Search results for: second magnetization peak anomaly
1703 Magnetization Studies and Vortex Phase Diagram of Oxygenated YBa₂Cu₃₋ₓAlₓO₆₊δ Single Crystal
Authors: Ashna Babu, Deepshikha Jaiswal Nagar
Abstract:
Cuprate high-temperature superconductors (HTSCs) have been immensely studied during the past few decades because of their structure which is described as a superlattice of superconducting CuO₂ layers. In particular, YBa₂Cu₃O₆₊δ (YBCO), with its critical temperature of 93 K, has received the most attention due to its well-defined metal stoichiometry and variable oxygen content that determines the carrier doping level. Substitution of metal ions at the Cu site is known to increase the critical current density without destroying superconductivity in YBCO. The construction of vortex phase diagrams is very important for such doped YBCO materials both from a fundamental perspective as well as from a technological perspective. By measuring field-dependent magnetization on annealed single crystals of Al-doped YBCO, YBa₂Cu₃₋ₓAlₓO₆₊δ (Al-YBCO), we were able to observe a second magnetization peak anomaly (SMP) in a very large part of the phase diagram. We were also able to observe the SMP anomaly in temperature-dependent magnetization measurements, the first observation to our knowledge. Critical current densities were calculated using Bean’s critical state model, flux jumps associated with symmetry reorientation of vortex lattice were studied, the oxygen cluster distribution was also analysed, and by incorporating all observations, we made a vortex phase diagram for oxygenated Al-YBCO single crystal.Keywords: oxygen deficient clusters, second magnetization peak anomaly, flux jumps, vortex phase diagram
Procedia PDF Downloads 681702 A Study on the Magnetic and Submarine Geology Structure of TA22 Seamount in Lau Basin, Tonga
Authors: Soon Young Choi, Chan Hwan Kim, Chan Hong Park, Hyung Rae Kim, Myoung Hoon Lee, Hyeon-Yeong Park
Abstract:
We performed the marine magnetic, bathymetry and seismic survey at the TA22 seamount (in the Lau basin, SW Pacific) for finding the submarine hydrothermal deposits in October 2009. We acquired magnetic and bathymetry data sets by suing Overhouser Proton Magnetometer SeaSPY (Marine Magnetics Co.), Multi-beam Echo Sounder EM120 (Kongsberg Co.). We conducted the data processing to obtain detailed seabed topography, magnetic anomaly, reduction to the pole (RTP) and magnetization. Based on the magnetic properties result, we analyzed submarine geology structure of TA22 seamount with post-processed seismic profile. The detailed bathymetry of the TA22 seamount showed the left and right crest parts that have caldera features in each crest central part. The magnetic anomaly distribution of the TA22 seamount regionally displayed high magnetic anomalies in northern part and the low magnetic anomalies in southern part around the caldera features. The RTP magnetic anomaly distribution of the TA22 seamount presented commonly high magnetic anomalies in the each caldera central part. Also, it represented strong anomalies at the inside of caldera rather than outside flank of the caldera. The magnetization distribution of the TA22 seamount showed the low magnetization zone in the center of each caldera, high magnetization zone in the southern and northern east part. From analyzed the seismic profile map, The TA22 seamount area is showed for the inferred small mounds inside each caldera central part and it assumes to make possibility of sills by the magma in cases of the right caldera. Taking into account all results of this study (bathymetry, magnetic anomaly, RTP, magnetization, seismic profile) with rock samples at the left caldera area in 2009 survey, we suppose the possibility of hydrothermal deposits at mounds in each caldera central part and at outside flank of the caldera representing the low magnetization zone. We expect to have the better results by combined modeling from this study data with the other geological data (ex. detailed gravity, 3D seismic, petrologic study results and etc).Keywords: detailed bathymetry, magnetic anomaly, seamounts, seismic profile, SW Pacific
Procedia PDF Downloads 4001701 Torque Magnetometry of Low Anisotropic CaCo2As2 Single Crystals
Authors: Kashif Nadeem, W. Zhang, X. G. Qiu
Abstract:
Role of Co spins in CaCo2As2 single crystal is systematically studied by using dc magnetization and magnetic torque measurements. A spin-flop transition in the antiferromagnetism (AFM) CaCo2As2 single crystal is studied by using dc magnetization and magnetic torque. Field dependent and angle dependent torque magnetometry confirmed the existence of spin-flop transition in this compound which is in agreement with the dc magnetization studies. A comparison of dc magnetization and torque magnetometry measurements for CaCo2As2 single crystal is done in detail. In conclusion, torque magnetometry can be a useful tool to study the spin flop transition in low anisotropic compounds analogous to dc magnetization studies.Keywords: spin flop transition, torque magnetometry, magnetization, anisotropic
Procedia PDF Downloads 5471700 Literature Review and Biomechanical Findings in Patients with Bipartite Medial Cuneiforms
Authors: Aliza Lee, Mark Wilt, John Bonk, Scott Floyd, Bradley Hoffman, Karen Uchmanowicz
Abstract:
Bipartite medial cuneiforms are relatively rare but may play a significant role in biomechanical and gait abnormalities. It is believed that a bipartite medial cuneiform may alter the available range of motion due to its larger morphological variant, thus limiting the metatarsal plantarflexion needed to achieve adequate hallux dorsiflexion for normal gait. Radiographic and clinical assessments were performed on 2 patients who reported foot pain along the first ray. Both patients had visible bipartite medial cuneiforms on MRI. Using gait plate and Metascan™ analysis, both were noted to have four measurements far beyond the expected range. Medial and lateral heel peak pressure, hallux peak pressure, and 1st metatarsal peak pressure were all noted to be increased. These measurements are believed to be increased due to the hindrance placed on the available ROM of the 1st ray by the increased size of the medial cuneiform. A larger patient population would be needed to fully understand this developmental anomaly.Keywords: bipartite medial cuneiforms, cuneiform, developmental anomaly, gait abnormality
Procedia PDF Downloads 1551699 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 511698 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection
Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi
Abstract:
In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.Keywords: cardiac anomalies, ECG, HTM, real time anomaly detection
Procedia PDF Downloads 2271697 Structural and Magnetic Properties of Cr Doped Ni-Zn Nanoferrites Prepared by Co-Precipitation Method
Authors: E. Ateia, L. M. Salah, A. H. El-Bassuony
Abstract:
Physical properties of nanocrystalline Ni1-xZnxCryFe2-yO4, (x=0.3, 0.5 and y=0.0, 0.1) with estimated crystallite size of 16.4 nm have been studied. XRD pattern of all prepared systems shows that, the nanosamples without Cr3+ have a cubic spinel structure with the appearance of small peaks designated as a secondary phase. Magnetic constants such as saturation magnetization, (MS) remanent magnetization (Mr) and coercive field (Hc) were obtained and reported. The obtained data shows that, the addition of Cr3+ (0.1mol) decreases the saturation magnetization. This is due to the decrease of magnetic moment of Cr3+ ion (3.0 μB) with respect to Fe3+ ion (5.85 μB). The electrical properties of the investigated samples were also investigated.Keywords: electrical conductivity, ferrites, grain size, sintering
Procedia PDF Downloads 2881696 Separating Permanent and Induced Magnetic Signature: A Simple Approach
Authors: O. J. G. Somsen, G. P. M. Wagemakers
Abstract:
Magnetic signature detection provides sensitive detection of metal objects, especially in the natural environment. Our group is developing a tabletop setup for magnetic signatures of various small and model objects. A particular issue is the separation of permanent and induced magnetization. While the latter depends only on the composition and shape of the object, the former also depends on the magnetization history. With common deperming techniques, a significant permanent signature may still remain, which confuses measurements of the induced component. We investigate a basic technique of separating the two. Measurements were done by moving the object along an aluminum rail while the three field components are recorded by a detector attached near the center. This is done first with the rail parallel to the Earth magnetic field and then with anti-parallel orientation. The reversal changes the sign of the induced- but not the permanent magnetization so that the two can be separated. Our preliminary results on a small iron block show excellent reproducibility. A considerable permanent magnetization was indeed present, resulting in a complex asymmetric signature. After separation, a much more symmetric induced signature was obtained that can be studied in detail and compared with theoretical calculations.Keywords: magnetic signature, data analysis, magnetization, deperming techniques
Procedia PDF Downloads 4501695 Facility Anomaly Detection with Gaussian Mixture Model
Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho
Abstract:
Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm
Procedia PDF Downloads 2711694 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3681693 Data-Centric Anomaly Detection with Diffusion Models
Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu
Abstract:
Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.Keywords: diffusion models, anomaly detection, data-centric, generative AI
Procedia PDF Downloads 811692 Integrating RAG with Prompt Engineering for Dynamic Log Parsing and Anomaly Detections
Authors: Liu Lin Xin
Abstract:
With the increasing complexity of systems, log parsing and anomaly detection have become crucial for maintaining system stability. However, traditional methods often struggle with adaptability and accuracy, especially when dealing with rapidly evolving log content and unfamiliar domains. To address these challenges, this paper proposes approach that integrates Retrieval Augmented Generation (RAG) technology with Prompt Engineering for Large Language Models, applied specifically in LogPrompt. This approach enables dynamic log parsing and intelligent anomaly detection by combining real-time information retrieval with prompt optimization. The proposed method significantly enhances the adaptability of log analysis and improves the interpretability of results. Experimental results on several public datasets demonstrate the method's superior performance, particularly in scenarios lacking training data, where it significantly outperforms traditional methods. This paper introduces a novel technical pathway for log parsing and anomaly detection, showcasing the substantial theoretical value and practical potential.Keywords: log parsing, anomaly detection, RAG, prompt engineering, LLMs
Procedia PDF Downloads 311691 Image Recognition and Anomaly Detection Powered by GANs: A Systematic Review
Authors: Agastya Pratap Singh
Abstract:
Generative Adversarial Networks (GANs) have emerged as powerful tools in the fields of image recognition and anomaly detection due to their ability to model complex data distributions and generate realistic images. This systematic review explores recent advancements and applications of GANs in both image recognition and anomaly detection tasks. We discuss various GAN architectures, such as DCGAN, CycleGAN, and StyleGAN, which have been tailored to improve accuracy, robustness, and efficiency in visual data analysis. In image recognition, GANs have been used to enhance data augmentation, improve classification models, and generate high-quality synthetic images. In anomaly detection, GANs have proven effective in identifying rare and subtle abnormalities across various domains, including medical imaging, cybersecurity, and industrial inspection. The review also highlights the challenges and limitations associated with GAN-based methods, such as instability during training and mode collapse, and suggests future research directions to overcome these issues. Through this review, we aim to provide researchers with a comprehensive understanding of the capabilities and potential of GANs in transforming image recognition and anomaly detection practices.Keywords: generative adversarial networks, image recognition, anomaly detection, DCGAN, CycleGAN, StyleGAN, data augmentation
Procedia PDF Downloads 201690 Estimation of Particle Size Distribution Using Magnetization Data
Authors: Navneet Kaur, S. D. Tiwari
Abstract:
Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs.Keywords: anisotropy, magnetization, nanoparticles, superparamagnetism
Procedia PDF Downloads 1411689 Effect of Interlayer Coupling in Co/Al2O3/Co
Authors: Niru Chowdhury, Subhankar Bedanta, Alexander Weber, Thomas Brueckel
Abstract:
We show the effect of interlayer coupling on magnetization reversal in purely dipolar coupled magnetic multilayers. Longitudinal magneto-optic Kerr microscopy (LMOKE) has been performed on [Co(10nm)/Al2O3(t)/Co(10nm)] for various thicknesses of Al2O3(t). We will show that inter-layer coupling interactions lead to layer-by-layer reversal in the magnetic multilayers. Also transverse component of magnetization was observed for higher thickness of the spacer layer.Keywords: Interlayer coupling, Magnetic domains, Magneto – Optic Kerr effect microscopy, Magnetization reversal, Magnetic thin film
Procedia PDF Downloads 3991688 Dynamic Log Parsing and Intelligent Anomaly Detection Method Combining Retrieval Augmented Generation and Prompt Engineering
Authors: Liu Linxin
Abstract:
As system complexity increases, log parsing and anomaly detection become more and more important in ensuring system stability. However, traditional methods often face the problems of insufficient adaptability and decreasing accuracy when dealing with rapidly changing log contents and unknown domains. To this end, this paper proposes an approach LogRAG, which combines RAG (Retrieval Augmented Generation) technology with Prompt Engineering for Large Language Models, applied to log analysis tasks to achieve dynamic parsing of logs and intelligent anomaly detection. By combining real-time information retrieval and prompt optimisation, this study significantly improves the adaptive capability of log analysis and the interpretability of results. Experimental results show that the method performs well on several public datasets, especially in the absence of training data, and significantly outperforms traditional methods. This paper provides a technical path for log parsing and anomaly detection, demonstrating significant theoretical value and application potential.Keywords: log parsing, anomaly detection, retrieval-augmented generation, prompt engineering, LLMs
Procedia PDF Downloads 281687 Critical Behaviour and Filed Dependence of Magnetic Entropy Change in K Doped Manganites Pr₀.₈Na₀.₂−ₓKₓMnO₃ (X = .10 And .15)
Authors: H. Ben Khlifa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou
Abstract:
The orthorhombic Pr₀.₈Na₀.₂−ₓKₓMnO₃ (x = 0.10 and 0.15) manganites are prepared by using the solid-state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC ~ 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC ~ 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which shows power-law dependence ΔSmax ≈ a(μ0 H)n at the transition temperature. The values of n obey the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follows a master curve behavior. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples.Keywords: manganites, critical exponents, magnetization, magnetocaloric, master curve
Procedia PDF Downloads 1641686 Deposition of Cr-doped ZnO Thin Films and Their Ferromagnetic Properties
Authors: Namhyun An, Byungho Lee, Hwauk Lee, Youngmin Lee, Deuk Young Kim, Sejoon Lee
Abstract:
In this study, the Cr-doped ZnO thin films have been deposited by reactive magnetron sputtering method with different Cr-contents (1.0at.%, 2.5at.% and 12.5at.%) and their ferromagnetic properties have been characterized. All films revealed clear ferromagnetism above room temperature. However, the spontaneous magnetization of the films was observed to depend on the Cr contents in the films. Namely, the magnitude of effective magnetic moment (per each Cr ion) was exponentially decreased with increasing the Cr contents. We attributed the decreased spontaneous magnetization to the degraded crystal magnetic anisotropy. In other words, we found out that the high concentration of magnetic ions causes the lattice distortion in the magnetic ion-doped thin film, and it consequently degrades ferromagnetic channeling in the solid-state material system.Keywords: Cr-doped ZnO, ferromagnetic properties, magnetization, sputtering, thin film
Procedia PDF Downloads 3911685 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression
Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras
Abstract:
In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression
Procedia PDF Downloads 1191684 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters
Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu
Abstract:
Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning
Procedia PDF Downloads 1981683 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm
Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene
Abstract:
Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest
Procedia PDF Downloads 1171682 Magnetic Investigation and 2½D Gravity Profile Modelling across the Beattie Magnetic Anomaly in the Southeastern Karoo Basin, South Africa
Authors: Christopher Baiyegunhi, Oswald Gwavava
Abstract:
The location/source of the Beattie magnetic anomaly (BMA) and interconnectivity of geologic structures at depth have been a topic of investigation for over 30 years. Up to now, no relationship between geological structures (interconnectivity of dolerite intrusions) at depth has been established. Therefore, the environmental impact of fracking the Karoo for shale gas could not be assessed despite the fact that dolerite dykes are groundwater localizers in the Karoo. In this paper, we shed more light to the unanswered questions concerning the possible location of the source of the BMA, the connectivity of geologic structures like dolerite dykes and sills at depth and this relationship needs to be established before the tectonic evolution of the Karoo basin can be fully understood and related to fracking of the Karoo for shale gas. The result of the magnetic investigation and modelling of four gravity profiles that crosses the BMA in the study area reveals that the anomaly, which is part of the Beattie magnetic anomaly tends to divide into two anomalies and continue to trend in an NE-SW direction, the dominant gravity signatures is of long wavelength that is due to a deep source/interface inland and shallows towards the coast, the average depth to the top of the shallow and deep magnetic sources was estimated to be approximately 0.6 km and 15 km, respectively. The BMA become stronger with depth which could be an indication that the source(s) is deep possibly a buried body in the basement. The bean-shaped anomaly also behaves in a similar manner like the BMA thus it could possibly share the same source(s) with the BMA.Keywords: Beattie magnetic anomaly, magnetic sources, modelling, Karoo Basin
Procedia PDF Downloads 5541681 A Novel Bio-ceramic Using Hyperthermia for Bone Cancer Therapy, Ferro-substituted Silicate Calcium Materials
Authors: hassan gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder, as prepared, is annealed at three different temperatures (900 ºC, 1000 ºC, and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks, and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic, which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic; magnetic materials; sol– gel, silicate calcium
Procedia PDF Downloads 731680 Ferro-Substituted Silicate Calcium Materials, a Novel Bio-Ceramic Using Hyperthermia for Bone Cancer Therapy
Authors: Hassan Gheisari
Abstract:
Ferro silicate calcium nano particles are prepared through the sol-gel method using polyvinyl alcohol (PVA) as a chelating agent. The powder as prepared is annealed at three different temperatures (900 ºC, 1000 ºC and 1100 ºC) for 3 h. The XRD patterns of the samples indicate broad peaks and the full width at half maximum decreased with increasing annealing temperature. FTIR spectra of the samples confirm the presence of metal - oxygen complexes within the structure. The average particle size obtained from PSA curve demonstrates ultrafine particles. SEM micrographs indicate the particles synthesized have spherical morphology. The saturation magnetization (Ms) and remnant magnetization (Mr) of the samples show dependence on particle size and crystallinity of the samples. The highest saturation magnetization is achieved for the sample annealed at 1100 ºC having maximum average particle size. The high saturation magnetization of the samples suggests the present method is suitable for obtaining nano particles magnetic ferro bioceramic which is desirable for practical applications such as hyperthermia bone cancer therapy.Keywords: hyperthermia, bone cancer, bio ceramic, magnetic materials, sol– gel, silicate calcium
Procedia PDF Downloads 3081679 Performance Assessment of a Variable-Flux Permanent-Magnet Memory Motor
Authors: Michel Han, Christophe Besson, Alain Savary, Yvan Becher
Abstract:
The variable flux permanent magnet synchronous motor (VF-PMSM), also called "Memory Motor", is a new generation of motor capable of modifying the magnetization state with short pulses of current during operation or standstill. The impact of such operation is the expansion of the operating range in the torque-speed characteristic and an improvement in energy efficiency at high-speed in comparison to conventional permanent magnet synchronous machines (PMSMs). This paper reviews the operating principle and the unique features of the proposed memory motor. The benefits of this concept are highlighted by comparing the performance of the rotor of the VF-PMSM to that of two PM rotors that are typically found in the industry. The investigation emphasizes the properties of the variable magnetization and presents the comparison of the torque-speed characteristic with the capability of loss reduction in a VF-PMSM by means of experimental results, especially when tests are conducted under identical conditions for each rotor (same stator, same inverter and same experimental setup). The experimental results demonstrated that the VF-PMSM gives an additional degree of freedom to optimize the efficiency over a wide speed range. Thus, with a design easy to manufacture and with the possibility of controlling the magnetization and the demagnetization of the magnets during operations, the VF-PMSM can be interesting for various applications.Keywords: efficiency, magnetization state, memory motors, performances, permanent-magnet, synchronous machine, variable-flux, variable magnetization, wide speed application
Procedia PDF Downloads 1911678 Anomaly Detection Based on System Log Data
Authors: M. Kamel, A. Hoayek, M. Batton-Hubert
Abstract:
With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.Keywords: logs, anomaly detection, ML, scoring, NLP
Procedia PDF Downloads 931677 FC and ZFC Studies of Nickel Nano Ferrites and Ni Doped Lithium Nano Ferrites by Citrate-Gel Auto Combustion Method
Authors: D. Ravinder
Abstract:
Nickel ferrites and Ni doped Lithium nano ferrites [Li0.5Fe0.5]1-xNixFe2O4 with x= 0.8 and 1.0 synthesized by citrate-gel auto combustion method. The broad peaks in the X-ray diffraction pattern (XRD) indicate a crystalline behavior of the prepared samples. Low temperature magnetization studies i,e Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the investigated samples are measured by using vibrating sample magnetometer (VSM). The magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5–375 K were carried out.Keywords: ferro-spinels, field cooled (FC), Zero Field Cooled (ZFC) and blocking temperature, superpara magnetism, drug delivery applications
Procedia PDF Downloads 5561676 Minimum Pension Guarantee in Funded Pension Schemes: Theoretical Model and Global Implementation
Authors: Ishay Wolf
Abstract:
In this study, the financial position of pension actors in the market during the pension system transition toward a more funded capitalized scheme is explored, mainly via an option benefit model. This is enabled by not considering the economy as a single earning cohort. We analytically demonstrate a socio-economic anomaly in the funded pension system, which is in favor of high earning cohorts on at the expense of low earning cohorts. This anomaly is realized by a lack of insurance and exposure to financial and systemic risks. Furthermore, the anomaly might lead to pension re-reform back to unfunded scheme, mostly due to political pressure. We find that a minimum pension guarantee is a rebalance mechanism to this anomaly, which increases the probability to of the sustainable pension scheme. Specifically, we argue that implementing the guarantee with an intra-generational, risk-sharing mechanism is the most efficient way to reduce the effect of this abnormality. Moreover, we exhibit the convergence process toward implementing minimum pension guarantee in many countries which have capitalized their pension systems during the last three decades, particularly among Latin America and CEE countries.Keywords: benefits, pension scheme, put option, social security
Procedia PDF Downloads 1221675 The Effect of Mechanical Stress on the Magnetic Structure and Properties of Ferromagnetic Microwires in Glass Insulation
Authors: N. N. Orlova, A. S. Aronin, Yu. P. Kabanov, S. I. Bozhko, V. S. Gornakov
Abstract:
We have investigated the change of the magnetic structure and the hysteresis properties of iron-based microwires after decreasing levels of internal mechanical stresses. The magnetic structure was investigated by the method of magneto-optical indicator film and the method of magnetic force microscopy. The hysteresis properties were studied by the vibrating sample magnetometer. The stresses were decreased by removing the glass coat and/or by low-temperature isothermal annealing. Previously, the authors carried out experimentally investigation of the magnetic structure of Fe-based microwire using these methods. According to the obtained results the domain structure of a microwire with a positive magnetostriction is composed of the inner cylindrical domains with the magnetization along the wire axis and the surface layer of the ring shape domains with the radial direction of magnetization. Surface ring domains with opposite magnetization direction (i.e., to the axis or from the axis) alternate with each other. For the first time the size of magnetic domains was determined experimentally. In this study it was found that in the iron-based microwires the value of the coercive force can be reduce more than twice by decreasing levels of internal mechanical stresses. Decrease of the internal stress value by the relaxation annealing influence on the magnetic structure. So in the as-prepared microwires observed local deviations of the magnetization of the magnetic core domains from the axis of the wire. After low-temperature annealing the local deviations of magnetization is not observed.Keywords: amorphous microwire, magnetic structure, internal stress, hysteresis properties, ferromagnetic
Procedia PDF Downloads 5681674 Magnetic Properties of Nickel Oxide Nanoparticles in Superparamagnetic State
Authors: Navneet Kaur, S. D. Tiwari
Abstract:
Superparamagnetism is an interesting phenomenon and observed in small particles of magnetic materials. It arises due to a reduction in particle size. In the superparamagnetic state, as the thermal energy overcomes magnetic anisotropy energy, the magnetic moment vector of particles flip their magnetization direction between states of minimum energy. Superparamagnetic nanoparticles have been attracting the researchers due to many applications such as information storage, magnetic resonance imaging, biomedical applications, and sensors. For information storage, thermal fluctuations lead to loss of data. So that nanoparticles should have high blocking temperature. And to achieve this, nanoparticles should have a higher magnetic moment and magnetic anisotropy constant. In this work, the magnetic anisotropy constant of the antiferromagnetic nanoparticles system is determined. Magnetic studies on nanoparticles of NiO (nickel oxide) are reported well. This antiferromagnetic nanoparticle system has high blocking temperature and magnetic anisotropy constant of order 105 J/m3. The magnetic study of NiO nanoparticles in the superparamagnetic region is presented. NiO particles of two different sizes, i.e., 6 and 8 nm, are synthesized using the chemical route. These particles are characterized by an x-ray diffractometer, transmission electron microscope, and superconducting quantum interference device magnetometry. The magnetization vs. applied magnetic field and temperature data for both samples confirm their superparamagnetic nature. The blocking temperature for 6 and 8 nm particles is found to be 200 and 172 K, respectively. Magnetization vs. applied magnetic field data of NiO is fitted to an appropriate magnetic expression using a non-linear least square fit method. The role of particle size distribution and magnetic anisotropy is taken in to account in magnetization expression. The source code is written in Python programming language. This fitting provides us the magnetic anisotropy constant for NiO and other magnetic fit parameters. The particle size distribution estimated matches well with the transmission electron micrograph. The value of magnetic anisotropy constants for 6 and 8 nm particles is found to be 1.42 X 105 and 1.20 X 105 J/m3, respectively. The obtained magnetic fit parameters are verified using the Neel model. It is concluded that the effect of magnetic anisotropy should not be ignored while studying the magnetization process of nanoparticles.Keywords: anisotropy, superparamagnetic, nanoparticle, magnetization
Procedia PDF Downloads 131