Search results for: momentum ratio
4929 Impact of Different Fuel Inlet Diameters onto the NOx Emissions in a Hydrogen Combustor
Authors: Annapurna Basavaraju, Arianna Mastrodonato, Franz Heitmeir
Abstract:
The Advisory Council for Aeronautics Research in Europe (ACARE) is creating awareness for the overall reduction of NOx emissions by 80% in its vision 2020. Hence this promotes the researchers to work on novel technologies, one such technology is the use of alternative fuels. Among these fuels hydrogen is of interest due to its one and only significant pollutant NOx. The influence of NOx formation due to hydrogen combustion depends on various parameters such as air pressure, inlet air temperature, air to fuel jet momentum ratio etc. Appropriately, this research is motivated to investigate the impact of the air to fuel jet momentum ratio onto the NOx formation in a hydrogen combustion chamber for aircraft engines. The air to jet fuel momentum is defined as the ratio of impulse/momentum of air with respect to the momentum of fuel. The experiments were performed in an existing combustion chamber that has been previously tested for methane. Premix of the reactants has not been considered due to the high reactivity of the hydrogen and high risk of a flashback. In order to create a less rich zone of reaction at the burner and to decrease the emissions, a forced internal recirculation flow has been achieved by integrating a plate similar to honeycomb structure, suitable to the geometry of the liner. The liner has been provided with an external cooling system to avoid the increase of local temperatures and in turn the reaction rate of the NOx formation. The injected air has been preheated to aim at so called flameless combustion. The air to fuel jet momentum ratio has been inspected by changing the area of fuel inlets and keeping the number of fuel inlets constant in order to alter the fuel jet momentum, thus maintaining the homogeneity of the flow. Within this analysis, promising results for a flameless combustion have been achieved. For a constant number of fuel inlets, it was seen that the reduction of the fuel inlet diameter resulted in decrease of air to fuel jet momentum ratio in turn lowering the NOx emissions.Keywords: combustion chamber, hydrogen, jet momentum, NOx emission
Procedia PDF Downloads 2924928 The Study on the Relationship between Momentum Profits and Psychological Factors: Evidence from Taiwan
Authors: Chih-Hsiang Chang
Abstract:
This study provides insight into the effects of investor sentiment, excess optimism, overconfidence, the disposition effect, and herding formation on momentum profits. This study contributes to the field by providing a further examination of the relationship between psychological factors and momentum profits. The empirical results show that there is no evidence of significant momentum profits in Taiwan’s stock market. Additionally, investor sentiment in Taiwan’s stock market significantly influences its momentum profits.Keywords: momentum profits, psychological factors, herding formation, investor sentiment
Procedia PDF Downloads 3784927 An Accelerated Stochastic Gradient Method with Momentum
Authors: Liang Liu, Xiaopeng Luo
Abstract:
In this paper, we propose an accelerated stochastic gradient method with momentum. The momentum term is the weighted average of generated gradients, and the weights decay inverse proportionally with the iteration times. Stochastic gradient descent with momentum (SGDM) uses weights that decay exponentially with the iteration times to generate the momentum term. Using exponential decay weights, variants of SGDM with inexplicable and complicated formats have been proposed to achieve better performance. However, the momentum update rules of our method are as simple as that of SGDM. We provide theoretical convergence analyses, which show both the exponential decay weights and our inverse proportional decay weights can limit the variance of the parameter moving directly to a region. Experimental results show that our method works well with many practical problems and outperforms SGDM.Keywords: exponential decay rate weight, gradient descent, inverse proportional decay rate weight, momentum
Procedia PDF Downloads 1624926 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 534925 Experimental Investigation on the Effect of Cross Flow on Discharge Coefficient of an Orifice
Authors: Mathew Saxon A, Aneeh Rajan, Sajeev P
Abstract:
Many fluid flow applications employ different types of orifices to control the flow rate or to reduce the pressure. Discharge coefficients generally vary from 0.6 to 0.95 depending on the type of the orifice. The tabulated value of discharge coefficients of various types of orifices available can be used in most common applications. The upstream and downstream flow condition of an orifice is hardly considered while choosing the discharge coefficient of an orifice. But literature shows that the discharge coefficient can be affected by the presence of cross flow. Cross flow is defined as the condition wherein; a fluid is injected nearly perpendicular to a flowing fluid. Most researchers have worked on water being injected into a cross-flow of water. The present work deals with water to gas systems in which water is injected in a normal direction into a flowing stream of gas. The test article used in the current work is called thermal regulator, which is used in a liquid rocket engine to reduce the temperature of hot gas tapped from the gas generator by injecting water into the hot gas so that a cooler gas can be supplied to the turbine. In a thermal regulator, water is injected through an orifice in a normal direction into the hot gas stream. But the injection orifice had been calibrated under backpressure by maintaining a stagnant gas medium at the downstream. The motivation of the present study aroused due to the observation of a lower Cd of the orifice in flight compared to the calibrated Cd. A systematic experimental investigation is carried out in this paper to study the effect of cross-flow on the discharge coefficient of an orifice in water to a gas system. The study reveals that there is an appreciable reduction in the discharge coefficient with cross flow compared to that without cross flow. It is found that the discharge coefficient greatly depends on the ratio of momentum of water injected to the momentum of the gas cross flow. The effective discharge coefficient of different orifices was normalized using the discharge coefficient without cross-flow and it is observed that normalized curves of effective discharge coefficient of different orifices with momentum ratio collapsing into a single curve. Further, an equation is formulated using the test data to predict the effective discharge coefficient with cross flow using the calibrated Cd value without cross flow.Keywords: cross flow, discharge coefficient, orifice, momentum ratio
Procedia PDF Downloads 1424924 Analytical Solution for End Depth Ratio in Rectangular Channels
Authors: Abdulrahman Abdulrahman, Abir Abdulrahman
Abstract:
Free over-fall is an instrument for measuring discharge in open channels by measuring end depth. A comprehensive researchers investigated theoretically and experimentally brink phenomenon with various approaches for different cross-sectional shapes. Anderson's method, based on Boussinq's approximation and energy approach was used to derive a pressure distribution factor at end depth. Applying the one-dimensional momentum equation and the principles of limit slope analysis, a relevant analytical solution may be derived for brink depth ratio (EDR) in prismatic rectangular channel. Also relationships between end depth ratio and slope ratio for a given non-dimensional normal or critical depth with upstream supercritical flow regime are presented. Simple indirect procedure is used to estimate the end depth discharge ratio (EDD) for subcritical and supercritical flow using measured end depth. The comparison of this analysis with all previous theoretical and experimental studies showed an excellent agreement.Keywords: analytical solution, brink depth, end depth, flow measurement, free over fall, hydraulics, rectangular channel
Procedia PDF Downloads 1804923 Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge
Authors: Mohammad Mashud, S. M. Nahid Hasan
Abstract:
The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method.Keywords: airfoil, momentum injection, flap, pressure distribution
Procedia PDF Downloads 1384922 Effect of Drag Coefficient Models concerning Global Air-Sea Momentum Flux in Broad Wind Range including Extreme Wind Speeds
Authors: Takeshi Takemoto, Naoya Suzuki, Naohisa Takagaki, Satoru Komori, Masako Terui, George Truscott
Abstract:
Drag coefficient is an important parameter in order to correctly estimate the air-sea momentum flux. However, The parameterization of the drag coefficient hasn’t been established due to the variation in the field data. Instead, a number of drag coefficient model formulae have been proposed, even though almost all these models haven’t discussed the extreme wind speed range. With regards to such models, it is unclear how the drag coefficient changes in the extreme wind speed range as the wind speed increased. In this study, we investigated the effect of the drag coefficient models concerning the air-sea momentum flux in the extreme wind range on a global scale, comparing two different drag coefficient models. Interestingly, one model didn’t discuss the extreme wind speed range while the other model considered it. We found that the difference of the models in the annual global air-sea momentum flux was small because the occurrence frequency of strong wind was approximately 1% with a wind speed of 20m/s or more. However, we also discovered that the difference of the models was shown in the middle latitude where the annual mean air-sea momentum flux was large and the occurrence frequency of strong wind was high. In addition, the estimated data showed that the difference of the models in the drag coefficient was large in the extreme wind speed range and that the largest difference became 23% with a wind speed of 35m/s or more. These results clearly show that the difference of the two models concerning the drag coefficient has a significant impact on the estimation of a regional air-sea momentum flux in an extreme wind speed range such as that seen in a tropical cyclone environment. Furthermore, we estimated each air-sea momentum flux using several kinds of drag coefficient models. We will also provide data from an observation tower and result from CFD (Computational Fluid Dynamics) concerning the influence of wind flow at and around the place.Keywords: air-sea interaction, drag coefficient, air-sea momentum flux, CFD (Computational Fluid Dynamics)
Procedia PDF Downloads 3704921 Time-Evolving Wave Packet in Phase Space
Authors: Mitsuyoshi Tomiya, Kentaro Kawamura, Shoichi Sakamoto
Abstract:
In chaotic billiard systems, scar-like localization has been found on time-evolving wave packet. We may call it the “dynamical scar” to separate it to the original scar in stationary states. It also comes out along the vicinity of classical unstable periodic orbits, when the wave packets are launched along the orbits, against the hypothesis that the waves become homogenous all around the billiard. Then time-evolving wave packets are investigated numerically in phase space. The Wigner function is adopted to detect the wave packets in phase space. The 2-dimensional Poincaré sections of the 4-dimensional phase space are introduced to clarify the dynamical behavior of the wave packets. The Poincaré sections of the coordinate (x or y) and the momentum (Px or Py) can visualize the dynamical behavior of the wave packets, including the behavior in the momentum degree also. For example, in “dynamical scar” states, a bit larger momentum component comes first, and then the a bit smaller and smaller components follow next. The sections made in the momentum space (Px or Py) elucidates specific trajectories that have larger contribution to the “dynamical scar” states. It is the fixed point observation of the momentum degrees at a specific fixed point(x0, y0) in the phase space. The accumulation are also calculated to search the “dynamical scar” in the Poincare sections. It is found the scars as bright spots in momentum degrees of the phase space.Keywords: chaotic billiard, Poincaré section, scar, wave packet
Procedia PDF Downloads 4514920 Unveiling the Black Swan of the Inflation-Adjusted Real Excess Returns-Risk Nexus: Evidence From Pakistan Stock Exchange
Authors: Mohammad Azam
Abstract:
The purpose of this study is to investigate risk and real excess portfolio returns using inflation adjusted risk-free rates, a measuring technique that focuses on the momentum augmented Fama-French six-factor model and use monthly data from 1994 to 2022. With the exception of profitability, the data show that market, size, value, momentum, and investment factors are all strongly associated to excess portfolio stock returns using ordinary lease square regression technique. According to the Gibbons, Ross, and Shanken test, the momentum augmented Fama-French six-factor model outperforms the market. This technique discovery may be utilised by academics and professionals to acquire an in-depth knowledge of the Pakistan Stock Exchange across a broad stock pattern for investing decisions and portfolio construction.Keywords: real excess portfolio returns, momentum augmented fama & french five-factor model, GRS-test, pakistan stock exchange
Procedia PDF Downloads 1024919 Filtering Momentum Life Cycles, Price Acceleration Signals and Trend Reversals for Stocks, Credit Derivatives and Bonds
Authors: Periklis Brakatsoulas
Abstract:
Recent empirical research shows a growing interest in investment decision-making under market anomalies that contradict the rational paradigm. Momentum is undoubtedly one of the most robust anomalies in the empirical asset pricing research and remains surprisingly lucrative ever since first documented. Although predominantly phenomena identified across equities, momentum premia are now evident across various asset classes. Yet few many attempts are made so far to provide traders a diversified portfolio of strategies across different assets and markets. Moreover, literature focuses on patterns from past returns rather than mechanisms to signal future price directions prior to momentum runs. The aim of this paper is to develop a diversified portfolio approach to price distortion signals using daily position data on stocks, credit derivatives, and bonds. An algorithm allocates assets periodically, and new investment tactics take over upon price momentum signals and across different ranking groups. We focus on momentum life cycles, trend reversals, and price acceleration signals. The main effort here concentrates on the density, time span and maturity of momentum phenomena to identify consistent patterns over time and measure the predictive power of buy-sell signals generated by these anomalies. To tackle this, we propose a two-stage modelling process. First, we generate forecasts on core macroeconomic drivers. Secondly, satellite models generate market risk forecasts using the core driver projections generated at the first stage as input. Moreover, using a combination of the ARFIMA and FIGARCH models, we examine the dependence of consecutive observations across time and portfolio assets since long memory behavior in volatilities of one market appears to trigger persistent volatility patterns across other markets. We believe that this is the first work that employs evidence of volatility transmissions among derivatives, equities, and bonds to identify momentum life cycle patterns.Keywords: forecasting, long memory, momentum, returns
Procedia PDF Downloads 1024918 Effects of Convective Momentum Transport on the Cyclones Intensity: A Case Study
Authors: José Davi Oliveira De Moura, Chou Sin Chan
Abstract:
In this study, the effect of convective momentum transport (CMT) on the life of cyclone systems and their organization is analyzed. A case of strong precipitation, in the southeast of Brazil, was simulated using Eta model with two kinds of convective parameterization: Kain-Fritsch without CMT and Kain-fritsch with CMT. Reanalysis data from CFSR were used to compare Eta model simulations. The Wind, mean sea level pressure, rain and temperature are included in analysis. The rain was evaluated by Equitable Threat Score (ETS) and Bias Index; the simulations were compared among themselves to detect the influence of CMT displacement on the systems. The result shows that CMT process decreases the intensity of meso cyclones (higher pressure values on nuclei) and change the positions and production of rain. The decrease of intensity in meso cyclones should be caused by the dissolution of momentum from lower levels from up levels. The rain production and rain distribution were altered because the displacement of the larger systems scales was changed. In addition, the inclusion of CMT process is very important to improve the simulation of life time of meteorological systems.Keywords: convection, Kain-Fritsch, momentum, parameterization
Procedia PDF Downloads 3244917 Momentum in the Stock Exchange of Thailand
Authors: Mussa Hussaini, Supasith Chonglerttham
Abstract:
Stocks are usually classified according to their characteristics which are unique enough such that the performance of each category can be differentiated from another. The reasons behind such classifications in the financial market are sometimes financial innovation or it can also be because of finding a premium in a group of stocks with similar features. One of the major classifications in stocks market is called momentum strategy. Based on this strategy stocks are classified according to their past performances into past winners and past losers. Momentum in a stock market refers to the idea that stocks will keep moving in the same direction. In other word, stocks with rising prices (past winners stocks) will continue to rise and those stocks with falling prices (past losers stocks) will continue to fall. The performance of this classification has been well documented in numerous studies in different countries. These studies suggest that past winners tend to outperform past losers in the future. However, academic research in this direction has been limited in countries such as Thailand and to the best of our knowledge, there has been no such study in Thailand after the financial crisis of 1997. The significance of this study stems from the fact that Thailand is an open market and has been encouraging foreign investments as one of the means to enhance employment, promote economic development, and technology transfer and the main equity market in Thailand, the Stock Exchange of Thailand is a crucial channel for Foreign Investment inflow into the country. The equity market size in Thailand increased from $1.72 billion in 1984 to $133.66 billion in 1993, an increase of over 77 times within a decade. The main contribution of this paper is evidence for size category in the context of the equity market in Thailand. Almost all previous studies have focused solely on large stocks or indices. This paper extends the scope beyond large stocks and indices by including small and tiny stocks as well. Further, since there is a distinct absence of detailed academic research on momentum strategy in the Stock Exchange of Thailand after the crisis, this paper also contributes to the extension of existing literature of the study. This research is also of significance for those researchers who would like to compare the performance of this strategy in different countries and markets. In the Stock Exchange of Thailand, we examined the performance of momentum strategy from 2010 to 2014. Returns on portfolios are calculated on monthly basis. Our results on momentum strategy confirm that there is positive momentum profit in large size stocks whereas there is negative momentum profit in small size stocks during the period of 2010 to 2014. Furthermore, the equal weighted average of momentum profit of both small and large size category do not provide any indication of overall momentum profit.Keywords: momentum strategy, past loser, past winner, stock exchange of Thailand
Procedia PDF Downloads 3164916 Momentum Profits and Investor Behavior
Authors: Aditya Sharma
Abstract:
Profits earned from relative strength strategy of zero-cost portfolio i.e. taking long position in winner stocks and short position in loser stocks from recent past are termed as momentum profits. In recent times, there has been lot of controversy and concern about sources of momentum profits, since the existence of these profits acts as an evidence of earning non-normal returns from publicly available information directly contradicting Efficient Market Hypothesis. Literature review reveals conflicting theories and differing evidences on sources of momentum profits. This paper aims at re-examining the sources of momentum profits in Indian capital markets. The study focuses on assessing the effect of fundamental as well as behavioral sources in order to understand the role of investor behavior in stock returns and suggest (if any) improvements to existing behavioral asset pricing models. This Paper adopts calendar time methodology to calculate momentum profits for 6 different strategies with and without skipping a month between ranking and holding period. For each J/K strategy, under this methodology, at the beginning of each month t stocks are ranked on past j month’s average returns and sorted in descending order. Stocks in upper decile are termed winners and bottom decile as losers. After ranking long and short positions are taken in winner and loser stocks respectively and both portfolios are held for next k months, in such manner that at any given point of time we have K overlapping long and short portfolios each, ranked from t-1 month to t-K month. At the end of period, returns of both long and short portfolios are calculated by taking equally weighted average across all months. Long minus short returns (LMS) are momentum profits for each strategy. Post testing for momentum profits, to study the role market risk plays in momentum profits, CAPM and Fama French three factor model adjusted LMS returns are calculated. In the final phase of studying sources, decomposing methodology has been used for breaking up the profits into unconditional means, serial correlations, and cross-serial correlations. This methodology is unbiased, can be used with the decile-based methodology and helps to test the effect of behavioral and fundamental sources altogether. From all the analysis, it was found that momentum profits do exist in Indian capital markets with market risk playing little role in defining them. Also, it was observed that though momentum profits have multiple sources (risk, serial correlations, and cross-serial correlations), cross-serial correlations plays a major role in defining these profits. The study revealed that momentum profits do have multiple sources however, cross-serial correlations i.e. the effect of returns of other stocks play a major role. This means that in addition to studying the investors` reactions to the information of the same firm it is also important to study how they react to the information of other firms. The analysis confirms that investor behavior does play an important role in stock returns and incorporating both the aspects of investors’ reactions in behavioral asset pricing models help make then better.Keywords: investor behavior, momentum effect, sources of momentum, stock returns
Procedia PDF Downloads 3044915 Quantum Localization of Vibrational Mirror in Cavity Optomechanics
Authors: Madiha Tariq, Hena Rabbani
Abstract:
Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.Keywords: dynamical localization, cavity optomechanics, Hamiltonian chaos, probe field
Procedia PDF Downloads 1494914 Using Computational Fluid Dynamics (CFD) Modeling to Predict the Impact of Nuclear Reactor Mixed Tank Flows Using the Momentum Equation
Authors: Joseph Amponsah
Abstract:
This research proposes an equation to predict and determine the momentum source equation term after factoring in the radial friction between the fluid and the blades and the impeller's propulsive power. This research aims to look at how CFD software can be used to predict the effect of flows in nuclear reactor stirred tanks through a momentum source equation and the concentration distribution of tracers that have been introduced in reactor tanks. The estimated findings, including the dimensionless concentration curves, power, and pumping numbers, dimensionless velocity profiles, and mixing times 4, were contrasted with results from tests in stirred containers. The investigation was carried out in Part I for vessels that were agitated by one impeller on a central shaft. The two types of impellers employed were an ordinary Rushton turbine and a 6-bladed 45° pitched blade turbine. The simulations made use of numerous reference frame techniques and the common k-e turbulence model. The impact of the grid type was also examined; unstructured, structured, and unique user-defined grids were looked at. The CFD model was used to simulate the flow field within the Rushton turbine nuclear reactor stirred tank. This method was validated using experimental data that were available close to the impeller tip and in the bulk area. Additionally, analyses of the computational efficiency and time using MRF and SM were done.Keywords: Ansys fluent, momentum equation, CFD, prediction
Procedia PDF Downloads 794913 Application of Golden Ratio in Contemporary Textile Industry and Its Effect on Consumer Preferences
Authors: Rafia Asghar, Abdul Hafeez
Abstract:
This research aims to determine the influence of Fibonacci numbers and golden ratio through textile designs. This study was carried out by collecting a variety of designs from different textile industries. Top textile designers were also interviewed regarding golden ratio and its application on their designs and design execution process. This study revealed that most of the designs fulfilled the golden ratio and the designs that were according to golden ratio were more favorite to the consumers.Keywords: golden ratio, Fibonacci numbers, textile design, designs
Procedia PDF Downloads 7174912 A Data-Driven Platform for Studying the Liquid Plug Splitting Ratio
Authors: Ehsan Atefi, Michael Grigware
Abstract:
Respiratory failure secondary to surfactant deficiency resulting from respiratory distress syndrome is considered one major cause of morbidity in preterm infants. Surfactant replacement treatment (SRT) is considered an effective treatment for this disease. Here, we introduce an AI-mediated approach for estimating the distribution of surfactant in the lung airway of a newborn infant during SRT. Our approach implements machine learning to precisely estimate the splitting ratio of a liquid drop during bifurcation at different injection velocities and patient orientations. This technique can be used to calculate the surfactant residue remaining on the airway wall during the surfactant injection process. Our model works by minimizing the pressure drop difference between the two airway branches at each generation, subject to mass and momentum conservation. Our platform can be used to generate feedback for immediately adjusting the velocity of injection and patient orientation during SRT.Keywords: respiratory failure, surfactant deficiency, surfactant replacement, machine learning
Procedia PDF Downloads 1244911 Three Dimensional Flexible Dynamics of Continuous Cislunar Payloads Transfer System
Authors: Y. Yang, Dian Ming Xing, Qiu Hua Du
Abstract:
Based on the Motorized Momentum Exchange Tether (MMET), with the principle of momentum exchange, the three dimension flexible dynamics of continuous cislunar payloads transferring system (CCPTS) is built by Lagrange method and its numerical solution is solved by Mathematica software. In the derivation precession of potential energy, this paper uses the Tylor expansion method to simplify the Lagrange equation. Furthermore, the tension coming from the centripetal load is considered in the elastic potential energy. The comparison simulation results between the 3D rigid model and 3D flexible model of CCPTS shows that the tether flexibility has important influence on CCPTS’s orbital parameters (such as radius of CCPTS’s COM and the true anomaly) and the tether’s rotational movement, the relative deviation of radius and the true anomaly between the two dynamic models is about 0.00678% and 0.00259%, the relative deviation of the angle of tether-span and local gravity gradient is about 3.55%. Additionally, the external torque has an apparent influence on the tether’s axial vibration.Keywords: cislunar transfer, dynamics, momentum exchange, tether
Procedia PDF Downloads 2694910 Macroeconomic Determinants of Cyclical Variations in Value, Size, and Momentum Premium in the UK
Authors: G. Sarwar, C. Mateus, N. Todorovic
Abstract:
The paper examines the asymmetries in size, value and momentum premium over the economic cycles in the UK and their macroeconomic determinants. Using Markov switching approach we find clear evidence of cyclical variations of the three premiums, most noticeably variations in size premium. We associate Markov switching regime 1 with economic upturn and regime 2 with economic downturn as per OECD’s Composite Leading Indicator. The macroeconomic indicators prompting such cyclicality the most are interest rates, term structure and credit spread. The role of GDP growth, money supply and inflation is less pronounced in our sample.Keywords: macroeconomic determinants, Markorv Switching, size, value
Procedia PDF Downloads 4854909 Spin Coherent States Without Squeezing
Authors: A. Dehghani, S. Shirin
Abstract:
We propose in this article a new configuration of quantum states, |α, β> := |α>×|β>. Which are composed of vector products of two different copies of spin coherent states, |α> and |β>. Some mathematical as well as physical properties of such states are discussed. For instance, it has been shown that the cross products of two coherent vectors remain coherent again. They admit a resolution of the identity through positive definite measures on the complex plane. They represent packets similar to the true coherent states, in other words we would not expect to take spin squeezing in any of the field quadratures Lˆx, Lˆy and Lˆz. Depending on the particular choice of parameters in the above scenarios, they can be converted into the so-called Dicke states which minimize the uncertainty relations of each pair of the angular momentum components.Keywords: vector (Cross-)products, minimum uncertainty, angular momentum, measurement, Dicke states
Procedia PDF Downloads 4124908 The Influence of Feedgas Ratio on the Ethene Hydroformylation using Rh-Co Bimetallic Catalyst Supported by Reduced Graphene Oxide
Authors: Jianli Chang, Yusheng Zhang, Yali Yao, Diane Hildebrandt, Xinying Liu
Abstract:
The influence of feed-gas ratio on the ethene hydroformylation over an Rh-Co bimetallic catalyst supported by reduced graphene oxide (RGO) has been investigated in a tubular fixed bed reactor. Argon was used as balance gas when the feed-gas ratio was changed, which can keep the partial pressure of the other two kinds of gas constant while the ratio of one component in feed-gas was changed. First, the effect of single-component gas ratio on the performance of ethene hydroformylation was studied one by one (H₂, C₂H₄ and CO). Then an optimized ratio was found to obtain a high selectivity to C₃ oxygenates. The results showed that: (1) 0.5%Rh-20%Co/RGO is a promising heterogeneous catalyst for ethene hydroformylation. (2) H₂ and CO have a more significant influence than C₂H₄ on selectivity to oxygenates. (3) A lower H₂ ratio and a higher CO ratio in feed-gas can lead to a higher selectivity to oxygenates. (4) The highest selectivity to oxygenates, 61.70%, was obtained at the feed-gas ratio CO: C₂H₄: H₂ = 4: 2: 1.Keywords: ethene hydroformylation, reduced graphene oxide, rhodium cobalt bimetallic catalyst, the effect of feed-gas ratio
Procedia PDF Downloads 1624907 The Simple Two-Step Polydimethylsiloxane (PDMS) Transferring Process for High Aspect Ratio Microstructures
Authors: Shaoxi Wang, Pouya Rezai
Abstract:
High aspect ratio is the necessary parts of complex microstructures. Some methods available to achieve high aspect ratio requires expensive materials or complex process; others is difficult to research simple high aspect ratio structures. The paper presents a simple and cheap two-step Polydimethylsioxane (PDMS) transferring process to get high aspect ratio single pillars, which only requires covering the PDMS mold with Brij@52 surface solution. The experimental results demonstrate the method efficiency and effective.Keywords: high aspect ratio, microstructure, PDMS, Brij
Procedia PDF Downloads 2634906 Computational Modeling of Heat Transfer from a Horizontal Array Cylinders for Low Reynolds Numbers
Authors: Ovais U. Khan, G. M. Arshed, S. A. Raza, H. Ali
Abstract:
A numerical model based on the computational fluid dynamics (CFD) approach is developed to investigate heat transfer across a longitudinal row of six circular cylinders. The momentum and energy equations are solved using the finite volume discretization technique. The convective terms are discretized using a second-order upwind methodology, whereas diffusion terms are discretized using a central differencing scheme. The second-order implicit technique is utilized to integrate time. Numerical simulations have been carried out for three different values of free stream Reynolds number (ReD) 100, 200, 300 and two different values of dimensionless longitudinal pitch ratio (SL/D) 1.5, 2.5 to demonstrate the fluid flow and heat transfer behavior. Numerical results are validated with the analytical findings reported in the literature and have been found to be in good agreement. The maximum percentage error in values of the average Nusselt number obtained from the numerical and analytical solutions is in the range of 10% for the free stream Reynolds number up to 300. It is demonstrated that the average Nusselt number for the array of cylinders increases with increasing the free stream Reynolds number and dimensionless longitudinal pitch ratio. The information generated would be useful in the design of more efficient heat exchangers or other fluid systems involving arrays of cylinders.Keywords: computational fluid dynamics, array of cylinders, longitudinal pitch ratio, finite volume method, incompressible navier-stokes equations
Procedia PDF Downloads 844905 The Road to Tunable Structures: Comparison of Experimentally Characterised and Numerical Modelled Auxetic Perforated Sheet Structures
Authors: Arthur Thirion
Abstract:
Auxetic geometries allow the generation of a negative Poisson ratio (NPR) in conventional materials. This behaviour allows materials to have certain improved mechanical properties, including impact resistance and altered synclastic behaviour. This means these structures have significant potential when it comes to applications as chronic wound dressings. To this end, 6 different "perforated sheet" structure types were 3D printed. These structures all had variations of key geometrical features included cell length and angle. These were tested in compression and tension to assess their Poisson ratio. Both a positive and negative Poisson ratio was generated by the structures depending on the loading. The a/b ratio followed by θ has been shown to impact the Poisson ratio significantly. There is still a significant discrepancy between modelled and observed behaviour.Keywords: auxetic materials, 3D printing, negative Poisson's ratio, tunable Poisson's ratio
Procedia PDF Downloads 1154904 Solving Momentum and Energy Equation by Using Differential Transform Techniques
Authors: Mustafa Ekici
Abstract:
Natural convection is a basic process which is important in a wide variety of practical applications. In essence, a heated fluid expands and rises from buoyancy due to decreased density. Numerous papers have been written on natural or mixed convection in vertical ducts heated on the side. These equations have been proved to be valuable tools for the modelling of many phenomena such as fluid dynamics. Finding solutions to such equations or system of equations are in general not an easy task. We propose a method, which is called differential transform method, of solving a non-linear equations and compare the results with some of the other techniques. Illustrative examples shows that the results are in good agreement.Keywords: differential transform method, momentum, energy equation, boundry value problem
Procedia PDF Downloads 4604903 Optimization of a Convolutional Neural Network for the Automated Diagnosis of Melanoma
Authors: Kemka C. Ihemelandu, Chukwuemeka U. Ihemelandu
Abstract:
The incidence of melanoma has been increasing rapidly over the past two decades, making melanoma a current public health crisis. Unfortunately, even as screening efforts continue to expand in an effort to ameliorate the death rate from melanoma, there is a need to improve diagnostic accuracy to decrease misdiagnosis. Artificial intelligence (AI) a new frontier in patient care has the ability to improve the accuracy of melanoma diagnosis. Convolutional neural network (CNN) a form of deep neural network, most commonly applied to analyze visual imagery, has been shown to outperform the human brain in pattern recognition. However, there are noted limitations with the accuracy of the CNN models. Our aim in this study was the optimization of convolutional neural network algorithms for the automated diagnosis of melanoma. We hypothesized that Optimal selection of the momentum and batch hyperparameter increases model accuracy. Our most successful model developed during this study, showed that optimal selection of momentum of 0.25, batch size of 2, led to a superior performance and a faster model training time, with an accuracy of ~ 83% after nine hours of training. We did notice a lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone. Training set image transformations did not result in a superior model performance in our study.Keywords: melanoma, convolutional neural network, momentum, batch hyperparameter
Procedia PDF Downloads 1004902 Enhanced Methane Production from Waste Paper through Anaerobic Co-Digestion with Macroalgae
Authors: Cristina Rodriguez, Abed Alaswad, Zaki El-Hassan, Abdul G. Olabi
Abstract:
This study investigates the effect on methane production from the waste paper when co-digested with macroalgal biomass as a source of nitrogen. Both feedstocks were previously mechanically pretreated in order to reduce their particle size. Methane potential assays were carried out at laboratory scale in batch mode for 28 days. The study was planned according to two factors: the feedstock to inoculum (F/I) ratio and the waste paper to macroalgae (WP/MA) ratio. The F/I ratios checked were 0.2, 0.3 and 0.4 and the WP/MA ratios were 0:100, 25:75, 50:50, 75:25 and 100:0. The highest methane yield (608 ml/g of volatile solids (VS)) was achieved at an F/I ratio of 0.2 and a WP/MA ratio of 50:50. The methane yield at a ratio WP/MA of 50:50 is higher than for single compound, while for ratios WP/MA of 25:75 and 75:25 the methane yield decreases compared to biomass mono-digestion. This behavior is observed for the three levels of F/I ratio being more noticeable at F/I ratio of 0.3. A synergistic effect was found for the WP/MA ratio of 50:50 and all F/I ratios and for WP/MA=50:50 and F/I=0.2. A maximum increase of methane yield of 49.58% was found for a co-digestion ratio of 50:50 and an F/I ratio of 0.4. It was concluded that methane production from waste paper improves significantly when co-digested with macroalgae biomass. The methane yields from co-digestion were also found higher that from macroalgae mono-digestion.Keywords: anaerobic co-digestion, biogas, macroalgae, waste paper
Procedia PDF Downloads 3664901 Unified Gas-Kinetic Scheme for Gas-Particle Flow in Shock-Induced Fluidization of Particles Bed
Abstract:
In this paper, a unified-gas kinetic scheme (UGKS) for the gas-particle flow is constructed. UGKS is a direct modeling method for both continuum and rarefied flow computations. The dynamics of particle and gas are described as rarefied and continuum flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook (BGK) equation for the particle distribution function. For the gas phase, the gas kinetic scheme for Navier-Stokes equation is solved. The momentum transfer between gas and particle is achieved by the acceleration term added to the BGK equation. The new scheme is tested by a 2cm-in-thickness dense bed comprised of glass particles with 1.5mm in diameter, and reasonable agreement is achieved.Keywords: gas-particle flow, unified gas-kinetic scheme, momentum transfer, shock-induced fluidization
Procedia PDF Downloads 2594900 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties
Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying
Abstract:
SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.Keywords: crystallization, MTO, Si/Al ratio, SSZ-13
Procedia PDF Downloads 293