then examined on both surface and subsurface of the samples. It was used the DSS UNS S31803, with microstructure composed of 49% austenite and 51% ferrite. The treatment of shot peening was accomplished by the application of blasting in two Almen intensities of 0.25 and 0.39A. The residual stresses were measured by X-ray diffraction using the double exposure method and a portable equipment with CrK radiation and the (211) diffracting plane for the austenite phase and the (220) plane for the ferrite phase. It is known that residual stresses may arise when two regions of the same material experienced different degrees of plastic deformation. When these regions are separated in respect to each other on a scale that is large compared to the material's microstructure they are called macro stresses. In contrast, microstresses can largely vary over distances which are small comparable to the scale of the material's microstructure and must balance zero between the phases present. In the present work, special attention will be paid to the measurement of residual microstresses. Residual stress measurements were carried out in test pieces submitted to low, medium and high-cycle fatigue, in both longitudinal and transverse direction of the test pieces. It was found that after shot peening, the residual microstress is tensile in the austenite and compressive in the ferrite phases. It was hypothesized that the hardening behavior of the austenite after shot peening was probably due to its higher nitrogen content. Fatigue cycling can effectively change this stress state but this effect was found to be dependent of the shot peening intensity was well as the fatigue range.

Keywords: residual stresses, fatigue, duplex steel, shot peening

Procedia PDF Downloads 193
9674 Effect of Grain Size and Stress Parameters on Ratcheting Behaviour of Two Different Single Phase FCC Metals

Authors: Jayanta Kumar Mahato, Partha Sarathi De, Amrita Kundu, P. C. Chakraborti

Abstract:

Ratcheting is one of the most important phenomena to be considered for design and safety assessment of structural components subjected to stress controlled asymmetric cyclic loading in the elasto-plastic domain. In the present study uniaxial ratcheting behavior of commercially pure annealed OFHC copper and aluminium with two different grain sizes has been investigated. Stress-controlled tests have been conducted at various combinations of stress amplitude and mean stress. These stresses were selected in such a way that the ratio of equivalent stress amplitude (σₐeq) to ultimate tensile strength (σUTS) of the selected materials remains constant. It is found that irrespective of grain size the ratcheting fatigue lives decrease with the increase of both stress amplitude and mean stress following power relationships. However, the effect of stress amplitude on ratcheting lives is observed higher as compared to mean stress for both the FCC metals. It is also found that for both FCC metals ratcheting fatigue lives at a constant ratio of equivalent stress amplitude (σ ₐeq) to ultimate tensile strength (σUTS) are more in case fine grain size. So far ratcheting strain rate is concerned, it decreases rapidly within first few cycles and then a steady state is reached. Finally, the ratcheting strain rate increases up to the complete failure of the specimens due to a very large increase of true stress for a substantial reduction in cross-sectional area. The steady state ratcheting strain rate increases with the increase in both stress amplitude and mean stress. Interestingly, a unique perfectly power relationship between steady state ratcheting strain rate and cycles to failure has been found irrespective of stress combination for both FCC metals. Similar to ratcheting strain rate, the strain energy density decreases rapidly within first few cycles followed by steady state and then increases up to a failure of the specimens irrespective of stress combinations for both FCC metals; but strain energy density at steady state decreases with increase in mean stress and increases with the increase of stress amplitude. From the fractography study, it is found that the void density increases with the increase of maximum stress, but the void size and void density are almost same for any combination of stress parameters considering constant maximum stress.

Keywords: ratcheting phenomena, grain size, stress parameter, ratcheting lives, ratcheting strain rate

Procedia PDF Downloads 268
9673 Elastic Stress Analysis of Annular Bi-Material Discs with Variable Thickness under Mechanical and Thermomechanical Loads

Authors: Erhan Çetin, Ali Kurşun, Şafak Aksoy, Merve Tunay Çetin

Abstract:

The closed form study deal with elastic stress analysis of annular bi-material discs with variable thickness subjected to the mechanical and termomechanical loads. Those discs have many applications in the aerospace industry, such as gas turbines and gears. Those discs normally work under thermal and mechanical loads. Their life cycle can increase when stress components are minimized. Each material property is assumed to be isotropic. The results show that material combinations and thickness profiles play an important role in determining the responses of bi-material discs and an optimal design of those structures. Stress distribution is investigated and results are shown as graphs.

Keywords: bi-material discs, elastic stress analysis, mechanical loads, rotating discs

Procedia PDF Downloads 295
9672 Enhancement and Characterization of Titanium Surfaces with Sandblasting and Acid Etching for Dental Implants

Authors: Busra Balli, Tuncay Dikici, Mustafa Toparli

Abstract:

Titanium and its alloys have been used extensively over the past 25 years as biomedical materials in orthopedic and dental applications because of their good mechanical properties, corrosion resistance, and biocompatibility. It is known that the surface properties of titanium implants can enhance the cellular response and play an important role in Osseo integration. The rate and quality of Osseo integration in titanium implants are related to their surface properties. The purpose of this investigation was to evaluate the effect of sandblasting and acid etching on surface morphology, roughness, the wettability of titanium. The surface properties will be characterized by scanning electron microscopy and contact angle and roughness measurements. The results show that surface morphology, roughness, and wettability were changed and enhanced by these treatments.

Keywords: dental implant, etching, surface modifications, surface morphology, surface roughness

Procedia PDF Downloads 455
9671 Potentiodynamic Polarization Behavior of Surface Mechanical Attrition Treated AA7075

Authors: Vaibhav Pandey, K. Chattopadhyay, N. C. Santhi Srinivas, Vakil Singh

Abstract:

Aluminium alloy 7075 consist of different intermetallic precipitate particles MgZn2, CuAl2, which result in heterogeneity of micro structure and influence the corrosion properties of the alloy. Artificial ageing was found to enhance the strength properties, but highly susceptible to stress-corrosion cracking. Various conventional surface modification techniques are developed for improving corrosion properties of aluminum alloys. This led to development of novel surface mechanical attrition treatment (SMAT) technique the so called ultrasonic shot peening which gives nano-grain structure at surface. In the present investigation the influence of surface mechanical attrition treatment on corrosion behavior of aluminum alloy 7075 was studied in 3.5wt% NaCl solution. Two different size of 1 mm and 3 mm steel balls are used as peening media and SMAT was carried out for different time intervals 5, 15 and 30 minutes. Surface nano-grains/nano-crystallization was observed after SMAT. The formation of nano-grain structure was observed for larger size balls with time of treatment and consequent increase in micro strain. As-SMATed sample with 1 mm balls exhibits better corrosion resistance as compared to that of un-SMATed sample. The enhancement in corrosion resistance may be due to formation of surface nano-grain structure which reduced the electron release rate. In contrast the samples treated with 3 mm balls showed very poor corrosion resistance. A decrease in corrosion resistance was observed with increase in the time of peening. The decrease in corrosion resistance in the shotpeened samples with larger diameter balls may due to increase in microstrain and defect density.

Keywords: aluminum alloy 7075, corrosion, SMAT, ultrasonic shot peening, surface nano-grains

Procedia PDF Downloads 412
9670 Burnishing of Aluminum-Magnesium-Graphite Composites

Authors: Mohammed T. Hayajneh, Adel Mahmood Hassan, Moath AL-Qudah

Abstract:

Burnishing is increasingly used as a finishing operation to improve surface roughness and surface hardness. This can be achieved by applying a hard ball or roller onto metallic surfaces under pressure, in order to achieve many advantages in the metallic surface. In the present work, the feed rate, speed and force have been considered as the basic burnishing parameters to study the surface roughness and surface hardness of metallic matrix composites. The considered metal matrix composites were made from Aluminum-Magnesium-Graphite with five different weight percentage of graphite. Both effects of burnishing parameters mentioned above and the graphite percentage on the surface hardness and surface roughness of the metallic matrix composites were studied. The results of this investigation showed that the surface hardness of the metallic composites increases with the increase of the burnishing force and decreases with the increase in the burnishing feed rate and burnishing speed. The surface roughness of the metallic composites decreases with the increasing of the burnishing force, feed rate, and speed to certain values, then it starts to increase. On the other hand, the increase in the weight percentage of the graphite in the considered composites causes a decrease in the surface hardness and an increase in the surface roughness.

Keywords: burnishing process, Al-Mg-Graphite composites, surface hardness, surface roughness

Procedia PDF Downloads 451