Search results for: rock mass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3944

Search results for: rock mass

3794 Impact of Elements of Rock and Water Combination on Landscape Perception: A Visual Landscape Quality Assessment on Kaludiya Pokuna in Sri Lanka

Authors: Clarence Dissanayake, Anishka A. Hettiarachchi

Abstract:

Landscape architecture needs to encompass a placemaking process carefully composing and manipulating landscape elements to address perceptual needs of humans, especially aesthetic, psychological and spiritual. The objective of this qualitative investigation is to inquire the impact of elements of rock and water combination on landscape perception and related feelings, emotions, and behavior. The past empirical studies have assessed the impact of landscape elements in isolation on user preference, yet the combined effect of elements have been less considered. This research was conducted with reference to the verity of qualities of water and rock through a visual landscape quality assessment focusing on landscape qualities derived from five visual concepts (coherence, historicity imageability, naturalness, and ephemera). 'Kaludiya Pokuna' archeological site in Anuradhapura was investigated with a sample of University students (n=19, male 14, female 5, age 20-25) using a five-point Likert scale via a perception based questionnaire and a visitor employed photographic survey (VEP). Two hypothetical questions were taken into investigation concerning biophilic (naturalness) and topophilic (historicity) aspects of humans to prefer a landscape with rock and water. The findings revealed that this combination encourages both biophilic and topophilic aspects, but in varying degrees. The identified hierarchy of visual concepts based on visitor’s preference signify coherence (93%), historicity (89%), imageability (79%), naturalness (75%) and ephemera (70%) respectively. It was further revealed that this combination creates a scenery more coherent dominating information processing aspect of humans to perceive a landscape over the biophilic and topophilic aspects. Different characteristics and secondary landscape effects generated by rock and water combination were found to affect in transforming a space into a place, full filling the aesthetic and spiritual aspects of the visitors. These findings enhance a means of making places for people, resource management and historical landscape conservation. Equalization of gender based participation, taking diverse cases and increasing the sample size with more analytical photographic analysis are recommended to enhance the quality of further research.

Keywords: landscape perception, visitor’s preference, rock and water combination, visual concepts

Procedia PDF Downloads 193
3793 Heavy Sulphide Material Characterization of Grasberg Block Cave Mine, Mimika, Papua: Implication for Tunnel Development and Mill Issue

Authors: Cahya Wimar Wicaksono, Reynara Davin Chen, Alvian Kristianto Santoso

Abstract:

Grasberg Cu-Au ore deposit as one of the biggest porphyry deposits located in Papua Province, Indonesia produced by several intrusion that restricted by Heavy Sulphide Zone (HSZ) in peripheral. HSZ is the rock that becomes the contact between Grassberg Igneous Complex (GIC) with sedimentary and igneous rock outside, which is rich in sulphide minerals such as pyrite ± pyrrhotite. This research is to obtain the characteristic of HSZ based on geotechnical, geochemical and mineralogy aspect and those implication for daily mining operational activities. Method used in this research are geological and alteration mapping, core logging, FAA (Fire Assay Analysis), AAS (Atomic absorption spectroscopy), RQD (Rock Quality Designation) and rock water content. Data generated from methods among RQD data, mineral composition and grade, lithological and structural geology distribution in research area. The mapping data show that HSZ material characteristics divided into three type based on rocks association, there are near igneous rocks, sedimentary rocks and on HSZ area. And also divided based on its location, north and south part of research area. HSZ material characteristic consist of rock which rich of pyrite ± pyrrhotite, and RQD range valued about 25%-100%. Pyrite ± pyrrhotite which outcropped will react with H₂O and O₂ resulting acid that generates corrosive effect on steel wire and rockbolt. Whereas, pyrite precipitation proses in HSZ forming combustible H₂S gas which is harmful during blasting activities. Furthermore, the impact of H₂S gas in blasting activities is forming poison gas SO₂. Although HSZ high grade Cu-Au, however those high grade Cu-Au rich in sulphide components which is affected in flotation milling process. Pyrite ± pyrrhotite in HSZ will chemically react with Cu-Au that will settle in milling process instead of floating.

Keywords: combustible, corrosive, heavy sulphide zone, pyrite ± pyrrhotite

Procedia PDF Downloads 305
3792 Mass Transfer Studies of Carbon Dioxide Absorption in Sodium Hydroxide in Millichannels

Authors: A. Durgadevi, S. Pushpavanam

Abstract:

In this work, absorption studies are done by conducting experiments of 99.9 (v/v%) pure CO₂ with various concentrations of sodium hydroxide solutions in a T-junction glass circular milli-channel. The gas gets absorbed in the aqueous phase resulting in the shrinking of slugs. This phenomenon is used to develop a lumped parameter model. Using this model, the chemical dissolution dynamics and the mass transfer characteristics of the CO₂-NaOH system is analysed. The liquid side mass transfer coefficient is determined with the help of the experimental data.

Keywords: absorption, dissolution dynamics, lumped parameter model, milli-channel, mass transfer coefficient

Procedia PDF Downloads 252
3791 Continuous and Discontinuos Modeling of Wellbore Instability in Anisotropic Rocks

Authors: C. Deangeli, P. Obentaku Obenebot, O. Omwanghe

Abstract:

The study focuses on the analysis of wellbore instability in rock masses affected by weakness planes. The occurrence of failure in such a type of rocks can occur in the rock matrix and/ or along the weakness planes, in relation to the mud weight gradient. In this case the simple Kirsch solution coupled with a failure criterion cannot supply a suitable scenario for borehole instabilities. Two different numerical approaches have been used in order to investigate the onset of local failure at the wall of a borehole. For each type of approach the influence of the inclination of weakness planes has been investigates, by considering joint sets at 0°, 35° and 90° to the horizontal. The first set of models have been carried out with FLAC 2D (Fast Lagrangian Analysis of Continua) by considering the rock material as a continuous medium, with a Mohr Coulomb criterion for the rock matrix and using the ubiquitous joint model for accounting for the presence of the weakness planes. In this model yield may occur in either the solid or along the weak plane, or both, depending on the stress state, the orientation of the weak plane and the material properties of the solid and weak plane. The second set of models have been performed with PFC2D (Particle Flow code). This code is based on the Discrete Element Method and considers the rock material as an assembly of grains bonded by cement-like materials, and pore spaces. The presence of weakness planes is simulated by the degradation of the bonds between grains along given directions. In general the results of the two approaches are in agreement. However the discrete approach seems to capture more complex phenomena related to local failure in the form of grain detachment at wall of the borehole. In fact the presence of weakness planes in the discontinuous medium leads to local instability along the weak planes also in conditions not predicted from the continuous solution. In general slip failure locations and directions do not follow the conventional wellbore breakout direction but depend upon the internal friction angle and the orientation of the bedding planes. When weakness plane is at 0° and 90° the behaviour are similar to that of a continuous rock material, but borehole instability is more severe when weakness planes are inclined at an angle between 0° and 90° to the horizontal. In conclusion, the results of the numerical simulations show that the prediction of local failure at the wall of the wellbore cannot disregard the presence of weakness planes and consequently the higher mud weight required for stability for any specific inclination of the joints. Despite the discrete approach can simulate smaller areas because of the large number of particles required for the generation of the rock material, however it seems to investigate more correctly the occurrence of failure at the miscroscale and eventually the propagation of the failed zone to a large portion of rock around the wellbore.

Keywords: continuous- discontinuous, numerical modelling, weakness planes wellbore, FLAC 2D

Procedia PDF Downloads 475
3790 Vibration of Gamma Graphyne with an Attached Mass

Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang

Abstract:

Atomic finite element simulation is applied to investigate the vibration frequency of a single-layer gamma graphyne with an attached mass for the CCCC, SSSS, CFCF, SFSF boundary conditions using the commercial code ANSYS. The fundamental frequencies of the graphyne sheet are compared with the results of the previous study. The results of the comparison are very good in all considered cases. The attached mass causes a shift in the resonant frequency of the graphyne. The frequencies of the single-layer gamma graphyne with an attached mass for different boundary conditions are obtained, and the order based on the boundary condition is CCCC >SSSS > CFCF> SFSF. The highest frequency shift is obtained when the attached mass is located at the center of the graphyne sheet. This is useful for the design of a highly sensitive graphyne-based mass sensor.

Keywords: graphyne, finite element analysis, vibration analysis, frequency shift

Procedia PDF Downloads 186
3789 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe

Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati

Abstract:

This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).

Keywords: loop heat pipe, nanofluid, optimization, thermal resistance

Procedia PDF Downloads 430
3788 Papillary Thyroid Carcinoma Presenting as a Vascular Left Carotid Sheath Mass: A Case Report

Authors: Karthikeyan M., Paul M. J.

Abstract:

This case report discusses a 54-year-old woman from Salem, Tamilnadu, who presented with a rare case of papillary thyroid carcinoma (PTC), manifesting as a hypervascular mass in the left carotid sheath. The patient had a two-and-a-half-month history of non-progressive neck swelling, with symptoms including dysphagia and a choking sensation. Clinical examination and investigations such as FNAC and CECT revealed a large vascular mass in the left neck region, initially perplexing the diagnosis. The patient underwent total thyroidectomy and excision of the left carotid sheath mass. Histopathology confirmed PTC. Postoperatively, the patient received Iodine-131 ablation and showed good recovery with no recurrence. This case highlights the diagnostic challenge and atypical presentation of PTC as a vascular neck mass, emphasizing the importance of a comprehensive approach in evaluating thyroid and neck lesions.

Keywords: lateral neck vascular mass, lateral aberrant thyroid, thyroid vascular swelling, smooth post op recovery

Procedia PDF Downloads 24
3787 Applications of Multivariate Statistical Methods on Geochemical Data to Evaluate the Hydrocarbons Source Rocks and Oils from Ghadames Basin, NW Libya

Authors: Mohamed Hrouda

Abstract:

The Principal Component Analysis (PCA) was performed on a dataset comprising 41 biomarker concentrations from twenty-three core source rocks samples and seven oil samples from different location, with the objective of establishing the major sources of variance within the steranes, tricyclic terpanes, hopanes, and triaromatic steroid. This type of analysis can be used as an aid when deciding which molecular biomarker maturity, source facies or depositional environment parameters should be plotted, because the principal component loadings plots tend to extract the biomarker variables related to maturity, source facies or depositional environment controls. Facies characterization of the source rock samples separate the Silurian and Devonian source rock samples into three groups. Maturity evaluation of source rock samples based on biomarker and aromatic hydrocarbon distributions indicates that not all the samples are strongly affected by maturity, the Upper Devonian samples from wells located in the northern part of the basin are immature, whereas the other samples which have been selected from the Lower Silurian are mature and have reached the main stage of the oil window, the Lower Silurian source rock strata revealed a trend of increasing maturity towards the south and southwestern part of Ghadames Basin. Most of the facies-based parameters employed in this project using biomarker distributions clearly separate the oil samples into three groups. Group I contain oil samples from wells within Al-Wafa oil field Located in the south western part of the basin, Group II contains oil samples collected from Al-Hamada oil field complex in the south and the third group contains oil samples collected from oil fields located in the north

Keywords: Ghadamis basin, geochemistry, silurian, devonian

Procedia PDF Downloads 37
3786 Cancellation of Transducer Effects from Frequency Response Functions: Experimental Case Study on the Steel Plate

Authors: P. Zamani, A. Taleshi Anbouhi, M. R. Ashory, S. Mohajerzadeh, M. M. Khatibi

Abstract:

Modal analysis is a developing science in the experimental evaluation of dynamic properties of the structures. Mechanical devices such as accelerometers are one of the sources of lack of quality in measuring modal testing parameters. In this paper, eliminating the accelerometer’s mass effect of the frequency response of the structure is studied. So, a strategy is used for eliminating the mass effect by using sensitivity analysis. In this method, the amount of mass change and the place to measure the structure’s response with least error in frequency correction is chosen. Experimental modal testing is carried out on a steel plate and the effect of accelerometer’s mass is omitted using this strategy. Finally, a good agreement is achieved between numerical and experimental results.

Keywords: accelerometer mass, frequency response function, modal analysis, sensitivity analysis

Procedia PDF Downloads 419
3785 Effect of Tilt Angle of Herringbone Microstructures on Enhancement of Heat and Mass Transfer

Authors: Nathan Estrada, Fangjun Shu, Yanxing Wang

Abstract:

The heat and mass transfer characteristics of a simple shear flow over a surface covered with staggered herringbone structures are numerically investigated using the lattice Boltzmann method. The focus is on the effect of ridge angle of the structures on the enhancement of heat and mass transfer. In the simulation, the temperature and mass concentration are modeled as a passive scalar released from the moving top wall and absorbed at the structured bottom wall. Reynolds number is fixed at 100. Two Prandtl or Schmidt numbers, 1 and 10, are considered. The results show that the advective scalar transport plays a more important role at larger Schmidt numbers. The fluid travels downward with higher scalar concentration into the grooves at the backward grove tips and travel upward with lower scalar concentration at the forward grove tips. Different tile angles result in different flow advection in wall-normal direction and thus different heat and mass transport efficiencies. The maximum enhancement is achieved at an angle between 15o and 30o. The mechanism of heat and mass transfer is analyzed in detail.

Keywords: fluid mechanics, heat and mass transfer, microfluidics, staggered herringbone mixer

Procedia PDF Downloads 84
3784 First-Principles Investigation of the Structural and Electronic Properties of Mg1-xBixO

Authors: G. P. Abdel Rahim, M. María Guadalupe Moreno Armenta, Jairo Arbey Rodriguez

Abstract:

We investigated the structure and electronic properties of the compound Mg1-xBixO with varying concentrations of 0, ¼, ½, and ¾ x bismuth in the the NaCl (rock-salt) and WZ (wurtzite) phases. The calculations were performed using the first-principles pseudo-potential method within the framework of spin density functional theory (DFT). Our calculations predict that for Bi concentrations greater than ~70%, the WZ structure is more favorable than the NaCl one and that for x = 0 (pure MgO), x = 0.25 and x = 0.50 of Bi concentration the NaCl structure is more favorable than the WZ one. For x = 0.75 of Bi, a transition from wurtzite towards NaCl is possible, when the pressure is about 22 GPa. Also It has been observed the crystal lattice constant closely follows Vegard’s law, that the bulk modulus and the cohesion energy decrease with the concentration x of Bi.

Keywords: DFT, Mg1-xBixO, pseudo-potential, rock-salt, wurtzite

Procedia PDF Downloads 491
3783 Integrated ERT and Magnetic Surveys in a Mineralization Zone in Erkowit, Red Sea State, Sudan

Authors: K. M. Kheiralla, M. A. Ali, M. Y. Abdelgalil, N. E. Mohamed, G. Boutsis

Abstract:

The present study focus on integrated geophysical surveys carried out in the mineralization zone in Erkowit region, Eastern Sudan to determine the extensions of the potential ore deposits on the topographically high hilly area and under the cover of alluvium along the nearby wadi and to locate other occurrences if any. The magnetic method (MAG) and the electrical resistivity tomography (ERT) were employed for the survey. Eleven traverses were aligned approximately at right angles to the general strike of the rock formations. The disseminated sulfides are located on the alteration shear zone which is composed of granitic and dioritic highly ferruginated rock occupying the southwestern and central parts of the area, this was confirmed using thin and polished sections mineralogical analysis. The magnetic data indicates low magnetic values for wadi sedimentary deposits in its southern part of the area, and high anomalies which are suspected as gossans due to magnetite formed during wall rock alteration consequent to mineralization. The significant ERT images define low resistivity zone as traced as sheared zones which may associated with the main loci of ore deposition. The study designates that correlation of magnetic and ERT anomalies with lithology are extremely useful in mineral exploration due to variations in some specific physical properties of rocks.

Keywords: ERT, magnetic, mineralization, Red Sea, Sudan

Procedia PDF Downloads 360
3782 A Simplified Model of the Control System with PFM

Authors: Bekmurza H. Aitchanov, Sholpan K. Aitchanova, Olimzhon A. Baimuratov, Aitkul N. Aldibekova

Abstract:

This work considers the automated control system (ACS) of milk quality during its magnetic field processing. For achieving high level of quality control methods were applied transformation of complex nonlinear systems in a linearized system with a less complex structure. Presented ACS is adjustable by seven parameters: mass fraction of fat, mass fraction of dry skim milk residues (DSMR), density, mass fraction of added water, temperature, mass fraction of protein, acidity.

Keywords: fluids magnetization, nuclear magnetic resonance, automated control system, dynamic pulse-frequency modulator, PFM, nonlinear systems, structural model

Procedia PDF Downloads 348
3781 Hydrochemical Assessment and Quality Classification of Water in Torogh and Kardeh Dam Reservoirs, North-East Iran

Authors: Mojtaba Heydarizad

Abstract:

Khorasan Razavi is the second most important province in north-east of Iran, which faces a water shortage crisis due to recent droughts and huge water consummation. Kardeh and Torogh dam reservoirs in this province provide a notable part of Mashhad metropolitan (with more than 4.5 million inhabitants) potable water needs. Hydrochemical analyses on these dam reservoirs samples demonstrate that MgHCO3 in Kardeh and CaHCO3 and to lower extent MgHCO3 water types in Torogh dam reservoir are dominant. On the other hand, Gibbs binary diagram demonstrates that rock weathering is the main factor controlling water quality in dam reservoirs. Plotting dam reservoir samples on Mg2+/Na+ and HCO3-/Na+ vs. Ca2+/ Na+ diagrams demonstrate evaporative and carbonate mineral dissolution is the dominant rock weathering ion sources in these dam reservoirs. Cluster Analyses (CA) also demonstrate intense role of rock weathering mainly (carbonate and evaporative minerals dissolution) in water quality of these dam reservoirs. Studying water quality by the U.S. National Sanitation Foundation (NSF) WQI index NSF-WQI, Oregon Water Quality Index (OWQI) and Canadian Water Quality Index DWQI index show moderate and good quality.

Keywords: hydrochemistry, water quality classification, water quality indexes, Torogh and Kardeh dam reservoir

Procedia PDF Downloads 227
3780 Causality, Special Relativity and Non-existence of Material Particles of Zero Rest Mass

Authors: Mohammad Saleem, Mujahid Kamran

Abstract:

It is shown that causality, the principle that cause must precede effect, leads inter alia, to highly significant result that the velocity of a material particle cannot be even equal to that of light. Consequently, combined with special relativity, it leads to the conclusion that material particles of zero rest mass cannot exist in nature. Thus, causality, a principle without which nature would be incomprehensible, combined with special relativity, forbids the existence of material particles of zero rest mass. For instance, the neutrinos, as is now known, are material particles of non-zero rest mass. The situation changes when we consider the gauge particles. In fact, when the principle of causality was proposed, the concept of gauge particles had not yet been introduced. Now we know that photon, a gauge particle with zero rest mass does exist in nature. Therefore, principle of causality, as generally stated, is valid only for material particles. For gauge particles, in order to make the statement of causality consistent with experiment, it has to be modified: The cause should either precede or be simultaneous with the effect. Combined with special relativity, it allows gauge particles of zero rest mass.

Keywords: causality, gauge particles, material particles, special relativity

Procedia PDF Downloads 469
3779 Mass Polarization in Three-Body System with Two Identical Particles

Authors: Igor Filikhin, Vladimir M. Suslov, Roman Ya. Kezerashvili, Branislav Vlahivic

Abstract:

The mass-polarization term of the three-body kinetic energy operator is evaluated for different systems which include two identical particles: A+A+B. The term has to be taken into account for the analysis of AB- and AA-interactions based on experimental data for two- and three-body ground state energies. In this study, we present three-body calculations within the framework of a potential model for the kaonic clusters K−K−p and ppK−, nucleus 3H and hypernucleus 6 ΛΛHe. The systems are well clustering as A+ (A+B) with a ground state energy E2 for the pair A+B. The calculations are performed using the method of the Faddeev equations in configuration space. The phenomenological pair potentials were used. We show a correlation between the mass ratio mA/mB and the value δB of the mass-polarization term. For bosonic-like systems, this value is defined as δB = 2E2 − E3, where E3 is three-body energy when VAA = 0. For the systems including three particles with spin(isospin), the models with average AB-potentials are used. In this case, the Faddeev equations become a scalar one like for the bosonic-like system αΛΛ. We show that the additional energy conected with the mass-polarization term can be decomposite to a sum of the two parts: exchenge related and reduced mass related. The state of the system can be described as the following: the particle A1 is bound within the A + B pair with the energy E2, and the second particle A2 is bound with the pair with the energy E3 − E2. Due to the identity of A particles, the particles A1 and A2 are interchangeable in the pair A + B. We shown that the mass polarization δB correlates with a type of AB potential using the system αΛΛ as an example.

Keywords: three-body systems, mass polarization, Faddeev equations, nuclear interactions

Procedia PDF Downloads 327
3778 Amplitude Versus Offset (AVO) Modeling as a Tool for Seismic Reservoir Characterization of the Semliki Basin

Authors: Hillary Mwongyera

Abstract:

The Semliki basin has become a frontier for petroleum exploration in recent years. Exploration efforts have resulted into extensive seismic data acquisition and drilling of three wells namely; Turaco 1, Turaco 2 and Turaco 3. A petrophysical analysis of the Turaco 1 well was carried out to identify two reservoir zones on which AVO modeling was performed. A combination of seismic modeling and rock physics modeling was applied during reservoir characterization and monitoring to determine variations of seismic responses with amplitude characteristics. AVO intercept gradient analysis applied on AVO synthetic CDP gathers classified AVO anomalies associated with both reservoir zones as Class 1 AVO anomalies. Fluid replacement modeling was carried out on both reservoir zones using homogeneous mixing and patchy saturation patterns to determine effects of fluid substitution on rock property interactions. For both homogeneous mixing and saturation patterns, density (ρ) showed an increasing trend with increasing brine substitution while Shear wave velocity (Vs) decreased with increasing brine substitution. A study of compressional wave velocity (Vp) with increasing brine substitution for both homogeneous mixing and patchy saturation gave quite interesting results. During patchy saturation, Vp increased with increasing brine substitution. During homogeneous mixing however, Vp showed a slightly decreasing trend with increasing brine substitution but increased tremendously towards and at full brine saturation. A sensitivity analysis carried out showed that density was a very sensitive rock property responding to brine saturation except at full brine saturation during homogeneous mixing where Vp showed greater sensitivity with brine saturation. Rock physics modeling was performed to predict diagnostics of reservoir quality using an inverse deterministic approach which showed low shale content and a high degree of shale stiffness within reservoir zones.

Keywords: Amplitude Versus Offset (AVO), fluid replacement modelling, reservoir characterization, AVO attributes, rock physics modelling, reservoir monitoring

Procedia PDF Downloads 504
3777 Vibration control of Bridge Super structure using Tuned Mass Damper (TMD)

Authors: Tauhidur Rahman, Dhrubajyoti Thakuria

Abstract:

In this article, vibration caused by earthquake excitation, wind load and the high-speed vehicle in the superstructure has been studied. An attempt has been made to control these vibrations using passive Tuned Mass Dampers (TMD). Tuned mass damper consists of a mass, spring, and viscous damper which dissipates the vibration energy of the primary structure at the damper of the TMD. In the present paper, the concrete box girder bridge superstructure is considered and is modeled using MIDAS software. The bridge is modeled as Euler-Bernoulli beam to study the responses imposed by high-speed vehicle, earthquake excitation and wind load. In the present study, comparative study for the responses has been done considering different velocities of the train. The results obtained in this study are based on Indian standard loadings specified in Indian Railways Board (Bridge Rules). A comparative study has been done for the responses of the high-speed vehicle with and without Tuned Mass Dampers. The results indicate that there is a significant reduction in displacement and acceleration in the bridge superstructure when Tuned Mass Damper is used.

Keywords: bridge superstructure, high speed vehicle, tuned mass damper, TMD, vibration control

Procedia PDF Downloads 381
3776 Relationship between Body Mass Composition and Primary Dysmenorrhoea

Authors: Snehalata Tembhurne

Abstract:

Introduction: A healthy menstrual cycle is a sign of women’s sound health.Various variables may influence the length and regularity of menstrual cycle.Studies have revealed that menstrual cycle abnormalities may be associated with psychological stress,lack of physical exercise, alteration in body composition,endocrine disturbances,higher estrogen levels as seen in obese females.Hence there is an urgent need to find out the relationship between variations in body mass composition(BMI & body fat%) with menstrual abnormalities like primary dysmenorrhoea. Aim: To find out the relationship between body mass composition and primary dysmenorrhea. Objectives: 1.To check whether there is any association between body mass index and primary dysmenorrhoea.2.To check whether there is any association between body fat percentage and primary dysmenorrhoea. NULL HYPOTHESES-There is no relationship between body mass composition and primary dysmenorrhea. Hypothesis: There exists a relationship between body mass composition and primary dysmenorrhea. Materials and Methods: The study was conducted over a period of 6 months with 90 samples selected on random basis. The procedure was explained to the participant and a written consent was taken thereafter. The participant was made to stand on the BODY COMPOSITION SCANNING MONITOR, which scanned the physical profile of the participant (height, weight, BMI, body fat percentage and visceral fat).Thereafter, the candidate was asked about her menstrual irregularities and was asked to grade her level of dysmenorrhoea (if present) using the Verbal Dimensional Dysmenorrhea Scale. Results: Chi square test of association was used to find out the association between body mass composition(body mass index,body fat percentage) and primary dysmenorrhea.The chi-square value for association between body mass index and primary dysmenorrhea was 38.63 p<0.001 which was statistically significant.The chi-square value for the association of body fat % & primary dysmenorrhea was 30.09,p<0.001which was statistically significant. Conclusion: Study shows that there exists a significant relationship between body mass composition and primary dysmenorrhea and as the value of Body mass index and body fat percentages goes on increasing in females, the severity of primary dysmenorrhea also increases.

Keywords: body mass index, body composition screening monitor, primary dysmenorrhea, verbal dimensional dysmenorrhea scale

Procedia PDF Downloads 299
3775 Tuned Mass Damper Vibration Control of Pedestrian Bridge

Authors: Qinglin Shu

Abstract:

Based on the analysis of the structural vibration comfort of a domestic bridge, this paper studies the vibration reduction control principle of TMD, the derivation process of design parameter optimization and how to simulate TMD in the finite element software ANSYS. The research shows that, in view of the problem that the comfort level of a bridge exceeds the limit in individual working conditions, the vibration reduction control design of the bridge can effectively reduce the vibration of the structure by using TMD. Calculations show that when the mass ratio of TMD is 0.01, the vibration reduction rate under different working conditions is more than 90%, and the dynamic displacement of the TMD mass block is within 0.01m, indicating that the design of TMD is reasonable and safe.

Keywords: pedestrian bridges, human-induced vibration, comfort, tuned mass dampers

Procedia PDF Downloads 73
3774 Identification of Deep Landslide on Erzurum-Turkey Highway by Geotechnical and Geophysical Methods and its Prevention

Authors: Neşe Işık, Şenol Altıok, Galip Devrim Eryılmaz, Aydın durukan, Hasan Özgür Daş

Abstract:

In this study, an active landslide zone affecting the road alignment on the Tortum-Uzundere (Erzurum/Turkey) highway was investigated. Due to the landslide movement, problems have occurred in the existing road pavement, which has caused both safety problems and reduced driving comfort in the operation of the road. In order to model the landslide, drilling, geophysical and inclinometer studies were carried out in the field within the scope of ground investigation. Laboratory tests were carried out on soil and rock samples obtained from the borings. When the drilling and geophysical studies were evaluated together, it was determined that the study area has a complex geological structure. In addition, according to the inclinometer results, the direction and speed of movement of the landslide mass were observed. In order to create an idealized geological profile, all field and laboratory studies were evaluated together and then the sliding surface of the landslide was determined by back analysis method. According to the findings obtained, it was determined that the landslide was massively large, and the movement occurred had a deep sliding surface. As a result of the numerical analyses, it was concluded that the Slope angle reduction is the most economical and environmentally friendly method for the control of the landslide mass.

Keywords: landslide, geotechnical methods, geophysics, monitoring, highway

Procedia PDF Downloads 46
3773 Survey of the Elimination of Red Acid Dye by Wood Dust

Authors: N. Ouslimani, T. Abadlia, M. Fadel

Abstract:

This work focused on the elimination of acid textile dye (red bermacide acid dye BN-CL-200), widely used for dyeing wool and polyamide fibers, by adsorption on a natural material, wood sawdust, in the static mode by keeping under continuous stirring, a specific mass of the adsorbent, with a dye solution of known concentration. The influence of various parameters is studied like the influence of particle size, mass, pH and time. The best results were obtained with 0.4 mm grain size, mass of 3g, Temperature of 20 °C, pH 2 and Time contact of 120 min.

Keywords: acid dye, environment, wood sawdust, wastewater

Procedia PDF Downloads 412
3772 Numerical Simulation Using Lattice Boltzmann Technique for Mass Transfer Characteristics in Liquid Jet Ejector

Authors: K. S. Agrawal

Abstract:

The performance of jet ejector was studied in detail by different authors. Several authors have studied mass transfer characteristics like interfacial area, mass transfer coefficients etc. In this paper, we have made an attempt to develop PDE model by considering bubble properties and apply Lattice-Boltzmann technique for PDE model. We may present the results for the interfacial area which we have obtained from our numerical simulation. Later the results are compared with previous work.

Keywords: jet ejector, mass transfer characteristics, numerical simulation, Lattice-Boltzmann technique

Procedia PDF Downloads 335
3771 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi

Abstract:

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

Keywords: acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation

Procedia PDF Downloads 149
3770 Mass Transfer of Paracetamol from the Crosslinked Carrageenan-Polyvinyl Alcohol Film

Authors: Sperisa Distantina, Rieke Ulfha Noviyanti, Sri Sutriyani, Fadilah Fadilah, Mujtahid Kaavessina

Abstract:

In this research, carrageenan extracted from seaweed Eucheuma cottonii was mixed with polyvinyl alcohol (PVA) and then crosslinked using glutaraldehyde (GA). The obtained hydrogel films were applied to control the drug release rate of paracetamol. The aim of this research was to develop a mathematical model that can be used to describe the mass transfer rate of paracetamol from the hydrogel film into buffer solution. The effect of weight ratio carrageenan-PVA (5: 0, 1: 0.5, 1: 1, 1: 2, 0: 5) on the parameters of the mathematical model was investigated also. Based on the experimental data, the proposed mathematical model could describe the mass transfer rate of paracetamol. The weight ratio of carrageenan-PVA greatly affected the amount of paracetamol absorbed in the hydrogel film and the mass transfer rate of paracetamol.

Keywords: carrageenan-PVA, crosslinking, glutaraldehyde, hydrogel, paracetamol, mass transfer

Procedia PDF Downloads 266
3769 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms

Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre

Abstract:

Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.

Keywords: dynamic modelling, long term instability risks, room and pillar, seismic collapse

Procedia PDF Downloads 111
3768 Analysis of Rock Cutting Progress with a New Axe-Shaped PDC Cutter to Improve PDC Bit Performance in Elastoplastic Formation

Authors: Fangyuan Shao, Wei Liu, Deli Gao

Abstract:

Polycrystalline diamond compact (PDC) bits have occupied a large market of unconventional oil and gas drilling. The application of PDC bits benefits from the efficient rock breaking of PDC cutters. In response to increasingly complex formations, many shaped cutters have been invited, but many of them have not been solved by the mechanism of rock breaking. In this paper, two kinds of PDC cutters: a new axe-shaped (NAS) cutter and cylindrical cutter (benchmark) were studied by laboratory experiments. NAS cutter is obtained by optimizing two sides of axe-shaped cutter with curved surfaces. All the cutters were put on a vertical turret lathe (VTL) in the laboratory for cutting tests. According to the cutting distance, the VTL tests can be divided into two modes: single-turn rotary cutting and continuous cutting. The cutting depth of cutting (DOC) was set at 1.0 mm and 2.0 mm in the former mode. The later mode includes a dry VTL test for thermal stability and a wet VTL test for wear resistance. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively. Based on the findings of the single-turn rotary cutting VTL tests, the performance of A NAS cutter was better than the benchmark cutter on elastoplastic material cutting. The cutting forces (normal forces, tangential force, and radial force) and special mechanical energy (MSE) of a NAS cutter were lower than that of the benchmark cutter under the same condition. It meant that a NAS cutter was more efficient on elastoplastic material breaking. However, the wear resistance of a new axe-shaped cutter was higher than that of a benchmark cutter. The results of the dry VTL test showed that the thermal stability of a NAS cutter was higher than that of a benchmark cutter. The cutting efficiency can be improved by optimizing the geometric structure of the PDC cutter. The change of thermal stability may be caused by the decrease of the contact area between cutter and rock at given DOC. The conclusions of this paper can be used as an important reference for PDC cutters designers.

Keywords: axe-shaped cutter, PDC cutter, rotary cutting test, vertical turret lathe

Procedia PDF Downloads 177
3767 Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load

Authors: Aref Aasi, Sadegh Mehdi Aghaei, Balaji Panchapakesan

Abstract:

This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations.

Keywords: Euler-Bernoulli beam, natural frequency, forced vibration, experimental setup

Procedia PDF Downloads 234
3766 Analysis of Magnetic Anomaly Data for Identification Structure in Subsurface of Geothermal Manifestation at Candi Umbul Area, Magelang, Central Java Province, Indonesia

Authors: N. A. Kharisa, I. Wulandari, R. Narendratama, M. I. Faisal, K. Kirana, R. Zipora, I. Arfiansah, I. Suyanto

Abstract:

Acquisition of geophysical survey with magnetic method has been done in manifestation of geothermalat Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. This objective research is interpretation to interpret structural geology that control geothermal system in CandiUmbul area. The research has been finished with area size 1,5 km x 2 km and measurement space of 150 m. And each point of line space survey is 150 m using PPM Geometrics model G-856. Data processing was started with IGRF and diurnal variation correction to get total magnetic field anomaly. Then, advance processing was done until reduction to pole, upward continuation, and residual anomaly. That results become next interpretation in qualitative step. It is known that the biggest object position causes low anomaly located in central of area survey that comes from hot spring manifestation and demagnetization zone that indicates the existence of heat source activity. Then, modeling the anomaly map was used for quantitative interpretation step. The result of modeling is rock layers and geological structure model that can inform about the geothermal system. And further information from quantitative interpretations can be interpreted about lithology susceptibility. And lithology susceptibilities are andesiteas heat source has susceptibility value of (k= 0.00014 emu), basaltic as alteration rock (k= 0.0016 emu), volcanic breccia as reservoir rock (k= 0.0026 emu), andesite porfirtic as cap rock (k= 0.004 emu), lava andesite (k= 0.003 emu), and alluvium (k= 0.0007 emu). The hot spring manifestation is controlled by the normal fault which becomes a weak zone, easily passed by hot water which comes from the geothermal reservoir.

Keywords: geological structure, geothermal system, magnetic, susceptibility

Procedia PDF Downloads 354
3765 Water Quality, Risk, Management and Distribution in Abeokuta, Ogun State

Authors: Ayedun Hassan, Ayadi Odunayo Peter

Abstract:

The ancient city of Abeokuta has been supplied with pipe borne water since 1911, yet, a continuous increase in population and unplanned city expansion makes water a very precious and scarce commodity. The government reserved areas (GRA’s) are well planned, and public water supply is available; however, the sub-urban areas consist of scattered structures with individuals trying to source water by digging wells and boreholes. The geology of the city consists of basement rock which makes digging wells and boreholes very difficult. The present study was conducted to assess the risk arising from the consumption of toxic elements in the groundwater of Abeokuta, Ogun State, Nigeria. Forty-five groundwater samples were collected from nine different areas of Abeokuta and analyzed for physicochemical parameters and toxic elements. The physicochemical parameters were determined using standard methods, while the toxic elements were determined using Inductively Coupled Plasma-Mass Spectrometer (ICP/MS). Ninety-six percent (96%) of the water sample has pH < 6.5, and 11% has conductivity > 250 µSCm⁻¹ limits in drinking water as recommended by WHO. Seven percent (7%) of the samples have Pb concentration >10 µgL⁻¹ while 75% have Al concentration >200 µgL⁻¹ recommended by WHO. The order for risk of cancer from different area of Abeokuta are Cd²⁺ > As³⁺ > Pb²⁺ > Cr⁶⁺ for Funaab, Camp and Obantoko; As³⁺ > Cd²⁺ > Pb²⁺ > Cr⁶⁺ for Ita Osin, Isale Igbein, Ake and Itoku; Cd²⁺ >As > Cr⁶⁺ > Pb²⁺ for Totoro; Pb²⁺ > Cd²⁺ > As³⁺ > Cr⁶⁺ for Idiaba. The order of non-cancer hazard index (HI) calculated for groundwater of Abeokuta City are Cd²⁺ > As³⁺ > Mn²⁺ > Pb²⁺ > Ni²⁺ and were all greater than one, which implies susceptibility to other illnesses. The sources of these elements are the rock and inappropriate waste disposal method, which leached the elements into the groundwater. A combination of sources from food will accumulate these elements in the human body system. Treatment to remove Al and Pb is necessary, while the method of water distribution should be reviewed to ensure access to potable water by the residents.

Keywords: Abeokuta, groundwater, Nigeria, risk

Procedia PDF Downloads 65