Search results for: recycling foundry aluminium alloy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1469

Search results for: recycling foundry aluminium alloy

59 Carbon-Supported Pd Nano-Particles as Green Catalysts for the Production of Fuels from Biomass

Authors: Andrea Dragu, Solen Kinayyigit, Valerie Colliere, Karin Karin Philippot, Camelia Bala, Vasile I. Parvulescu

Abstract:

The production of transportation fuels from biomass has gained a growing attention due to diminishing fossil fuel reserves, rising petroleum prices and increasing concern about global warming. In recent years, renewable hydrocarbons that are completely fungible with fossil fuels have been suggested to be efficiently produced by catalytic deoxygenation of fatty acids and their derivatives viadecarboxylation / decarbonylation. Several triglycerides (tall oil fatty acids) and saturated/unsaturated fatty acids and their corresponding esters were used as feedstocks. Their impact together with the influence of the reaction conditions and the catalyst composition on the nature of the reaction pathways of the deoxygenation of vegetable oils and their derivatives were recently reviewed. Following this state of the art the aim of the present study was the investigation of Pd NPs deposited onto mesoporous carbon supports as active and stable catalysts for the deoxygenation of oleic acid. The catalysts were prepared by the deposition of Pd NPs synthesised following an organometallic route on mesoporous carbons with different characteristics. Experiments were carried out under both batch and flow conditions. They demonstrated that under batch conditions (200 atm; 573K), the extent of the reaction depended, firstly, on the Pd loading and then on the metal dispersion and the oxidation state of palladium, both influenced by the way the support has been treated before the NPs deposition and by the preparation/stabilization methodology of Pd NPs. No aromatic compounds were detected in the reaction products but octadecanol and octadecane were observed in large extents. Under flow conditions (4 atm; 573 K), the conversion of stearic acid was superior to that observed in batch conditions. The product mixture contained over 20% heptadecane. No octadecanol, octadecane, and aromatic compounds were detected. The maxima in performances are obtained after only 0.5 h. After that, the yields in heptadecane suffer from a severe decrease until 3h reaction time. However, at that time, stopping feeding the reactor with oleic acid and flushing the catalyst only with mesitylene recovered the activity and the selectivity of the catalysts. With the complete removal of H2, the analysis revealed the presence of heptadecene in high excess compared to heptadecane (almost 7 to 1), thus suggesting decarbonylation as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution. Noteworthy, mesitylene as solvent exhibited no effect in this reaction. In conclusion, this study demonstrates the feasibility of such catalysts for the green production of fuels from biomass.

Keywords: fuels from biomass, green catalyst, Pd nano-particles , recycble catalyst

Procedia PDF Downloads 279
58 Effect of Particle Size Variations on the Tribological Properties of Porcelain Waste Added Epoxy Composites

Authors: B. Yaman, G. Acikbas, N. Calis Acikbas

Abstract:

Epoxy based materials have advantages in tribological applications due to their unique properties such as light weight, self-lubrication capacity and wear resistance. On the other hand, their usage is often limited by their low load bearing capacity and low thermal conductivity values. In this study, it is aimed to improve tribological and also mechanical properties of epoxy by reinforcing with ceramic based porcelain waste. It is well-known that the reuse or recycling of waste materials leads to reduction in production costs, ease of manufacturing, saving energy, etc. From this perspective, epoxy and epoxy matrix composites containing 60wt% porcelain waste with different particle size in the range of below 90µm and 150-250µm were fabricated, and the effect of filler particle size on the mechanical and tribological properties was investigated. The microstructural characterization was carried out by scanning electron microscopy (SEM), and phase analysis was determined by X-ray diffraction (XRD). The Archimedes principle was used to measure the density and porosity of the samples. The hardness values were measured using Shore-D hardness, and bending tests were performed. Microstructural investigations indicated that porcelain particles were homogeneously distributed and no agglomerations were encountered in the epoxy resin. Mechanical test results showed that the hardness and bending strength were increased with increasing particle size related to low porosity content and well embedding to the matrix. Tribological behavior of these composites was evaluated in terms of friction, wear rates and wear mechanisms by ball-on-disk contact with dry and rotational sliding at room temperature against WC ball with a diameter of 3mm. Wear tests were carried out at room temperature (23–25°C) with a humidity of 40 ± 5% under dry-sliding conditions. The contact radius of cycles was set to 5 mm at linear speed of 30 cm/s for the geometry used in this study. In all the experiments, 3N of constant test load was applied at a frequency of 8 Hz and prolonged to 400m wear distance. The friction coefficient of samples was recorded online by the variation in the tangential force. The steady-state CoFs were changed in between 0,29-0,32. The dimensions of the wear tracks (depth and width) were measured as two-dimensional profiles by a stylus profilometer. The wear volumes were calculated by integrating these 2D surface areas over the diameter. Specific wear rates were computed by dividing the wear volume by the applied load and sliding distance. According to the experimental results, the use of porcelain waste in the fabrication of epoxy resin composites can be suggested to be potential materials due to allowing improved mechanical and tribological properties and also providing reduction in production cost.

Keywords: epoxy composites, mechanical properties, porcelain waste, tribological properties

Procedia PDF Downloads 177
57 Microalgae Technology for Nutraceuticals

Authors: Weixing Tan

Abstract:

Production of nutraceuticals from microalgae—a virtually untapped natural phyto-based source of which there are 200,000 to 1,000,000 species—offers a sustainable and healthy alternative to conventionally sourced nutraceuticals for the market. Microalgae can be grown organically using only natural sunlight, water and nutrients at an extremely fast rate, e.g. 10-100 times more efficiently than crops or trees. However, the commercial success of microalgae products at scale remains limited largely due to the lack of economically viable technologies. There are two major microalgae production systems or technologies currently available: 1) the open system as represented by open pond technology and 2) the closed system such as photobioreactors (PBR). Each carries its own unique features and challenges. Although an open system requires a lower initial capital investment relative to a PBR, it conveys many unavoidable drawbacks; for example, much lower productivity, difficulty in contamination control/cleaning, inconsistent product quality, inconvenience in automation, restriction in location selection, and unsuitability for cold areas – all directly linked to the system openness and flat underground design. On the other hand, a PBR system has characteristics almost entirely opposite to the open system, such as higher initial capital investment, better productivity, better contamination and environmental control, wider suitability in different climates, ease in automation, higher and consistent product quality, higher energy demand (particularly if using artificial lights), and variable operational expenses if not automated. Although closed systems like PBRs are not highly competitive yet in current nutraceutical supply market, technological advances can be made, in particular for the PBR technology, to narrow the gap significantly. One example is a readily scalable P2P Microalgae PBR Technology at Grande Prairie Regional College, Canada, developed over 11 years considering return on investment (ROI) for key production processes. The P2P PBR system is approaching economic viability at a pre-commercial stage due to five ROI-integrated major components. They include: (1) optimum use of free sunlight through attenuation (patented); (2) simple, economical, and chemical-free harvesting (patent ready to file); (3) optimum pH- and nutrient-balanced culture medium (published), (4) reliable water and nutrient recycling system (trade secret); and (5) low-cost automated system design (trade secret). These innovations have allowed P2P Microalgae Technology to increase daily yield to 106 g/m2/day of Chlorella vulgaris, which contains 50% proteins and 2-3% omega-3. Based on the current market prices and scale-up factors, this P2P PBR system presents as a promising microalgae technology for market competitive nutraceutical supply.

Keywords: microalgae technology, nutraceuticals, open pond, photobioreactor PBR, return on investment ROI, technological advances

Procedia PDF Downloads 133
56 Blister Formation Mechanisms in Hot Rolling

Authors: Rebecca Dewfall, Mark Coleman, Vladimir Basabe

Abstract:

Oxide scale growth is an inevitable byproduct of the high temperature processing of steel. Blister is a phenomenon that occurs due to oxide growth, where high temperatures result in the swelling of surface scale, producing a bubble-like feature. Blisters can subsequently become embedded in the steel substrate during hot rolling in the finishing mill. This rolled in scale defect causes havoc within industry, not only with wear on machinery but loss of customer satisfaction, poor surface finish, loss of material, and profit. Even though blister is a highly prevalent issue, there is still much that is not known or understood. The classic iron oxidation system is a complex multiphase system formed of wustite, magnetite, and hematite, producing multi-layered scales. Each phase will have independent properties such as thermal coefficients, growth rate, and mechanical properties, etc. Furthermore, each additional alloying element will have different affinities for oxygen and different mobilities in the oxide phases so that oxide morphologies are specific to alloy chemistry. Therefore, blister regimes can be unique to each steel grade resulting in a diverse range of formation mechanisms. Laboratory conditions were selected to simulate industrial hot rolling with temperature ranges approximate to the formation of secondary and tertiary scales in the finishing mills. Samples with composition: 0.15Wt% C, 0.1Wt% Si, 0.86Wt% Mn, 0.036Wt% Al, and 0.028Wt% Cr, were oxidised in a thermo-gravimetric analyser (TGA), with an air velocity of 10litresmin-1, at temperaturesof 800°C, 850°C, 900°C, 1000°C, 1100°C, and 1200°C respectively. Samples were held at temperature in an argon atmosphere for 10minutes, then oxidised in air for 600s, 60s, 30s, 15s, and 4s, respectively. Oxide morphology and Blisters were characterised using EBSD, WDX, nanoindentation, FIB, and FEG-SEM imaging. Blister was found to have both a nucleation and growth process. During nucleation, the scale detaches from the substrate and blisters after a very short period, roughly 10s. The steel substrate is then exposed inside of the blister and further oxidised in the reducing atmosphere of the blister, however, the atmosphere within the blister is highly dependent upon the porosity of the blister crown. The blister crown was found to be consistently between 35-40um for all heating regimes, which supports the theory that the blister inflates, and the oxide then subsequently grows underneath. Upon heating, two modes of blistering were identified. In Mode 1 it was ascertained that the stresses produced by oxide growth will increase with increasing oxide thickness. Therefore, in Mode 1 the incubation time for blister formation is shortened by increasing temperature. In Mode 2 increase in temperature will result in oxide with a high ductility and high oxide porosity. The high oxide ductility and/or porosity accommodates for the intrinsic stresses from oxide growth. Thus Mode 2 is the inverse of Mode 1, and incubation time is increased with temperature. A new phenomenon was reported whereby blister formed exclusively through cooling at elevated temperatures above mode 2.

Keywords: FEG-SEM, nucleation, oxide morphology, surface defect

Procedia PDF Downloads 112
55 The Photovoltaic Panel at End of Life: Experimental Study of Metals Release

Authors: M. Tammaro, S. Manzo, J. Rimauro, A. Salluzzo, S. Schiavo

Abstract:

The solar photovoltaic (PV) modules are considered to have a negligible environmental impact compared to the fossil energy. Therefore also the waste management and the corresponding potential environmental hazard needs to be considered. The case of the photovoltaic panel is unique because the time lag from the manufacturing to the decommissioning as waste usually takes 25-30 years. Then the environmental hazard associated with end life of PV panels has been largely related to their metal contents. The principal concern regards the presence of heavy metals as Cd in thin film (TF) modules or Pb and Cr in crystalline silicon (c-Si) panels. At the end of life of PV panels, these dangerous substances could be released in the environment, if special requirements for their disposal are not adopted. Nevertheless, in literature, only a few experimental study about metal emissions from silicon crystalline/thin film panels and the corresponding environmental effect are present. As part of a study funded by the Italian national consortium for the waste collection and recycling (COBAT), the present work was aimed to analyze experimentally the potential release into the environment of hazardous elements, particularly metals, from PV waste. In this paper, for the first time, eighteen releasable metals a large number of photovoltaic panels, by c-Si and TF, manufactured in the last 30 years, together with the environmental effects by a battery of ecotoxicological tests, were investigated. Leaching tests are conducted on the crushed samples of PV module. The test is conducted according to Italian and European Standard procedure for hazard assessment of the granular waste and of the sludge. The sample material is shaken for 24 hours in HDPE bottles with an overhead mixer Rotax 6.8 VELP at indoor temperature and using pure water (18 MΩ resistivity) as leaching solution. The liquid-to-solid ratio was 10 (L/S=10, i.e. 10 liters of water per kg of solid). The ecotoxicological tests were performed in the subsequent 24 hours. A battery of toxicity test with bacteria (Vibrio fisheri), algae (Pseudochirneriella subcapitata) and crustacea (Daphnia magna) was carried out on PV panel leachates obtained as previously described and immediately stored in dark and at 4°C until testing (in the next 24 hours). For understand the actual pollution load, a comparison with the current European and Italian benchmark limits was performed. The trend of leachable metal amount from panels in relation to manufacturing years was then highlighted in order to assess the environmental sustainability of PV technology over time. The experimental results were very heterogeneous and show that the photovoltaic panels could represent an environmental hazard. The experimental results showed that the amounts of some hazardous metals (Pb, Cr, Cd, Ni), for c-Si and TF, exceed the law limits and they are a clear indication of the potential environmental risk of photovoltaic panels "as a waste" without a proper management.

Keywords: photovoltaic panel, environment, ecotoxicity, metals emission

Procedia PDF Downloads 244
54 Synthesis of Belite Cements at Low Temperature from Silica Fume and Natural Commercial Zeolite

Authors: Tatiana L. Avalos-Rendon, Elias A. Pasten Chelala, Carlos J. Mendoza EScobedo, Ignacio A. Figueroa, Victor H. Lara, Luis M. Palacios-Romero

Abstract:

The cement industry is facing cost increments in energy supply, requirements for reduction of CO₂, and insufficient supply of raw materials of good quality. According to all these environmental issues, cement industry must change its consumption patterns and reduce CO₂ emissions to the atmosphere. This can be achieved by generating environmental consciousness, which encourages the use of industrial by-products and/or recycling for the production of cement, as well as alternate, environment-friendly methods of synthesis which reduce CO₂. Calcination is the conventional method for the obtainment of Portland cement clinker. This method consists of grinding and mixing of raw materials (limestone, clay, etc.) in an adequate dosage. Resulting mix has a clinkerization temperature of 1450 °C so that the formation of the main component occur: alite (Ca₃SiO₅, C₃S). Considering that the energy required to produce C₃S is 1810 kJ kg -1, calcination method for the obtainment of clinker represents two major disadvantages: long thermal treatment and elevated temperatures of synthesis, both of which cause high emissions of carbon dioxide (CO₂) to the atmosphere. Belite Portland clinker is characterized by having a low content of calcium oxide (CaO), causing the presence of alite to diminish and favoring the formation of belite (β-Ca₂SiO₄, C₂S), so production of clinker requires a reduced energy consumption (1350 kJ kg-1), releasing less CO₂ to the atmosphere. Conventionally, β-Ca₂SiO₄ is synthetized by the calcination of calcium carbonate (CaCO₃) and silicon dioxide (SiO₂) through the reaction in solid state at temperatures greater than 1300 °C. Resulting belite shows low hydraulic reactivity. Therefore, this study concerns a new simple modified combustion method for the synthesis of two belite cements at low temperatures (1000 °C). Silica fume, as subproduct of metallurgic industry and commercial natural zeolite were utilized as raw materials. These are considered low-cost materials and were utilized with no additional purification process. Belite cements properties were characterized by XRD, SEM, EDS and BET techniques. Hydration capacity of belite cements was calculated while the mechanical strength was determined in ordinary Portland cement specimens (PC) with a 10% partial replacement of the belite cements obtained. Results showed belite cements presented relatively high surface áreas, at early ages mechanical strengths similar to those of alite cement and comparable to strengths of belite cements obtained by different synthesis methods. Cements obtained in this work present good hydraulic reactivity properties.

Keywords: belite, silica fume, zeolite, hydraulic reactivity

Procedia PDF Downloads 326
53 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys

Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit

Abstract:

Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.

Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction

Procedia PDF Downloads 248
52 Thermal Stress and Computational Fluid Dynamics Analysis of Coatings for High-Temperature Corrosion

Authors: Ali Kadir, O. Anwar Beg

Abstract:

Thermal barrier coatings are among the most popular methods for providing corrosion protection in high temperature applications including aircraft engine systems, external spacecraft structures, rocket chambers etc. Many different materials are available for such coatings, of which ceramics generally perform the best. Motivated by these applications, the current investigation presents detailed finite element simulations of coating stress analysis for a 3- dimensional, 3-layered model of a test sample representing a typical gas turbine component scenario. Structural steel is selected for the main inner layer, Titanium (Ti) alloy for the middle layer and Silicon Carbide (SiC) for the outermost layer. The model dimensions are 20 mm (width), 10 mm (height) and three 1mm deep layers. ANSYS software is employed to conduct three types of analysis- static structural, thermal stress analysis and also computational fluid dynamic erosion/corrosion analysis (via ANSYS FLUENT). The specified geometry which corresponds to corrosion test samples exactly is discretized using a body-sizing meshing approach, comprising mainly of tetrahedron cells. Refinements were concentrated at the connection points between the layers to shift the focus towards the static effects dissipated between them. A detailed grid independence study is conducted to confirm the accuracy of the selected mesh densities. To recreate gas turbine scenarios; in the stress analysis simulations, static loading and thermal environment conditions of up to 1000 N and 1000 degrees Kelvin are imposed. The default solver was used to set the controls for the simulation with the fixed support being set as one side of the model while subjecting the opposite side to a tabular force of 500 and 1000 Newtons. Equivalent elastic strain, total deformation, equivalent stress and strain energy were computed for all cases. Each analysis was duplicated twice to remove one of the layers each time, to allow testing of the static and thermal effects with each of the coatings. ANSYS FLUENT simulation was conducted to study the effect of corrosion on the model under similar thermal conditions. The momentum and energy equations were solved and the viscous heating option was applied to represent improved thermal physics of heat transfer between the layers of the structures. A Discrete Phase Model (DPM) in ANSYS FLUENT was employed which allows for the injection of continuous uniform air particles onto the model, thereby enabling an option for calculating the corrosion factor caused by hot air injection (particles prescribed 5 m/s velocity and 1273.15 K). Extensive visualization of results is provided. The simulations reveal interesting features associated with coating response to realistic gas turbine loading conditions including significantly different stress concentrations with different coatings.

Keywords: thermal coating, corrosion, ANSYS FEA, CFD

Procedia PDF Downloads 116
51 Valorization of Banana Peels for Mercury Removal in Environmental Realist Conditions

Authors: E. Fabre, C. Vale, E. Pereira, C. M. Silva

Abstract:

Introduction: Mercury is one of the most troublesome toxic metals responsible for the contamination of the aquatic systems due to its accumulation and bioamplification along the food chain. The 2030 agenda for sustainable development of United Nations promotes the improving of water quality by reducing water pollution and foments an enhance in wastewater treatment, encouraging their recycling and safe water reuse globally. Sorption processes are widely used in wastewater treatments due to their many advantages such as high efficiency and low operational costs. In these processes the target contaminant is removed from the solution by a solid sorbent. The more selective and low cost is the biosorbent the more attractive becomes the process. Agricultural wastes are especially attractive approaches for sorption. They are largely available, have no commercial value and require little or no processing. In this work, banana peels were tested for mercury removal from low concentrated solutions. In order to investigate the applicability of this solid, six water matrices were used increasing the complexity from natural waters to a real wastewater. Studies of kinetics and equilibrium were also performed using the most known models to evaluate the viability of the process In line with the concept of circular economy, this study adds value to this by-product as well as contributes to liquid waste management. Experimental: The solutions were prepared with Hg(II) initial concentration of 50 µg L-1 in natural waters, at 22 ± 1 ºC, pH 6, magnetically stirring at 650 rpm and biosorbent mass of 0.5 g L-1. NaCl was added to obtain the salt solutions, seawater was collected from the Portuguese coast and the real wastewater was kindly provided by ISQ - Instituto de Soldadura e qualidade (Welding and Quality Institute) and diluted until the same concentration of 50 µg L-1. Banana peels were previously freeze-drying, milled, sieved and the particles < 1 mm were used. Results: Banana peels removed more than 90% of Hg(II) from all the synthetic solutions studied. In these cases, the enhance in the complexity of the water type promoted a higher mercury removal. In salt waters, the biosorbent showed removals of 96%, 95% and 98 % for 3, 15 and 30 g L-1 of NaCl, respectively. The residual concentration of Hg(II) in solution achieved the level of drinking water regulation (1 µg L-1). For real matrices, the lower Hg(II) elimination (93 % for seawater and 81 % for the real wastewaters), can be explained by the competition between the Hg(II) ions and the other elements present in these solutions for the sorption sites. Regarding the equilibrium study, the experimental data are better described by the Freundlich isotherm (R ^ 2=0.991). The Elovich equation provided the best fit to the kinetic points. Conclusions: The results exhibited the great ability of the banana peels to remove mercury. The environmental realist conditions studied in this work, highlight their potential usage as biosorbents in water remediation processes.

Keywords: banana peels, mercury removal, sorption, water treatment

Procedia PDF Downloads 130
50 Waste Analysis and Classification Study (WACS) in Ecotourism Sites of Samal Island, Philippines Towards a Circular Economy Perspective

Authors: Reeden Bicomong

Abstract:

Ecotourism activities, though geared towards conservation efforts, still put pressures against the natural state of the environment. Influx of visitors that goes beyond carrying capacity of the ecotourism site, the wastes generated, greenhouse gas emissions, are just few of the potential negative impacts of a not well-managed ecotourism activities. According to Girard and Nocca (2017) tourism produces many negative impacts because it is configured according to the model of linear economy, operating on a linear model of take, make and dispose (Ellen MacArthur Foundation 2015). With the influx of tourists in an ecotourism area, more wastes are generated, and if unregulated, natural state of the environment will be at risk. It is in this light that a study on waste analysis and classification study in five different ecotourism sites of Samal Island, Philippines was conducted. The major objective of the study was to analyze the amount and content of wastes generated from ecotourism sites in Samal Island, Philippines and make recommendations based on the circular economy perspective. Five ecotourism sites in Samal Island, Philippines was identified such as Hagimit Falls, Sanipaan Vanishing Shoal, Taklobo Giant Clams, Monfort Bat Cave, and Tagbaobo Community Based Ecotourism. Ocular inspection of each ecotourism site was conducted. Likewise, key informant interview of ecotourism operators and staff was done. Wastes generated from these ecotourism sites were analyzed and characterized to come up with recommendations that are based on the concept of circular economy. Wastes generated were classified into biodegradables, recyclables, residuals and special wastes. Regression analysis was conducted to determine if increase in number of visitors would equate to increase in the amount of wastes generated. Ocular inspection indicated that all of the five ecotourism sites have their own system of waste collection. All of the sites inspected were found to be conducting waste separation at source since there are different types of garbage bins for all of the four classification of wastes such as biodegradables, recyclables, residuals and special wastes. Furthermore, all five ecotourism sites practice composting of biodegradable wastes and recycling of recyclables. Therefore, only residuals are being collected by the municipal waste collectors. Key informant interview revealed that all five ecotourism sites offer mostly nature based activities such as swimming, diving, site seeing, bat watching, rice farming experiences and community living. Among the five ecotourism sites, Sanipaan Vanishing Shoal has the highest average number of visitors in a weekly basis. At the same time, in the wastes assessment study conducted, Sanipaan has the highest amount of wastes generated. Further results of wastes analysis revealed that biodegradables constitute majority of the wastes generated in all of the five selected ecotourism sites. Meanwhile, special wastes proved to be the least generated as there was no amount of this type was observed during the three consecutive weeks WACS was conducted.

Keywords: Circular economy, ecotourism, sustainable development, WACS

Procedia PDF Downloads 177
49 Characterization of Alloyed Grey Cast Iron Quenched and Tempered for a Smooth Roll Application

Authors: Mohamed Habireche, Nacer E. Bacha, Mohamed Djeghdjough

Abstract:

In the brick industry, smooth double roll crusher is used for medium and fine crushing of soft to medium hard material. Due to opposite inward rotation of the rolls, the feed material is nipped between the rolls and crushed by compression. They are subject to intense wear, known as three-body abrasion, due to the action of abrasive products. The production downtime affecting productivity stems from two sources: the bi-monthly rectification of the roll crushers and their replacement when they are completely worn out. Choosing the right material for the roll crushers should result in longer machine cycles, and reduced repair and maintenance costs. All roll crushers are imported from outside Algeria. This results in sometimes very long delivery times which handicap the brickyards, in particular in respecting delivery times and honored the orders made by customers. The aim of this work is to investigate the effect of alloying additions on microstructure and wear behavior of grey lamellar cast iron for smooth roll crushers in brick industry. The base gray iron was melted in an induction furnace with low frequency at a temperature of 1500 °C, in which return cast iron scrap, new cast iron ingot, and steel scrap were added to the melt to generate the desired composition. The chemical analysis of the bar samples was carried out using Emission Spectrometer Systems PV 8050 Series (Philips) except for the carbon, for which a carbon/sulphur analyser Elementrac CS-i was used. Unetched microstructure was used to evaluate the graphite flake morphology using the image comparison measurement method. At least five different fields were selected for quantitative estimation of phase constituents. The samples were observed under X100 magnification with a Zeiss Axiover T40 MAT optical microscope equipped with a digital camera. SEM microscope equipped with EDS was used to characterize the phases present in the microstructure. The hardness (750 kg load, 5mm diameter ball) was measured with a Brinell testing machine for both treated and as-solidified condition test pieces. The test bars were used for tensile strength and metallographic evaluations. Mechanical properties were evaluated using tensile specimens made as per ASTM E8 standards. Two specimens were tested for each alloy. From each rod, a test piece was made for the tensile test. The results showed that the quenched and tempered alloys had best wear resistance at 400 °C for alloyed grey cast iron (containing 0.62%Mn, 0.68%Cr, and 1.09% Cu) due to fine carbides in the tempered matrix. In quenched and tempered condition, increasing Cu content in cast irons improved its wear resistance moderately. Combined addition of Cu and Cr increases hardness and wear resistance for a quenched and tempered hypoeutectic grey cast iron.

Keywords: casting, cast iron, microstructure, heat treating

Procedia PDF Downloads 78
48 A Study for Effective CO2 Sequestration of Hydrated Cement by Direct Aqueous Carbonation

Authors: Hyomin Lee, Jinhyun Lee, Jinyeon Hwang, Younghoon Choi, Byeongseo Son

Abstract:

Global warming is a world-wide issue. Various carbon capture and storage (CCS) technologies for reducing CO2 concentration in the atmosphere have been increasingly studied. Mineral carbonation is one of promising method for CO2 sequestration. Waste cement generating from aggregate recycling processes of waste concrete is potentially a good raw material containing reactive components for mineral carbonation. The major goal of our long-term project is to developed effective methods for CO2 sequestration using waste cement. In the present study, the carbonation characteristics of hydrated cement were examined by conducting two different direct aqueous carbonation experiments. We also evaluate the influence of NaCl and MgCl2 as additives to increase mineral carbonation efficiency of hydrated cement. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized to the size less than 0.15 mm. 15 g of pulverized cement paste and 200 ml of solutions containing additives were reacted in ambient temperature and pressure conditions. 1M NaCl and 0.25 M MgCl2 was selected for additives after leaching test. Two different sources of CO2 was applied for direct aqueous carbonation experiment: 0.64 M NaHCO3 was used for CO2 donor in method 1 and pure CO2 gas (99.9%) was bubbling into reacting solution at the flow rate of 20 ml/min in method 2. The pH and Ca ion concentration were continuously measured with pH/ISE Multiparameter to observe carbonation behaviors. Material characterization of reacted solids was performed by TGA, XRD, SEM/EDS analyses. The carbonation characteristics of hydrated cement were significantly different with additives. Calcite was a dominant calcium carbonate mineral after the two carbonation experiments with no additive and NaCl additive. The significant amount of aragonite and vaterite as well as very fine calcite of poorer crystallinity was formed with MgCl2 additive. CSH (calcium silicate hydrate) in hydrated cement were changed to MSH (magnesium silicate hydrate). This transformation contributed to the high carbonation efficiency. Carbonation experiment with method 1 revealed that that the carbonation of hydrated cement took relatively long time in MgCl2 solution compared to that in NaCl solution and the contents of aragonite and vaterite were increased as increasing reaction time. In order to maximize carbonation efficiency in direct aqueous carbonation with CO2 gas injection (method 2), the control of solution pH was important. The solution pH was decreased with injection of CO2 gas. Therefore, the carbonation efficiency in direct aqueous carbonation was closely related to the stability of calcium carbonate minerals with pH changes. With no additive and NaCl additive, the maximum carbonation was achieved when the solution pH was greater than 11. Calcium carbonate form by mineral carbonation seemed to be re-dissolved as pH decreased below 11 with continuous CO2 gas injection. The type of calcium carbonate mineral formed during carbonation in MgCl2 solution was closely related to the variation of solution pH caused by CO2 gas injection. The amount of aragonite significantly increased with decreasing solution pH, whereas the amount of calcite decreased.

Keywords: CO2 sequestration, Mineral carbonation, Cement and concrete, MgCl2 and NaCl

Procedia PDF Downloads 351
47 Municipal Solid Waste Management in an Unplanned Hill Station in India

Authors: Moanaro Ao, Nzanthung Ngullie

Abstract:

Municipal solid waste management (MSWM) has unique challenges in hilly urban settlements. Efforts have been taken by municipalities, private players, non-governmental organizations, etc. for managing solid waste by preventing its generation, reusing, and recovering them into useful products to the extent possible, thereby minimizing its impact on the environment and human health. However, there are many constraints that lead to inadequate management of solid waste. Kohima is an unplanned hill station city in the North Eastern Region of India. The city is facing numerous issues due to the mismanagement of the MSW generated. Kohima Municipal Council (KMC) is the Urban Local Body (ULB) responsible for providing municipal services. The present MSWM system in Kohima comprises of collection, transportation, and disposal of waste without any treatment. Several efforts and experimental projects on waste management have been implemented without any success. Waste management in Kohima city is challenging due to its remote location, difficult topography, dispersed settlements within the city, sensitive ecosystem, etc. Furthermore, the narrow road network in Kohima with limited scope for expansion, inadequate infrastructure facilities, and financial constraints of the ULB add up to the problems faced in managing solid waste. This hill station also has a unique system of traditional local self-governance. Thus, shifting from a traditional system to a modern system in implementing systematic and scientific waste management is also a challenge in itself. This study aims to analyse the existing situation of waste generation, evaluate the effectiveness of the existing management system of MSW, and evolve a strategic approach to achieve a sustainable and resilient MSWM system. The results from the study show that a holistic approach, including social aspects, technical aspects, environmental aspects, and financial aspects, is needed to reform the MSWM system. Stringent adherence to source segregation is required by encouraging public participation through awareness programs. Active involvement of community-based organizations (CBOs) has brought a positive change in sensitizing the public. A waste management model was designed to be adopted at a micro-level such as composting household biodegradable waste and incinerator plants at the community level for non-biodegradable waste. Suitable locations for small waste stations were identified using geographical information system (GIS) tools for waste recovery and recycling. Inculcating the sense of responsibility in every waste generator towards waste management by implementing incentive-based strategies at the Ward level was explored. Initiatives based on the ‘polluters pay principle’ were also explored to make the solid waste management model “self-sustaining”.

Keywords: municipal solid waste management, public participation, source segregation, sustainable

Procedia PDF Downloads 45
46 Investigating the Influence of Solidification Rate on the Microstructural, Mechanical and Physical Properties of Directionally Solidified Al-Mg Based Multicomponent Eutectic Alloys Containing High Mg Alloys

Authors: Fatih Kılıç, Burak Birol, Necmettin Maraşlı

Abstract:

The directional solidification process is generally used for homogeneous compound production, single crystal growth, and refining (zone refining), etc. processes. The most important two parameters that control eutectic structures are temperature gradient and grain growth rate which are called as solidification parameters The solidification behavior and microstructure characteristics is an interesting topic due to their effects on the properties and performance of the alloys containing eutectic compositions. The solidification behavior of multicomponent and multiphase systems is an important parameter for determining various properties of these materials. The researches have been conducted mostly on the solidification of pure materials or alloys containing two phases. However, there are very few studies on the literature about multiphase reactions and microstructure formation of multicomponent alloys during solidification. Because of this situation, it is important to study the microstructure formation and the thermodynamical, thermophysical and microstructural properties of these alloys. The production process is difficult due to easy oxidation of magnesium and therefore, there is not a comprehensive study concerning alloys containing high Mg (> 30 wt.% Mg). With the increasing amount of Mg inside Al alloys, the specific weight decreases, and the strength shows a slight increase, while due to formation of β-Al8Mg5 phase, ductility lowers. For this reason, production, examination and development of high Mg containing alloys will initiate the production of new advanced engineering materials. The original value of this research can be described as obtaining high Mg containing (> 30% Mg) Al based multicomponent alloys by melting under vacuum; controlled directional solidification with various growth rates at a constant temperature gradient; and establishing relationship between solidification rate and microstructural, mechanical, electrical and thermal properties. Therefore, within the scope of this research, some > 30% Mg containing ternary or quaternary Al alloy compositions were determined, and it was planned to investigate the effects of directional solidification rate on the mechanical, electrical and thermal properties of these alloys. Within the scope of the research, the influence of the growth rate on microstructure parameters, microhardness, tensile strength, electrical conductivity and thermal conductivity of directionally solidified high Mg containing Al-32,2Mg-0,37Si; Al-30Mg-12Zn; Al-32Mg-1,7Ni; Al-32,2Mg-0,37Fe; Al-32Mg-1,7Ni-0,4Si; Al-33,3Mg-0,35Si-0,11Fe (wt.%) alloys with wide range of growth rate (50-2500 µm/s) and fixed temperature gradient, will be investigated. The work can be planned as; (a) directional solidification of Al-Mg based Al-Mg-Si, Al-Mg-Zn, Al-Mg-Ni, Al-Mg-Fe, Al-Mg-Ni-Si, Al-Mg-Si-Fe within wide range of growth rates (50-2500 µm/s) at a constant temperature gradient by Bridgman type solidification system, (b) analysis of microstructure parameters of directionally solidified alloys by using an optical light microscopy and Scanning Electron Microscopy (SEM), (c) measurement of microhardness and tensile strength of directionally solidified alloys, (d) measurement of electrical conductivity by four point probe technique at room temperature (e) measurement of thermal conductivity by linear heat flow method at room temperature.

Keywords: directional solidification, electrical conductivity, high Mg containing multicomponent Al alloys, microhardness, microstructure, tensile strength, thermal conductivity

Procedia PDF Downloads 238
45 MOF [(4,4-Bipyridine)₂(O₂CCH₃)₂Zn]N as Heterogeneous Acid Catalysts for the Transesterification of Canola Oil

Authors: H. Arceo, S. Rincon, C. Ben-Youssef, J. Rivera, A. Zepeda

Abstract:

Biodiesel has emerged as a material with great potential as a renewable energy replacement to current petroleum-based diesel. Recently, biodiesel production is focused on the development of more efficient, sustainable process with lower costs of production. In this sense, a “green” approach to biodiesel production has stimulated the use of sustainable heterogeneous acid catalysts, that are better alternatives to conventional processes because of their simplicity and the simultaneous promotion of esterification and transesterification reactions from low-grade, highly-acidic and water containing oils without the formation of soap. The focus of this methodology is the development of new heterogeneous catalysts that under ordinary reaction conditions could reach yields similar to homogeneous catalysis. In recent years, metal organic frameworks (MOF) have attracted much interest for their potential as heterogeneous acid catalysts. They are crystalline porous solids formed by association of transition metal ions or metal–oxo clusters and polydentate organic ligands. This hybridization confers MOFs unique features such as high thermal stability, larger pore size, high specific area, high selectivity and recycling potential. Thus, MOF application could be a way to improve the biodiesel production processes. In this work, we evaluated the catalytic activity of MOF [(4,4-bipyridine)2(O₂CCH₃)2Zn]n (MOF Zn-I) for the synthesis of biodiesel from canola oil. The reaction conditions were optimized using the response surface methodology with a compound design central with 24. The variables studied were: Reaction temperature, amount of catalyst, molar ratio oil: MetOH and reaction time. The preparation MOF Zn-I was performed by mixing 5 mmol 4´4 dipyridine dissolved in 25 mL methanol with 10 mmol Zn(O₂CCH₃)₂ ∙ 2H₂O in 25 mL water. The crystals were obtained by slow evaporation of the solvents at 60°C for 18 h. The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). The prepared catalyst was characterized using X-ray diffraction (XRD) and Fourier transform infrared spectrometer (FT-IR). Experiments were performed using commercially available canola oil in ace pressure tube under continuous stirring. The reaction was filtered and vacuum distilled to remove the catalyst and excess alcohol, after which it was centrifuged to separate the obtained biodiesel and glycerol. 1H NMR was used to calculate the process yield. GC-MS was used to quantify the fatty acid methyl ester (FAME). The results of this study show that the acid catalyst MOF Zn-I could be used as catalyst for biodiesel production through heterogeneous transesterification of canola oil with FAME yield 82 %. The optimum operating condition for the catalytic reaction were of 142°C, 0.5% catalyst/oil weight ratio, 1:30 oil:MeOH molar ratio and 5 h reaction time.

Keywords: fatty acid methyl ester, heterogeneous acid catalyst, metal organic framework, transesterification

Procedia PDF Downloads 255
44 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution

Authors: M. Arun, A. Kannan

Abstract:

Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.

Keywords: acid orange 10, activated carbon, optimum adsorption conditions, statistical design

Procedia PDF Downloads 150
43 A Dynamic Model for Circularity Assessment of Nutrient Recovery from Domestic Sewage

Authors: Anurag Bhambhani, Jan Peter Van Der Hoek, Zoran Kapelan

Abstract:

The food system depends on the availability of Phosphorus (P) and Nitrogen (N). Growing population, depleting Phosphorus reserves and energy-intensive industrial nitrogen fixation are threats to their future availability. Recovering P and N from domestic sewage water offers a solution. Recovered P and N can be applied to agricultural land, replacing virgin P and N. Thus, recovery from sewage water offers a solution befitting a circular economy. To ensure minimum waste and maximum resource efficiency a circularity assessment method is crucial to optimize nutrient flows and minimize losses. Material Circularity Indicator (MCI) is a useful method to quantify the circularity of materials. It was developed for materials that remain within the market and recently extended to include biotic materials that may be composted or used for energy recovery after end-of-use. However, MCI has not been used in the context of nutrient recovery. Besides, MCI is time-static, i.e., it cannot account for dynamic systems such as the terrestrial nutrient cycles. Nutrient application to agricultural land is a highly dynamic process wherein flows and stocks change with time. The rate of recycling of nutrients in nature can depend on numerous factors such as prevailing soil conditions, local hydrology, the presence of animals, etc. Therefore, a dynamic model of nutrient flows with indicators is needed for the circularity assessment. A simple substance flow model of P and N will be developed with the help of flow equations and transfer coefficients that incorporate the nutrient recovery step along with the agricultural application, the volatilization and leaching processes, plant uptake and subsequent animal and human uptake. The model is then used for calculating the proportions of linear and restorative flows (coming from reused/recycled sources). The model will simulate the adsorption process based on the quantity of adsorbent and nutrient concentration in the water. Thereafter, the application of the adsorbed nutrients to agricultural land will be simulated based on adsorbate release kinetics, local soil conditions, hydrology, vegetation, etc. Based on the model, the restorative nutrient flow (returning to the sewage plant following human consumption) will be calculated. The developed methodology will be applied to a case study of resource recovery from wastewater. In the aforementioned case study located in Italy, biochar or zeolite is to be used for recovery of P and N from domestic sewage through adsorption and thereafter, used as a slow-release fertilizer in agriculture. Using this model, information regarding the efficiency of nutrient recovery and application can be generated. This can help to optimize the recovery process and application of the nutrients. Consequently, this will help to optimize nutrient recovery and application and reduce the dependence of the food system on the virgin extraction of P and N.

Keywords: circular economy, dynamic substance flow, nutrient cycles, resource recovery from water

Procedia PDF Downloads 170
42 Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton

Authors: Bing Chen, Xiang Ni, Eric Li

Abstract:

With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures.

Keywords: additive manufacturing, lattice structures, metamaterial, robotic knee exoskeleton

Procedia PDF Downloads 73
41 Thermal Ageing of a 316 Nb Stainless Steel: From Mechanical and Microstructural Analyses to Thermal Ageing Models for Long Time Prediction

Authors: Julien Monnier, Isabelle Mouton, Francois Buy, Adrien Michel, Sylvain Ringeval, Joel Malaplate, Caroline Toffolon, Bernard Marini, Audrey Lechartier

Abstract:

Chosen to design and assemble massive components for nuclear industry, the 316 Nb austenitic stainless steel (also called 316 Nb) suits well this function thanks to its mechanical, heat and corrosion handling properties. However, these properties might change during steel’s life due to thermal ageing causing changes within its microstructure. Our main purpose is to determine if the 316 Nb will keep its mechanical properties after an exposition to industrial temperatures (around 300 °C) during a long period of time (< 10 years). The 316 Nb is composed by different phases, which are austenite as main phase, niobium-carbides, and ferrite remaining from the ferrite to austenite transformation during the process. Our purpose is to understand thermal ageing effects on the material microstructure and properties and to submit a model predicting the evolution of 316 Nb properties as a function of temperature and time. To do so, based on Fe-Cr and 316 Nb phase diagrams, we studied the thermal ageing of 316 Nb steel alloys (1%v of ferrite) and welds (10%v of ferrite) for various temperatures (350, 400, and 450 °C) and ageing time (from 1 to 10.000 hours). Higher temperatures have been chosen to reduce thermal treatment time by exploiting a kinetic effect of temperature on 316 Nb ageing without modifying reaction mechanisms. Our results from early times of ageing show no effect on steel’s global properties linked to austenite stability, but an increase of ferrite hardness during thermal ageing has been observed. It has been shown that austenite’s crystalline structure (cfc) grants it a thermal stability, however, ferrite crystalline structure (bcc) favours iron-chromium demixion and formation of iron-rich and chromium-rich phases within ferrite. Observations of thermal ageing effects on ferrite’s microstructure were necessary to understand the changes caused by the thermal treatment. Analyses have been performed by using different techniques like Atomic Probe Tomography (APT) and Differential Scanning Calorimetry (DSC). A demixion of alloy’s elements leading to formation of iron-rich (α phase, bcc structure), chromium-rich (α’ phase, bcc structure), and nickel-rich (fcc structure) phases within the ferrite have been observed and associated to the increase of ferrite’s hardness. APT results grant information about phases’ volume fraction and composition, allowing to associate hardness measurements to the volume fractions of the different phases and to set up a way to calculate α’ and nickel-rich particles’ growth rate depending on temperature. The same methodology has been applied to DSC results, which allowed us to measure the enthalpy of α’ phase dissolution between 500 and 600_°C. To resume, we started from mechanical and macroscopic measurements and explained the results through microstructural study. The data obtained has been match to CALPHAD models’ prediction and used to improve these calculations and employ them to predict 316 Nb properties’ change during the industrial process.

Keywords: stainless steel characterization, atom probe tomography APT, vickers hardness, differential scanning calorimetry DSC, thermal ageing

Procedia PDF Downloads 60
40 Environmental Impact of a New-Build Educational Building in England: Life-Cycle Assessment as a Method to Calculate Whole Life Carbon Emissions

Authors: Monkiz Khasreen

Abstract:

In the context of the global trend towards reducing new buildings carbon footprint, the design team is required to make early decisions that have a major influence on embodied and operational carbon. Sustainability strategies should be clear during early stages of building design process, as changes made later can be extremely costly. Life-Cycle Assessment (LCA) could be used as the vehicle to carry other tools and processes towards achieving the requested improvement. Although LCA is the ‘golden standard’ to evaluate buildings from 'cradle to grave', lack of details available on the concept design makes LCA very difficult, if not impossible, to be used as an estimation tool at early stages. Issues related to transparency and accessibility of information in the building industry are affecting the credibility of LCA studies. A verified database derived from LCA case studies is required to be accessible to researchers, design professionals, and decision makers in order to offer guidance on specific areas of significant impact. This database could be the build-up of data from multiple sources within a pool of research held in this context. One of the most important factors that affects the reliability of such data is the temporal factor as building materials, components, and systems are rapidly changing with the advancement of technology making production more efficient and less environmentally harmful. Recent LCA studies on different building functions, types, and structures are always needed to update databases derived from research and to form case bases for comparison studies. There is also a need to make these studies transparent and accessible to designers. The work in this paper sets out to address this need. This paper also presents life-cycle case study of a new-build educational building in England. The building utilised very current construction methods and technologies and is rated as BREEAM excellent. Carbon emissions of different life-cycle stages and different building materials and components were modelled. Scenario and sensitivity analyses were used to estimate the future of new educational buildings in England. The study attempts to form an indicator during the early design stages of similar buildings. Carbon dioxide emissions of this case study building, when normalised according to floor area, lie towards the lower end of the range of worldwide data reported in the literature. Sensitivity analysis shows that life cycle assessment results are highly sensitive to future assumptions made at the design stage, such as future changes in electricity generation structure over time, refurbishment processes and recycling. The analyses also prove that large savings in carbon dioxide emissions can result from very small changes at the design stage.

Keywords: architecture, building, carbon dioxide, construction, educational buildings, England, environmental impact, life-cycle assessment

Procedia PDF Downloads 92
39 Distribution of Micro Silica Powder at a Ready Mixed Concrete

Authors: Kyong-Ku Yun, Dae-Ae Kim, Kyeo-Re Lee, Kyong Namkung, Seung-Yeon Han

Abstract:

Micro silica is collected as a by-product of the silicon and ferrosilicon alloy production in electric arc furnace using highly pure quartz, wood chips, coke and the like. It consists of about 85% of silicon which has spherical particles with an average particle size of 150 μm. The bulk density of micro silica varies from 150 to 700kg/m^3 and the fineness ranges from 150,000 to 300,000cm^2/g. An amorphous structure with a high silicon oxide content of micro silica induces an active reaction with calcium hydroxide (Ca(OH)₂) generated by the cement hydrate of a large surface area (about 20 m^² / g), and they are also known to form calcium, silicate, hydrate conjugate (C-S-H). Micro silica tends to act as a filler because of the fine particles and the spherical shape. These particles do not get covered by water and they fit well in the space between the relatively rough cement grains which does not freely fluidize concrete. On the contrary, water demand increases since micro silica particles have a tendency to absorb water because of the large surface area. The overall effect of micro silica depends on the amount of micro silica added with other parameters in the water-(cement + micro silica) ratio, and the availability of superplasticizer. In this research, it was studied on cellular sprayed concrete. This method involves a direct re-production of ready mixed concrete into a high performance at a job site. It could reduce the cost of construction by an adding a cellular and a micro silica into a ready mixed concrete truck in a field. Also, micro silica which is difficult with mixing due to high fineness in the field can be added and dispersed in concrete by increasing the fluidity of ready mixed concrete through the surface activity of cellular. Increased air content is converged to a certain level of air content by spraying and it also produces high-performance concrete by remixing of powders in the process of spraying. As it does not use a field mixing equipment the cost of construction decrease and it can be constructed after installing special spray machine in a commercial pump car. Therefore, use of special equipment is minimized, providing economic feasibility through the utilization of existing equipment. This study was carried out to evaluate a highly reliable method of confirming dispersion through a high performance cellular sprayed concrete. A mixture of 25mm coarse aggregate and river sand was applied to the concrete. In addition, by applying silica fume and foam, silica fume dispersion is confirmed in accordance with foam mixing, and the mean and standard deviation is obtained. Then variation coefficient is calculated to finally evaluate the dispersion. Comparison and analysis of before and after spraying were conducted on the experiment variables of 21L, 35L foam for each 7%, 14% silica fume respectively. Taking foam and silica fume as variables, the experiment proceed. Casting a specimen for each variable, a five-day sample is taken from each specimen for EDS test. In this study, it was examined by an experiment materials, plan and mix design, test methods, and equipment, for the evaluation of dispersion in accordance with micro silica and foam.

Keywords: micro silica, distribution, ready mixed concrete, foam

Procedia PDF Downloads 184
38 Bioleaching of Precious Metals from an Oil-fired Ash Using Organic Acids Produced by Aspergillus niger in Shake Flasks and a Bioreactor

Authors: Payam Rasoulnia, Seyyed Mohammad Mousavi

Abstract:

Heavy fuel oil firing power plants produce huge amounts of ashes as solid wastes, which seriously need to be managed and processed. Recycling precious metals of V and Ni from these oil-fired ashes which are considered as secondary sources of metals recovery, not only has a great economic importance for use in industry, but also it is noteworthy from the environmental point of view. Vanadium is an important metal that is mainly used in the steel industry because of its physical properties of hardness, tensile strength, and fatigue resistance. It is also utilized in oxidation catalysts, titanium–aluminum alloys and vanadium redox batteries. In the present study bioleaching of vanadium and nickel from an oil-fired ash sample was conducted using Aspergillus niger fungus. The experiments were carried out using spent-medium bioleaching method in both Erlenmeyer flasks and also bubble column bioreactor, in order to compare them together. In spent-medium bioleaching the solid waste is not in direct contact with the fungus and consequently the fungal growth is not retarded and maximum organic acids are produced. In this method the metals are leached through biogenic produced organic acids present in the medium. In shake flask experiments the fungus was cultured for 15 days, where the maximum production of organic acids was observed, while in bubble column bioreactor experiments a 7 days fermentation period was applied. The amount of produced organic acids were measured using high performance liquid chromatography (HPLC) and the results showed that depending on the fermentation period and the scale of experiments, the fungus has different major lixiviants. In flask tests, citric acid was the main produced organic acid by the fungus and the other organic acids including gluconic, oxalic, and malic were excreted in much lower concentrations, while in the bioreactor oxalic acid was the main lixiviant and it was produced considerably. In Erlenmeyer flasks during 15 days fermentation of Aspergillus niger, 8080 ppm citric acid and 1170 ppm oxalic acid was produced, while in bubble column bioreactor over 7 days of fungal growth, 17185 ppm oxalic acid and 1040 ppm citric acid was secreted. The leaching tests using the spent-media obtained from both of fermentation experiments, were performed at the same conditions of leaching duration of 7 days, leaching temperature of 60 °C and pulp density up to 3% (w/v). The results revealed that in Erlenmeyer flask experiments 97% of V and 50% of Ni were extracted while using spent medium produced in bubble column bioreactor, V and Ni recoveries were achieved to 100% and 33%, respectively. These recovery yields indicate that in both scales almost total vanadium can be recovered, while nickel recovery was lower. With help of the bioreactor spent-medium nickel recovery yield was lower than that of obtained from the flask experiments, which it could be due to precipitation of some values of Ni in presence of high levels of oxalic acid existing in its spent medium.

Keywords: Aspergillus niger, bubble column bioreactor, oil-fired ash, spent-medium bioleaching

Procedia PDF Downloads 206
37 Fischer Tropsch Synthesis in Compressed Carbon Dioxide with Integrated Recycle

Authors: Kanchan Mondal, Adam Sims, Madhav Soti, Jitendra Gautam, David Carron

Abstract:

Fischer-Tropsch (FT) synthesis is a complex series of heterogeneous reactions between CO and H2 molecules (present in the syngas) on the surface of an active catalyst (Co, Fe, Ru, Ni, etc.) to produce gaseous, liquid, and waxy hydrocarbons. This product is composed of paraffins, olefins, and oxygenated compounds. The key challenge in applying the Fischer-Tropsch process to produce transportation fuels is to make the capital and production costs economically feasible relative to the comparative cost of existing petroleum resources. To meet this challenge, it is imperative to enhance the CO conversion while maximizing carbon selectivity towards the desired liquid hydrocarbon ranges (i.e. reduction in CH4 and CO2 selectivities) at high throughputs. At the same time, it is equally essential to increase the catalyst robustness and longevity without sacrificing catalyst activity. This paper focuses on process development to achieve the above. The paper describes the influence of operating parameters on Fischer Tropsch synthesis (FTS) from coal derived syngas in supercritical carbon dioxide (ScCO2). In addition, the unreacted gas and solvent recycle was incorporated and the effect of unreacted feed recycle was evaluated. It was expected that with the recycle, the feed rate can be increased. The increase in conversion and liquid selectivity accompanied by the production of narrower carbon number distribution in the product suggest that higher flow rates can and should be used when incorporating exit gas recycle. It was observed that this process was capable of enhancing the hydrocarbon selectivity (nearly 98 % CO conversion), reducing improving the carbon efficiency from 17 % to 51 % in a once through process and further converting 16 % CO2 to liquid with integrated recycle of the product gas stream and increasing the life of the catalyst. Catalyst robustness enhancement has been attributed to the absorption of heat of reaction by the compressed CO2 which reduced the formation of hotspots and the dissolution of waxes by the CO2 solvent which reduced the blinding of active sites. In addition, the recycling the product gas stream reduced the reactor footprint to one-fourth of the once through size and product fractionation utilizing the solvent effects of supercritical CO2 were realized. In addition to the negative CO2 selectivities, methane production was also inhibited and was limited to less than 1.5%. The effect of the process conditions on the life of the catalysts will also be presented. Fe based catalysts are known to have a high proclivity for producing CO2 during FTS. The data of the product spectrum and selectivity on Co and Fe-Co based catalysts as well as those obtained from commercial sources will also be presented. The measurable decision criteria were the increase in CO conversion at H2:CO ratio of 1:1 (as commonly found in coal gasification product stream) in supercritical phase as compared to gas phase reaction, decrease in CO2 and CH4 selectivity, overall liquid product distribution, and finally an increase in the life of the catalysts.

Keywords: carbon efficiency, Fischer Tropsch synthesis, low GHG, pressure tunable fractionation

Procedia PDF Downloads 216
36 A Study of the Carbon Footprint from a Liquid Silicone Rubber Compounding Facility in Malaysia

Authors: Q. R. Cheah, Y. F. Tan

Abstract:

In modern times, the push for a low carbon footprint entails achieving carbon neutrality as a goal for future generations. One possible step towards carbon footprint reduction is the use of more durable materials with longer lifespans, for example, silicone data cableswhich show at least double the lifespan of similar plastic products. By having greater durability and longer lifespans, silicone data cables can reduce the amount of trash produced as compared to plastics. Furthermore, silicone products don’t produce micro contamination harmful to the ocean. Every year the electronics industry produces an estimated 5 billion data cables for USB type C and lightning data cables for tablets and mobile phone devices. Material usage for outer jacketing is 6 to 12 grams per meter. Tests show that the product lifespan of a silicone data cable over plastic can be doubled due to greater durability. This can save at least 40,000 tonnes of material a year just on the outer jacketing of the data cable. The facility in this study specialises in compounding of liquid silicone rubber (LSR) material for the extrusion process in jacketing for the silicone data cable. This study analyses the carbon emissions from the facility, which is presently capable of producing more than 1,000 tonnes of LSR annually. This study uses guidelines from the World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) to define the boundaries of the scope. The scope of emissions is defined as 1. Emissions from operations owned or controlled by the reporting company, 2. Emissions from the generation of purchased or acquired energy such as electricity, steam, heating, or cooling consumed by the reporting company, and 3. All other indirect emissions occurring in the value chain of the reporting company, including both upstream and downstream emissions. As the study is limited to the compounding facility, the system boundaries definition according to GHG protocol is cradle-to-gate instead of cradle-to-grave exercises. Malaysia’s present electricity generation scenario was also used, where natural gas and coal constitute the bulk of emissions. Calculations show the LSR produced for the silicone data cable with high fire retardant capability has scope 1 emissions of 0.82kg CO2/kg, scope 2 emissions of 0.87kg CO2/kg, and scope 3 emissions of 2.76kg CO2/kg, with a total product carbon footprint of 4.45kg CO2/kg. This total product carbon footprint (Cradle-to-gate) is comparable to the industry and to plastic materials per tonne of material. Although per tonne emission is comparable to plastic material, due to greater durability and longer lifespan, there can be significantly reduced use of LSR material. Suggestions to reduce the calculated product carbon footprint in the scope of emissions involve 1. Incorporating the recycling of factory silicone waste into operations, 2. Using green renewable energy for external electricity sources and 3. Sourcing eco-friendly raw materials with low GHG emissions.

Keywords: carbon footprint, liquid silicone rubber, silicone data cable, Malaysia facility

Procedia PDF Downloads 70
35 Stability of Porous SiC Based Materials under Relevant Conditions of Radiation and Temperature

Authors: Marta Malo, Carlota Soto, Carmen García-Rosales, Teresa Hernández

Abstract:

SiC based composites are candidates for possible use as structural and functional materials in the future fusion reactors, the main role is intended for the blanket modules. In the blanket, the neutrons produced in the fusion reaction slow down and their energy is transformed into heat in order to finally generate electrical power. In the blanket design named Dual Coolant Lead Lithium (DCLL), a PbLi alloy for power conversion and tritium breeding circulates inside hollow channels called Flow Channel Inserts (FCIs). These FCI must protect the steel structures against the highly corrosive PbLi liquid and the high temperatures, but also provide electrical insulation in order to minimize magnetohydrodynamic interactions of the flowing liquid metal with the high magnetic field present in a magnetically confined fusion environment. Due to their nominally high temperature and radiation stability as well as corrosion resistance, SiC is the main choice for the flow channel inserts. The significantly lower manufacturing cost presents porous SiC (dense coating is required in order to assure protection against corrosion and as a tritium barrier) as a firm alternative to SiC/SiC composites for this purpose. This application requires the materials to be exposed to high radiation levels and extreme temperatures, conditions for which previous studies have shown noticeable changes in both the microstructure and the electrical properties of different types of silicon carbide. Both initial properties and radiation/temperature induced damage strongly depend on the crystal structure, polytype, impurities/additives that are determined by the fabrication process, so the development of a suitable material requires full control of these variables. For this work, several SiC samples with different percentage of porosity and sintering additives have been manufactured by the so-called sacrificial template method at the Ceit-IK4 Technology Center (San Sebastián, Spain), and characterized at Ciemat (Madrid, Spain). Electrical conductivity was measured as a function of temperature before and after irradiation with 1.8 MeV electrons in the Ciemat HVEC Van de Graaff accelerator up to 140 MGy (~ 2·10 -5 dpa). Radiation-induced conductivity (RIC) was also examined during irradiation at 550 ºC for different dose rates (from 0.5 to 5 kGy/s). Although no significant RIC was found in general for any of the samples, electrical conductivity increase with irradiation dose was observed to occur for some compositions with a linear tendency. However, first results indicate enhanced radiation resistance for coated samples. Preliminary thermogravimetric tests of selected samples, together with posterior XRD analysis allowed interpret radiation-induced modification of the electrical conductivity in terms of changes in the SiC crystalline structure. Further analysis is needed in order to confirm this.

Keywords: DCLL blanket, electrical conductivity, flow channel insert, porous SiC, radiation damage, thermal stability

Procedia PDF Downloads 172
34 Evaluation of Feasibility of Ecological Sanitation in Central Nepal

Authors: K. C. Sharda

Abstract:

Introduction: In the world, almost half of the population are lacking proper access to improved sanitation services. In Nepal, large number of people are living without access to any sanitation facility. Ecological sanitation toilet which is defined as water conserving and nutrient recycling system for use of human urine and excreta in agriculture would count a lot to utilize locally available resources, to regenerate soil fertility, to save national currency and to achieve the goal of elimination open defecation in country like Nepal. The objectives of the research were to test the efficacy of human urine for improving crop performance and to evaluate the feasibility of ecological sanitation in rural area of Central Nepal. Materials and Methods: The field investigation was carried out at Palung Village Development Committee (VDC) of Makawanpur District, Nepal from March – August, 2016. Five eco-san toilets in two villages (Angare and Bhot Khoriya) were constructed and questionnaire survey was carried out. During the questionnaire survey, respondents were asked about socio-economic parameters, farming practices, awareness of ecological sanitation and fertilizer value of human urine and excreta in agriculture. In prior to a field experiment, soil was sampled for analysis of basic characteristics. In the field experiment, cauliflower was cultivated for a month in the two sites to compare the fertilizer value of urine with chemical fertilizer and no fertilizer with three replications. The harvested plant samples were analyzed to understand the nutrient content in plant with different treatments. Results and Discussion: Eighty three percent respondents were engaged in agriculture growing mainly vegetables, which may raise the feasibility of ecological sanitation. In the study area, water deficiencies in dry season, high demand of chemical fertilizer, lack of sanitation awareness were found to be solved. The soil at Angare has sandier texture and lower nitrogen content compared to that in Bhot Khoriya. While the field experiment in Angare showed that the aboveground biomass of cauliflower in the urine fertilized plot were similar with that in the chemically fertilized plot and higher than those in the non-fertilized plots, no significant difference among the treatments were found in Bhot Khoriya. The more distinctive response of crop growth to the three treatments in the former might be attributed to the poorer soil productivity, which in turn could be caused by the poorer inherent soil fertility and the poorer past management by the farmer in Angare. Thus, use of urine as fertilizer could help poor farmers with low quality soil. The significantly different content of nitrogen and potassium in the plant samples among three treatments in Bhot Khoriya would require further investigation. When urine is utilized as a fertilizer, the productivity could be increased and the money to buy chemical fertilizer would be utilized in other livelihood activities. Ecological sanitation is feasible in the area with similar socio-economic parameter.

Keywords: cauliflower, chemical fertilizer, ecological sanitation, Nepal, urine

Procedia PDF Downloads 334
33 Assessing of Social Comfort of the Russian Population with Big Data

Authors: Marina Shakleina, Konstantin Shaklein, Stanislav Yakiro

Abstract:

The digitalization of modern human life over the last decade has facilitated the acquisition, storage, and processing of data, which are used to detect changes in consumer preferences and to improve the internal efficiency of the production process. This emerging trend has attracted academic interest in the use of big data in research. The study focuses on modeling the social comfort of the Russian population for the period 2010-2021 using big data. Big data provides enormous opportunities for understanding human interactions at the scale of society with plenty of space and time dynamics. One of the most popular big data sources is Google Trends. The methodology for assessing social comfort using big data involves several steps: 1. 574 words were selected based on the Harvard IV-4 Dictionary adjusted to fit the reality of everyday Russian life. The set of keywords was further cleansed by excluding queries consisting of verbs and words with several lexical meanings. 2. Search queries were processed to ensure comparability of results: the transformation of data to a 10-point scale, elimination of popularity peaks, detrending, and deseasoning. The proposed methodology for keyword search and Google Trends processing was implemented in the form of a script in the Python programming language. 3. Block and summary integral indicators of social comfort were constructed using the first modified principal component resulting in weighting coefficients values of block components. According to the study, social comfort is described by 12 blocks: ‘health’, ‘education’, ‘social support’, ‘financial situation’, ‘employment’, ‘housing’, ‘ethical norms’, ‘security’, ‘political stability’, ‘leisure’, ‘environment’, ‘infrastructure’. According to the model, the summary integral indicator increased by 54% and was 4.631 points; the average annual rate was 3.6%, which is higher than the rate of economic growth by 2.7 p.p. The value of the indicator describing social comfort in Russia is determined by 26% by ‘social support’, 24% by ‘education’, 12% by ‘infrastructure’, 10% by ‘leisure’, and the remaining 28% by others. Among 25% of the most popular searches, 85% are of negative nature and are mainly related to the blocks ‘security’, ‘political stability’, ‘health’, for example, ‘crime rate’, ‘vulnerability’. Among the 25% most unpopular queries, 99% of the queries were positive and mostly related to the blocks ‘ethical norms’, ‘education’, ‘employment’, for example, ‘social package’, ‘recycling’. In conclusion, the introduction of the latent category ‘social comfort’ into the scientific vocabulary deepens the theory of the quality of life of the population in terms of the study of the involvement of an individual in the society and expanding the subjective aspect of the measurements of various indicators. Integral assessment of social comfort demonstrates the overall picture of the development of the phenomenon over time and space and quantitatively evaluates ongoing socio-economic policy. The application of big data in the assessment of latent categories gives stable results, which opens up possibilities for their practical implementation.

Keywords: big data, Google trends, integral indicator, social comfort

Procedia PDF Downloads 170
32 The Display of Age-Period/Age-Cohort Mortality Trends Using 1-Year Intervals Reveals Period and Cohort Effects Coincident with Major Influenza A Events

Authors: Maria Ines Azambuja

Abstract:

Graphic displays of Age-Period-Cohort (APC) mortality trends generally uses data aggregated within 5 or 10-year intervals. Technology allows one to increase the amount of processed data. Displaying occurrences by 1-year intervals is a logic first step in the direction of attaining higher quality landscapes of variations in temporal occurrences. Method: 1) Comparison of UK mortality trends plotted by 10-, 5- and 1-year intervals; 2) Comparison of UK and US mortality trends (period X age and cohort X age) displayed by 1-year intervals. Source: Mortality data (period, 1x1, males, 1933-1912) uploaded from the Human Mortality Database to Excel files, where Period X Age and Cohort X Age graphics were produced. The choice of transforming age-specific trends from calendar to birth-cohort years (cohort = period – age) (instead of using cohort 1x1 data available at the HMD resource) was taken to facilitate the comparison of age-specific trends when looking across calendar-years and birth-cohorts. Yearly live births, males, 1933 to 1912 (UK) were uploaded from the HFD. Influenza references are from the literature. Results: 1) The use of 1-year intervals unveiled previously unsuspected period, cohort and interacting period x cohort effects upon all-causes mortality. 2) The UK and US figures showed variations associated with particular calendar years (1936, 1940, 1951, 1957-68, 72) and, most surprisingly, with particular birth-cohorts (1889-90 in the US, and 1900, 1918-19, 1940-41 and 1946-47, in both countries. Also, the figures showed ups and downs in age-specific trends initiated at particular birth-cohorts (1900, 1918-19 and 1947-48) or a particular calendar-year (1968, 1972, 1977-78 in the US), variations at times restricted to just a range of ages (cohort x period interacting effects). Importantly, most of the identified “scars” (period and cohort) correlates with the record of occurrences of Influenza A epidemics since the late 19th Century. Conclusions: The use of 1-year intervals to describe APC mortality trends both increases the amount of information available, thus enhancing the opportunities for patterns’ recognition, and increases our capability of interpreting those patterns by describing trends across smaller intervals of time (period or birth-cohort). The US and the UK mortality landscapes share many but not all 'scars' and distortions suggested here to be associated with influenza epidemics. Different size-effects of wars are evident, both in mortality and in fertility. But it would also be realistic to suppose that the preponderant influenza A viruses circulating in UK and US at the beginning of the 20th Century might be different and the difference to have intergenerational long-term consequences. Compared with the live births trend (UK data), birth-cohort scars clearly depend on birth-cohort sizes relatives to neighbor ones, which, if causally associated with influenza, would result from influenza-related fetal outcomes/selection. Fetal selection could introduce continuing modifications on population patterns of immune-inflammatory phenotypes that might give rise to 'epidemic constitutions' favoring the occurrence of particular diseases. Comparative analysis of mortality landscapes may help us to straight our record of past circulation of Influenza viruses and document associations between influenza recycling and fertility changes.

Keywords: age-period-cohort trends, epidemic constitution, fertility, influenza, mortality

Procedia PDF Downloads 201
31 Mechanical and Durability Characteristics of Roller Compacted Geopolymer Concrete Using Recycled Concrete Aggregate

Authors: Syfur Rahman, Mohammad J. Khattak

Abstract:

Every year a huge quantity of recycling concrete aggregate (RCA) is generated in the United States of America. Utilization of RCA can solve the storage problem, prevent environmental pollution, and reduce the construction cost. However, due to the overall low strength and durability characteristics of RCA, its usages are limited to a certain area like a landfill, low strength base material, replacement of a few percentages of virgin aggregates in Portland cement concrete, etc. This study focuses on the improvement of the strength and durability characteristics of RCA by introducing the concept of roller-compacted geopolymer concrete. In this research, developed roller-compacted geopolymer concrete (RCGPC) and roller-compacted cement concrete (RCC) mixtures containing 100% recycled concrete aggregate were evaluated and compared. Several selected RCGPC mixtures were investigated to find out the effect of mixture variables, including sodium hydroxide (NaOH) molar concentration, sodium silicate (Na₂SiO₃), to sodium hydroxide (NaOH) ratio on the strength, stiffness and durability characteristics of the developed RCGPC. Sodium hydroxide (NaOH) and sodium silicate (Na₂SiO₃) were mixed in different ratios to synthesize the alkali activator. American Concrete Pavement Association (ACPA) recommended RCC gradation was used with a maximum nominal aggregate size of 19 mm with a 4% fine particle passing 0.075 mm sieve. The mixtures were made using NaOH molar concentration of 8M and 10M along with, Na₂SiO₃ to NaOH ratio of 0 and 1 by mass and 15% class F fly ash. Optimum alkali content and moisture content were determined for each RCGPC and RCC mixtures, respectively, using modified proctor test. Compressive strength, semi-circular bending beam strength, and dynamic modulus test were conducted to evaluate the mechanistic characteristics of both mixtures. To determine the optimum curing conditions for RCGPC, effects of different curing temperature and curing duration on compressive strength were also studied. Sulphate attack and freeze-thaw tests were also carried out to assess the durability properties of the developed mixtures. X-ray diffraction (XRD) was used for morphology and microstructure analysis. From the optimum moisture content results, it was found that RCGPC has high alkali content, which was mainly due to the high absorption capacity of RCA. It was found that the mixtures with Na₂SiO₃ to NaOH ratio of 1 yielded about 60% higher compressive strength than the ratio of 0. Further, the mixtures using 10M NaOH concentrations and alkali ratio of 1 produced about 28 MPa of compressive strength, which was around 33% higher than 8M NaOH mixtures. Similar results were obtained for elastic and dynamic modulus of the mixtures. On the other hand, the semi-circular bending beam strength remained the same for both 8 and 10 molar NaOH geopolymer mixtures. Formation of new geopolymeric compounds and chemical bonds in the newly formed novel RCGPC mixtures were also discovered using XRD analysis. The results of mechanical and durability testing further revealed that RCGPC performed similarly to that of RCC mixtures. Based on the results of mechanical and durability testing, the developed RCGPC mixtures using 100% recycled concrete could be used as a cost-effective solution for the construction of pavement structures.

Keywords: roller compacted concrete, geopolymer concrete, recycled concrete aggregate, concrete pavement, fly ash

Procedia PDF Downloads 109
30 Li-Ion Batteries vs. Synthetic Natural Gas: A Life Cycle Analysis Study on Sustainable Mobility

Authors: Guido Lorenzi, Massimo Santarelli, Carlos Augusto Santos Silva

Abstract:

The growth of non-dispatchable renewable energy sources in the European electricity generation mix is promoting the research of technically feasible and cost-effective solutions to make use of the excess energy, produced when the demand is low. The increasing intermittent renewable capacity is becoming a challenge to face especially in Europe, where some countries have shares of wind and solar on the total electricity produced in 2015 higher than 20%, with Denmark around 40%. However, other consumption sectors (mainly transportation) are still considerably relying on fossil fuels, with a slow transition to other forms of energy. Among the opportunities for different mobility concepts, electric (EV) and biofuel-powered vehicles (BPV) are the options that currently appear more promising. The EVs are targeting mainly the light duty users because of their zero (Full electric) or reduced (Hybrid) local emissions, while the BPVs encourage the use of alternative resources with the same technologies (thermal engines) used so far. The batteries which are applied to EVs are based on ions of Lithium because of their overall good performance in energy density, safety, cost and temperature performance. Biofuels, instead, can be various and the major difference is in their physical state (liquid or gaseous). In this study gaseous biofuels are considered and, more specifically, Synthetic Natural Gas (SNG) produced through a process of Power-to-Gas consisting in an electrochemical upgrade (with Solid Oxide Electrolyzers) of biogas with CO2 recycling. The latter process combines a first stage of electrolysis, where syngas is produced, and a second stage of methanation in which the product gas is turned into methane and then made available for consumption. A techno-economic comparison between the two alternatives is possible, but it does not capture all the different aspects involved in the two routes for the promotion of a more sustainable mobility. For this reason, a more comprehensive methodology, i.e. Life Cycle Assessment, is adopted to describe the environmental implications of using excess electricity (directly or indirectly) for new vehicle fleets. The functional unit of the study is 1 km and the two options are compared in terms of overall CO2 emissions, both considering Cradle to Gate and Cradle to Grave boundaries. Showing how production and disposal of materials affect the environmental performance of the analyzed routes is useful to broaden the perspective on the impacts that different technologies produce, in addition to what is emitted during the operational life. In particular, this applies to batteries for which the decommissioning phase has a larger impact on the environmental balance compared to electrolyzers. The lower (more than one order of magnitude) energy density of Li-ion batteries compared to SNG implies that for the same amount of energy used, more material resources are needed to obtain the same effect. The comparison is performed in an energy system that simulates the Western European one, in order to assess which of the two solutions is more suitable to lead the de-fossilization of the transport sector with the least resource depletion and the mildest consequences for the ecosystem.

Keywords: electrical energy storage, electric vehicles, power-to-gas, life cycle assessment

Procedia PDF Downloads 147