Search results for: microtube array membrane (MTAMs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1816

Search results for: microtube array membrane (MTAMs)

136 Understanding the Experiences of School Teachers and Administrators Involved in a Multi-Sectoral Approach to the Creation of a Physical Literacy Enriched Community

Authors: M. Louise Humbert, Karen E. Chad, Natalie E. Houser, Marta E. Erlandson

Abstract:

Physical literacy is the motivation, confidence, physical competence, knowledge, and understanding to value and takes responsibility for engagement in physical activities for life. In recent years, physical literacy has emerged as a determinant of health, promoting a positive lifelong physical activity trajectory. Physical literacy’s holistic approach and emphasis on the intrinsic valuation of movement provide an encouraging avenue for intervention among children to develop competent and confident movers. Although there is research on physical literacy interventions, no evidence exists on the outcomes of multi-sectoral interventions involving a combination of home, school, and community contexts. Since children interact with and in a wide range of contexts (home, school, community) daily, interventions designed to address a combination of these contexts are critical to the development of physical literacy. Working with school administrators and teachers, sports and recreation leaders, and community members, our team of university and community researchers conducted and evaluated one of the first multi-contextual and multi-sectoral physical literacy interventions in Canada. Schools played a critical role in this multi-sector intervention, and in this project, teachers and administrators focused their actions on developing physical literacy in students 10 to 14 years of age through the instruction of physical literacy-focused physical education lessons. Little is known about the experiences of educators when they work alongside an array of community representatives to develop physical literacy in school-aged children. Given the uniqueness of this intervention, we sought to answer the question, ‘What were the experiences of school-based educators involved in a multi-sectoral partnership focused on creating a physical literacy enriched community intervention?’ A thematic analysis approach was used to analyze data collected from interviews with educators and administrators, informal conversations, documents, and observations at workshops and meetings. Results indicated that schools and educators played the largest role in this multi-sector intervention. Educators initially reported a limited understanding of physical literacy and expressed a need for resources linked to the physical education curriculum. Some anxiety was expressed by the teachers as their students were measured, and educators noted they wanted to increase their understanding and become more involved in the assessment of physical literacy. Teachers reported that the intervention’s focus on physical literacy positively impacted the scheduling and their instruction of physical education. Administrators shared their desire for school and division-level actions targeting physical literacy development like the current focus on numeracy and literacy, treaty education, and safe schools. As this was one of the first multi-contextual and multi-sectoral physical literacy interventions, it was important to document creation and delivery experiences to encourage future growth in the area and develop suggested best practices.

Keywords: physical literacy, multi sector intervention, physical education, teachers

Procedia PDF Downloads 75
135 An Introduction to the Radiation-Thrust Based on Alpha Decay and Spontaneous Fission

Authors: Shiyi He, Yan Xia, Xiaoping Ouyang, Liang Chen, Zhongbing Zhang, Jinlu Ruan

Abstract:

As the key system of the spacecraft, various propelling system have been developing rapidly, including ion thrust, laser thrust, solar sail and other micro-thrusters. However, there still are some shortages in these systems. The ion thruster requires the high-voltage or magnetic field to accelerate, resulting in extra system, heavy quantity and large volume. The laser thrust now is mostly ground-based and providing pulse thrust, restraint by the station distribution and the capacity of laser. The thrust direction of solar sail is limited to its relative position with the Sun, so it is hard to propel toward the Sun or adjust in the shadow.In this paper, a novel nuclear thruster based on alpha decay and spontaneous fission is proposed and the principle of this radiation-thrust with alpha particle has been expounded. Radioactive materials with different released energy, such as 210Po with 5.4MeV and 238Pu with 5.29MeV, attached to a metal film will provides various thrust among 0.02-5uN/cm2. With this repulsive force, radiation is able to be a power source. With the advantages of low system quantity, high accuracy and long active time, the radiation thrust is promising in the field of space debris removal, orbit control of nano-satellite array and deep space exploration. To do further study, a formula lead to the amplitude and direction of thrust by the released energy and decay coefficient is set up. With the initial formula, the alpha radiation elements with the half life period longer than a hundred days are calculated and listed. As the alpha particles emit continuously, the residual charge in metal film grows and affects the emitting energy distribution of alpha particles. With the residual charge or extra electromagnetic field, the emitting of alpha particles performs differently and is analyzed in this paper. Furthermore, three more complex situations are discussed. Radiation element generating alpha particles with several energies in different intensity, mixture of various radiation elements, and cascaded alpha decay are studied respectively. In combined way, it is more efficient and flexible to adjust the thrust amplitude. The propelling model of the spontaneous fission is similar with the one of alpha decay, which has a more complex angular distribution. A new quasi-sphere space propelling system based on the radiation-thrust has been introduced, as well as the collecting and processing system of excess charge and reaction heat. The energy and spatial angular distribution of emitting alpha particles on unit area and certain propelling system have been studied. As the alpha particles are easily losing energy and self-absorb, the distribution is not the simple stacking of each nuclide. With the change of the amplitude and angel of radiation-thrust, orbital variation strategy on space debris removal is shown and optimized.

Keywords: alpha decay, angular distribution, emitting energy, orbital variation, radiation-thruster

Procedia PDF Downloads 168
134 Digital Technology Relevance in Archival and Digitising Practices in the Republic of South Africa

Authors: Tashinga Matindike

Abstract:

By means of definition, digital artworks encompass an array of artistic productions that are expressed in a technological form as an essential part of a creative process. Examples include illustrations, photos, videos, sculptures, and installations. Within the context of the visual arts, the process of repatriation involves the return of once-appropriated goods. Archiving denotes the preservation of a commodity for storage purposes in order to nurture its continuity. The aforementioned definitions form the foundation of the academic framework and premise of the argument, which is outlined in this paper. This paper aims to define, discuss and decipher the complexities involved in digitising artworks, whilst explaining the benefits of the process, particularly within the South African context, which is rich in tangible and intangible traditional cultural material, objects, and performances. With the internet having been introduced to the African Continent in the early 1990s, this new form of technology, in its own right, initiated a high degree of efficiency, which also resulted in the progressive transformation of computer-generated visual output. Subsequently, this caused a revolutionary influence on the manner in which technological software was developed and uterlised in art-making. Digital technology and the digitisation of creative processes then opened up new avenues of collating and recording information. One of the first visual artists to make use of digital technology software in his creative productions was United States-based artist John Whitney. His inventive work contributed greatly to the onset and development of digital animation. Comparable by technique and originality, South African contemporary visual artists who make digital artworks, both locally and internationally, include David Goldblatt, Katherine Bull, Fritha Langerman, David Masoga, Zinhle Sethebe, Alicia Mcfadzean, Ivan Van Der Walt, Siobhan Twomey, and Fhatuwani Mukheli. In conclusion, the main objective of this paper is to address the following questions: In which ways has the South African art community of visual artists made use of and benefited from technology, in its digital form, as a means to further advance creativity? What are the positive changes that have resulted in art production in South Africa since the onset and use of digital technological software? How has digitisation changed the manner in which we record, interpret, and archive both written and visual information? What is the role of South African art institutions in the development of digital technology and its use in the field of visual art. What role does digitisation play in the process of the repatriation of artworks and artefacts. The methodology in terms of the research process of this paper takes on a multifacted form, inclusive of data analysis of information attained by means of qualitative and quantitative approaches.

Keywords: digital art, digitisation, technology, archiving, transformation and repatriation

Procedia PDF Downloads 25
133 Estimating Industrial Pollution Load in Phnom Penh by Industrial Pollution Projection System

Authors: Vibol San, Vin Spoann

Abstract:

Manufacturing plays an important role in job creation around the world. In 2013, it is estimated that there were more than half a billion jobs in manufacturing. In Cambodia in 2015, the primary industry occupies 26.18% of the total economy, while agriculture is contributing 29% and the service sector 39.43%. The number of industrial factories, which are dominated by garment and textiles, has increased since 1994, mainly in Phnom Penh city. Approximately 56% out of total 1302 firms are operated in the Capital city in Cambodia. Industrialization to achieve the economic growth and social development is directly responsible for environmental degradation, threatening the ecosystem and human health issues. About 96% of total firms in Phnom Penh city are the most and moderately polluting firms, which have contributed to environmental concerns. Despite an increasing array of laws, strategies and action plans in Cambodia, the Ministry of Environment has encountered some constraints in conducting the monitoring work, including lack of human and financial resources, lack of research documents, the limited analytical knowledge, and lack of technical references. Therefore, the necessary information on industrial pollution to set strategies, priorities and action plans on environmental protection issues is absent in Cambodia. In the absence of this data, effective environmental protection cannot be implemented. The objective of this study is to estimate industrial pollution load by employing the Industrial Pollution Projection System (IPPS), a rapid environmental management tool for assessment of pollution load, to produce a scientific rational basis for preparing future policy direction to reduce industrial pollution in Phnom Penh city. Due to lack of industrial pollution data in Phnom Penh, industrial emissions to the air, water and land as well as the sum of emissions to all mediums (air, water, land) are estimated using employment economic variable in IPPS. Due to the high number of employees, the total environmental load generated in Phnom Penh city is estimated to be 476.980.93 tons in 2014, which is the highest industrial pollution compared to other locations in Cambodia. The result clearly indicates that Phnom Penh city is the highest emitter of all pollutants in comparison with environmental pollutants released by other provinces. The total emission of industrial pollutants in Phnom Penh shares 55.79% of total industrial pollution load in Cambodia. Phnom Penh city generates 189,121.68 ton of VOC, 165,410.58 ton of toxic chemicals to air, 38,523.33 ton of toxic chemicals to land and 28,967.86 ton of SO2 in 2014. The results of the estimation show that Textile and Apparel sector is the highest generators of toxic chemicals into land and air, and toxic metals into land, air and water, while Basic Metal sector is the highest contributor of toxic chemicals to water. Textile and Apparel sector alone emits 436,015.84 ton of total industrial pollution loads. The results suggest that reduction in industrial pollution could be achieved by focusing on the most polluting sectors.

Keywords: most polluting area, polluting industry, pollution load, pollution intensity

Procedia PDF Downloads 229
132 Inhibition of Influenza Replication through the Restrictive Factors Modulation by CCR5 and CXCR4 Receptor Ligands

Authors: Thauane Silva, Gabrielle do Vale, Andre Ferreira, Marilda Siqueira, Thiago Moreno L. Souza, Milene D. Miranda

Abstract:

The exposure of A(H1N1)pdm09-infected epithelial cells (HeLa) to HIV-1 viral particles, or its gp120, enhanced interferon-induced transmembrane protein (IFITM3) content, a viral restriction factor (RF), resulting in a decrease in influenza replication. The gp120 binds to CCR5 (R5) or CXCR4 (X4) cell receptors during HIV-1 infection. Then, it is possible that the endogenous ligands of these receptors also modulate the expression of IFITM3 and other cellular factors that restrict influenza virus replication. Thus, the aim of this study is to analyze the role of cellular receptors R5 and X4 in modulating RFs in order to inhibit the replication of the influenza virus. A549 cells were treated with 2x effective dose (ED50) of endogenous R5 or X4 receptor agonists, CCL3 (20 ng/ml), CCL4 (10 ng/ml), CCL5 (10 ng/ml) and CXCL12 (100 ng/mL) or exogenous agonists, gp120 Bal-R5, gp120 IIIB-X4 and its mutants (5 µg/mL). The interferon α (10 ng/mL) and oseltamivir (60 nM) were used as a control. After 24 h post agonists exposure, the cells were infected with virus influenza A(H3N2) at 2 MOI (multiplicity of infection) for 1 h. Then, 24 h post infection, the supernatant was harvested and, the viral titre was evaluated by qRT-PCR. To evaluate IFITM3 and SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 (SAMHD1) protein levels, A549 were exposed to agonists for 24 h, and the monolayer was lysed with Laemmli buffer for western blot (WB) assay or fixed for indirect immunofluorescence (IFI) assay. In addition to this, we analyzed other RFs modulation in A549, after 24 h post agonists exposure by customized RT² Profiler Polymerase Chain Reaction Array. We also performed a functional assay in which SAMHD1-knocked-down, by single-stranded RNA (siRNA), A549 cells were infected with A(H3N2). In addition, the cells were treated with guanosine to assess the regulatory role of dNTPs by SAMHD1. We found that R5 and X4 agonists inhibited influenza replication in 54 ± 9%. We observed a four-fold increase in SAMHD1 transcripts by RFs mRNA quantification panel. After 24 h post agonists exposure, we did not observe an increase in IFITM3 protein levels through WB or IFI assays, but we observed an upregulation up to three-fold in the protein content of SAMHD1, in A549 exposed to agonists. Besides this, influenza replication enhanced in 20% in cell cultures that SAMDH1 was knockdown. Guanosine treatment in cells exposed to R5 ligands further inhibited influenza virus replication, suggesting that the inhibitory mechanism may involve the activation of the SAMHD1 deoxynucleotide triphosphohydrolase activity. Thus, our data show for the first time a direct relationship of SAMHD1 and inhibition of influenza replication, and provides perspectives for new studies on the signaling modulation, through cellular receptors, to induce proteins of great importance in the control of relevant infections for public health.

Keywords: chemokine receptors, gp120, influenza, virus restriction factors

Procedia PDF Downloads 104
131 Relationship between Thumb Length and Pointing Performance on Portable Terminal with Touch-Sensitive Screen

Authors: Takahiro Nishimura, Kouki Doi, Hiroshi Fujimoto

Abstract:

Touch-sensitive screens that serve as displays and input devices have been adopted in many portable terminals such as smartphones and personal media players, and the market of touch-sensitive screens has expanded greatly. One of the advantages of touch-sensitive screen is the flexibility in the graphical user interface (GUI) design, and it is imperative to design an appropriate GUI to realize an easy-to-use interface. Moreover, it is important to evaluate the relationship between pointing performance and GUI design. There is much knowledge regarding easy-to-use GUI designs for portable terminals with touch-sensitive screens, and most have focused on GUI design approaches for women or children with small hands. In contrast, GUI design approaches for users with large hands have not received sufficient attention. In this study, to obtain knowledge that contributes to the establishment of individualized easy-to-use GUI design guidelines, we conducted experiments to investigate the relationship between thumb length and pointing performance on portable terminals with touch-sensitive screens. In this study, fourteen college students who participated in the experiment were divided into two groups based on the length of their thumbs. Specifically, we categorized the participants into two groups, thumbs longer than 64.2 mm into L (Long) group, and thumbs longer than 57.4 mm but shorter than 64.2 mm into A (Average) group, based on Japanese anthropometric database. They took part in this study under the authorization of Waseda University’s ‘Ethics Review Committee on Research with Human Subjects’. We created an application for the experimental task and implemented it on the projected capacitive touch-sensitive screen portable terminal (iPod touch (4th generation)). The display size was 3.5 inch and 960 × 640 - pixel resolution at 326 ppi (pixels per inch). This terminal was selected as the experimental device, because of its wide use and market share. The operational procedure of the application is as follows. First, the participants placed their thumb on the start position. Then, one cross-shaped target in a 10 × 7 array of 70 positions appeared at random. The participants pointed the target with their thumb as accurately and as fast as possible. Then, they returned their thumb to the start position and waited. The operation ended when this procedure had been repeated until all 70 targets had each been pointed at once by the participants. We adopted the evaluation indices for absolute error, variable error, and pointing time to investigate pointing performance when using the portable terminal. The results showed that pointing performance varied with thumb length. In particular, on the lower right side of the screen, the performance of L group with long thumb was low. Further, we presented an approach for designing easy-to- use button GUI for users with long thumbs. The contributions of this study include revelation of the relationship between pointing performance and user’s thumb length when using a portable terminal in terms of accuracy, precision, and speed of pointing. We hope that these findings contribute to an easy-to-use GUI design for users with large hands.

Keywords: pointing performance, portable terminal, thumb length, touch-sensitive screen

Procedia PDF Downloads 138
130 Sorption Properties of Hemp Cellulosic Byproducts for Petroleum Spills and Water

Authors: M. Soleimani, D. Cree, C. Chafe, L. Bates

Abstract:

The accidental release of petroleum products into the environment could have harmful consequences to our ecosystem. Different techniques such as mechanical separation, membrane filtration, incineration, treatment processes using enzymes and dispersants, bioremediation, and sorption process using sorbents have been applied for oil spill remediation. Most of the techniques investigated are too costly or do not have high enough efficiency. This study was conducted to determine the sorption performance of hemp byproducts (cellulosic materials) in terms of sorption capacity and kinetics for hydrophobic and hydrophilic fluids. In this study, heavy oil, light oil, diesel fuel, and water/water vapor were used as sorbate fluids. Hemp stalk in different forms, including loose material (hammer milled (HM) and shredded (Sh) with low bulk densities) and densified forms (pellet form (P) and crumbled pellets (CP)) with high bulk densities, were used as sorbents. The sorption/retention tests were conducted according to ASTM 726 standard. For a quick-purpose application of the sorbents, the sorption tests were conducted for 15 min, and for an ideal sorption capacity of the materials, the tests were carried out for 24 h. During the test, the sorbent material was exposed to the fluid by immersion, followed by filtration through a stainless-steel wire screen. Water vapor adsorption was carried out in a controlled environment chamber with the capability of controlling relative humidity (RH) and temperature. To determine the kinetics of sorption for each fluid and sorbent, the retention capacity also was determined intervalley for up to 24 h. To analyze the kinetics of sorption, pseudo-first-order, pseudo-second order and intraparticle diffusion models were employed with the objective of minimal deviation of the experimental results from the models. The results indicated that HM and Sh materials had the highest sorption capacity for the hydrophobic fluids with approximately 6 times compared to P and CP materials. For example, average retention values of heavy oil on HM and Sh was 560% and 470% of the mass of the sorbents, respectively. Whereas, the retention of heavy oil on P and CP was up to 85% of the mass of the sorbents. This lower sorption capacity for P and CP can be due to the less exposed surface area of these materials and compacted voids or capillary tubes in the structures. For water uptake application, HM and Sh resulted in at least 40% higher sorption capacity compared to those obtained for P and CP. On average, the performance of sorbate uptake from high to low was as follows: water, heavy oil, light oil, diesel fuel. The kinetic analysis indicated that the second-pseudo order model can describe the sorption process of the oil and diesel better than other models. However, the kinetics of water absorption was better described by the pseudo-first-order model. Acetylation of HM materials could improve its oil and diesel sorption to some extent. Water vapor adsorption of hemp fiber was a function of temperature and RH, and among the models studied, the modified Oswin model was the best model in describing this phenomenon.

Keywords: environment, fiber, petroleum, sorption

Procedia PDF Downloads 102
129 The Effect of Political Characteristics on the Budget Balance of Local Governments: A Dynamic System Generalized Method of Moments Data Approach

Authors: Stefanie M. Vanneste, Stijn Goeminne

Abstract:

This paper studies the effect of political characteristics of 308 Flemish municipalities on their budget balance in the period 1995-2011. All local governments experience the same economic and financial setting, however some governments have high budget balances, while others have low budget balances. The aim of this paper is to explain the differences in municipal budget balances by a number of economic, socio-demographic and political variables. The economic and socio-demographic variables will be used as control variables, while the focus of this paper will be on the political variables. We test four hypotheses resulting from the literature, namely (i) the partisan hypothesis tests if left wing governments have lower budget balances, (ii) the fragmentation hypothesis stating that more fragmented governments have lower budget balances, (iii) the hypothesis regarding the power of the government, higher powered governments would resolve in higher budget balances, and (iv) the opportunistic budget cycle to test whether politicians manipulate the economic situation before elections in order to maximize their reelection possibilities and therefore have lower budget balances before elections. The contributions of our paper to the existing literature are multiple. First, we use the whole array of political variables and not just a selection of them. Second, we are dealing with a homogeneous database with the same budget and election rules, making it easier to focus on the political factors without having to control for the impact of differences in the political systems. Third, our research extends the existing literature on Flemish municipalities as this is the first dynamic research on local budget balances. We use a dynamic panel data model. Because of the two lagged dependent variables as explanatory variables, we employ the system GMM (Generalized Method of Moments) estimator. This is the best possible estimator as we are dealing with political panel data that is rather persistent. Our empirical results show that the effect of the ideological position and the power of the coalition are of less importance to explain the budget balance. The political fragmentation of the government on the other hand has a negative and significant effect on the budget balance. The more parties in a coalition the worse the budget balance is ceteris paribus. Our results also provide evidence of an opportunistic budget cycle, the budget balances are lower in pre-election years relative to the other years to try and increase the incumbents reelection possibilities. An additional finding is that the incremental effect of the budget balance is very important and should not be ignored like is being done in a lot of empirical research. The coefficients of the lagged dependent variables are always positive and very significant. This proves that the budget balance is subject to incrementalism. It is not possible to change the entire policy from one year to another so the actions taken in recent past years still have an impact on the current budget balance. Only a relatively small amount of research concerning the budget balance takes this considerable incremental effect into account. Our findings survive several robustness checks.

Keywords: budget balance, fragmentation, ideology, incrementalism, municipalities, opportunistic budget cycle, panel data, political characteristics, power, system GMM

Procedia PDF Downloads 278
128 The Molecular Mechanism of Vacuolar Function in Yeast Cell Homeostasis

Authors: Chang-Hui Shen, Paulina Konarzewska

Abstract:

Cell homeostasis is regulated by vacuolar activity and it has been shown that lipid composition of the vacuole plays an important role in vacuolar function. The major phosphoinositide species present in the vacuolar membrane include phosphatidylinositol 3,5-biphosphate (PI(3,5)P₂) which is generated from PI(3)P controlled by Fab1p. Deletion of FAB1 gene reduce the synthesis of PI(3,5)P₂ and thus result in enlarged or fragmented vacuoles, with neutral vacuolar pH due to reduced vacuolar H⁺-ATPase activity. These mutants also exhibited poor growth at high extracellular pH and in the presence of CaCl₂. Conversely, VPS34 regulates the synthesis of PI(3)P from phosphatidylinositol (PI), and the lack of Vps34p results in the reduction of vacuolar activity. Although the cellular observations are clear, it is still unknown about the molecular mechanism between the phospholipid biosynthesis pathway and vacuolar activity. Since both VPS34 and FAB1 are important in vacuolar activity, we hypothesize that the molecular mechanism of vacuolar function might be regulated by the transcriptional regulators of phospholipid biosynthesis. In this study, we study the role of the major phospholipid biosynthesis transcription factor, INO2, in the regulation of vacuolar activity. We first performed qRT-PCR to examine the effect of Ino2p on the expression of VPS34 and FAB1. Our results showed that VPS34 was upregulated in the presence of inositol for both WT and ino2Δ cells. However, FAB1 was only upregulated significantly in ino2Δ cells. This indicated that Ino2p might be the negative regulator for FAB1 expression. Next, growth sensitivity experiment showed that WT, vma3Δ, and ino2Δ grew well in growth medium buffered to pH 5.5 containing 10 mM CaCl₂. As cells were switched to growth medium buffered to pH 7 containing CaCl₂ WT, ino2Δ and opi1Δ showed growth reduction, whereas vma3Δ was completely nonviable. As the concentration of CaCl₂ was increased to 60 mM, ino2Δ cells showed moderate growth reduction compared to WT. This result suggests that ino2Δ cells have better vacuolar activity. Microscopic analysis and vacuolar acidification were employed to further elucidate the importance of INO2 in vacuolar homeostasis. Analysis of vacuolar morphology indicated that WT and vma3Δ cells displayed vacuoles that occupied a small area of the cell when grown in media buffered to pH 5.5. Whereas, ino2Δ displayed fragmented vacuoles. On the other hand, all strains grown in media buffered to pH 7, exhibited enlarged vacuoles that occupied most of the cell’s surface. This indicated that the presence of INO2 may play negative effect in vacuolar morphology when cells are grown in media buffered to pH 5.5. Furthermore, vacuolar acidification assay showed that only vma3Δ cells displayed notably less acidic vacuoles as cells were grown in media buffered to pH 5.5 and pH 7. Whereas, ino2Δ cells displayed more acidic pH compared to WT at pH7. Taken together, our results demonstrated the molecular mechanism of the vacuolar activity regulated by the phospholipid biosynthesis transcription factors Ino2p. Ino2p negatively regulates vacuolar activity through the expression of FAB1.

Keywords: vacuole, phospholipid, homeostasis, Ino2p, FAB1

Procedia PDF Downloads 103
127 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery

Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek

Abstract:

Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.

Keywords: liposomes, siRNA, pH-sensitive, molecular switch

Procedia PDF Downloads 180
126 Geometric Optimisation of Piezoelectric Fan Arrays for Low Energy Cooling

Authors: Alastair Hales, Xi Jiang

Abstract:

Numerical methods are used to evaluate the operation of confined face-to-face piezoelectric fan arrays as pitch, P, between the blades is varied. Both in-phase and counter-phase oscillation are considered. A piezoelectric fan consists of a fan blade, which is clamped at one end, and an extremely low powered actuator. This drives the blade tip’s oscillation at its first natural frequency. Sufficient blade tip speed, created by the high oscillation frequency and amplitude, is required to induce vortices and downstream volume flow in the surrounding air. A single piezoelectric fan may provide the ideal solution for low powered hot spot cooling in an electronic device, but is unable to induce sufficient downstream airflow to replace a conventional air mover, such as a convection fan, in power electronics. Piezoelectric fan arrays, which are assemblies including multiple fan blades usually in face-to-face orientation, must be developed to widen the field of feasible applications for the technology. The potential energy saving is significant, with a 50% power demand reduction compared to convection fans even in an unoptimised state. A numerical model of a typical piezoelectric fan blade is derived and validated against experimental data. Numerical error is found to be 5.4% and 9.8% using two data comparison methods. The model is used to explore the variation of pitch as a function of amplitude, A, for a confined two-blade piezoelectric fan array in face-to-face orientation, with the blades oscillating both in-phase and counter-phase. It has been reported that in-phase oscillation is optimal for generating maximum downstream velocity and flow rate in unconfined conditions, due at least in part to the beneficial coupling between the adjacent blades that leads to an increased oscillation amplitude. The present model demonstrates that confinement has a significant detrimental effect on in-phase oscillation. Even at low pitch, counter-phase oscillation produces enhanced downstream air velocities and flow rates. Downstream air velocity from counter-phase oscillation can be maximally enhanced, relative to that generated from a single blade, by 17.7% at P = 8A. Flow rate enhancement at the same pitch is found to be 18.6%. By comparison, in-phase oscillation at the same pitch outputs 23.9% and 24.8% reductions in peak downstream air velocity and flow rate, relative to that generated from a single blade. This optimal pitch, equivalent to those reported in the literature, suggests that counter-phase oscillation is less affected by confinement. The optimal pitch for generating bulk airflow from counter-phase oscillation is large, P > 16A, due to the small but significant downstream velocity across the span between adjacent blades. However, by considering design in a confined space, counterphase pitch should be minimised to maximise the bulk airflow generated from a certain cross-sectional area within a channel flow application. Quantitative values are found to deviate to a small degree as other geometric and operational parameters are varied, but the established relationships are maintained.

Keywords: piezoelectric fans, low energy cooling, power electronics, computational fluid dynamics

Procedia PDF Downloads 195
125 Morphology, Qualitative, and Quantitative Elemental Analysis of Pheasant Eggshells in Thailand

Authors: Kalaya Sribuddhachart, Mayuree Pumipaiboon, Mayuva Youngsabanant-Areekijseree

Abstract:

The ultrastructure of 20 species of pheasant eggshells in Thailand, (Simese Fireback, Lophura diardi), (Silver Pheasant, Lophura nycthemera), (Kalij Pheasant, Lophura leucomelanos crawfurdii), (Kalij Pheasant, Lophura leucomelanos lineata), (Red Junglefowl, Gallus gallus spadiceus), (Crested Fireback, Lophura ignita rufa), (Green Peafowl, Pavo muticus), (Indian Peafowl, Pavo cristatus), (Grey Peacock Pheasant, Polyplectron bicalcaratum bicalcaratum), (Lesser Bornean Fireback, Lophura ignita ignita), (Green Junglefowl, Gallus varius), (Hume's Pheasant, Syrmaticus humiae humiae), (Himalayan Monal, Lophophorus impejanus), Golden Pheasant, Chrysolophus pictus, (Ring-Neck Pheasant, Phasianus sp.), (Reeves’s Pheasant, Syrmaticus reevesi), (Polish Chicken, Gallus sp.), (Brahma Chicken, Gallus sp.), (Yellow Golden Pheasant, Chrysolophus pictus luteus), and (Lady Amhersts Pheasant, Chrysolophus amherstiae) were studied by Secondary electron imaging (SEI) and Energy dispersive X-ray analysis (EDX) detectors of scanning electron microscope. Generally, all pheasant eggshells showed 3 layers of cuticle, palisade, and mammillary. The total thickness was ranging from 190.28±5.94-838.96±16.31µm. The palisade layer is the most thickness layer following by mammillary and cuticle layers. The palisade layer in all pheasant eggshells consisted of numerous vesicle holes that were firmly forming as network thorough the layer. The vesicle holes in all pheasant eggshells had difference porosity ranging from 0.44±0.11-0.23±0.05 µm. While the mammillary layer was the most compact layer with a variable shape (broad-base V and U-shape) connect to shell membrane. Elemental analysis by of 20 specie eggshells showed 9 apparent elements including carbon (C), oxygen (O), calcium (Ca), phosphorous (P), sulfur (S), magnesium (Mg), silicon (Si), aluminum (Al), and copper (Cu) at the percentage of 28.90- 8.33%, 60.64-27.61%, 55.30-14.49%, 1.97-0.03%, 0.08-0.03%, 0.50-0.16%, 0.30-0.04%, 0.06-0.02%, and 2.67-1.73%, respectively. It was found that Ca, C, and O showed highest elemental compositions, which essential for pheasant embryonic development, mainly presented as composited structure of calcium carbonate (CaCO3) more than 97%. Meanwhile, Mg, S, Si, Al, and P were major inorganic constituents of the eggshells which directly related to an increase of the shell hardness. Finally, the percentage of heavy metal copper (Cu) has been observed in 4 eggshell species. There are Golden Pheasant (2.67±0.16%), Indian Peafowl (2.61±0.13%), Green Peafowl (1.97±0.74%), and Silver Pheasant (1.73±0.11%), respectively. A non-significant difference was found in the percentages of 9 elements in all pheasant eggshells. This study is useful to provide the information of biology and taxonomic of pheasant study in Thailand for conservation.

Keywords: pheasants eggshells, secondary electron imaging (SEI) and energy dispersive X-ray analysis (EDX), morphology, Thailand

Procedia PDF Downloads 212
124 State and Benefit: Delivering the First State of the Bays Report for Victoria

Authors: Scott Rawlings

Abstract:

Victoria’s first State of the Bays report is an historic baseline study of the health of Port Phillip Bay and Western Port. The report includes 50 assessments of 36 indicators across a broad array of topics from the nitrogen cycle and water quality to key marine species and habitats. This paper discusses the processes for determining and assessing the indicators and comments on future priorities identified to maintain and improve the health of these water ways. Victoria’s population is now at six million, and growing at a rate of over 100,000 people per year - the highest increase in Australia – and the population of greater Melbourne is over four million. Port Phillip Bay and Western Port are vital marine assets at the centre of this growth and will require adaptive strategies if they are to remain in good condition and continue to deliver environmental, economic and social benefits. In 2014, it was in recognition of these pressures that the incoming Victorian Government committed to reporting on the state of the bays every five years. The inaugural State of the Bays report was issued by the independent Victorian Commissioner for Environmental Sustainability. The report brought together what is known about both bays, based on existing research. It was a baseline on which future reports will build and, over time, include more of Victoria’s marine environment. Port Phillip Bay and Western Port generally demonstrate healthy systems. Specific threats linked to population growth are a significant pressure. Impacts are more significant where human activity is more intense and where nutrients are transported to the bays around the mouths of creeks and drainage systems. The transport of high loads of nutrients and pollutants to the bays from peak rainfall events is likely to increase with climate change – as will sea level rise. Marine pests are also a threat. More than 100 introduced marine species have become established in Port Phillip Bay and can compete with native species, alter habitat, reduce important fish stocks and potentially disrupt nitrogen cycling processes. This study confirmed that our data collection regime is better within the Marine Protected Areas of Port Phillip Bay than in other parts. The State of the Bays report is a positive and practical example of what can be achieved through collaboration and cooperation between environmental reporters, Government agencies, academic institutions, data custodians, and NGOs. The State of the Bays 2016 provides an important foundation by identifying knowledge gaps and research priorities for future studies and reports on the bays. It builds a strong evidence base to effectively manage the bays and support an adaptive management framework. The Report proposes a set of indicators for future reporting that will support a step-change in our approach to monitoring and managing the bays – a shift from reporting only on what we do know, to reporting on what we need to know.

Keywords: coastal science, marine science, Port Phillip Bay, state of the environment, Western Port

Procedia PDF Downloads 182
123 Web-Based Instructional Program to Improve Professional Development: Recommendations and Standards for Radioactive Facilities in Brazil

Authors: Denise Levy, Gian M. A. A. Sordi

Abstract:

This web based project focuses on continuing corporate education and improving workers' skills in Brazilian radioactive facilities throughout the country. The potential of Information and Communication Technologies (ICTs) shall contribute to improve the global communication in this very large country, where it is a strong challenge to ensure high quality professional information to as many people as possible. The main objective of this system is to provide Brazilian radioactive facilities a complete web-based repository - in Portuguese - for research, consultation and information, offering conditions for learning and improving professional and personal skills. UNIPRORAD is a web based system to offer unified programs and inter-related information about radiological protection programs. The content includes the best practices for radioactive facilities in order to meet both national standards and international recommendations published by different organizations over the past decades: International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA) and National Nuclear Energy Commission (CNEN). The website counts on concepts, definitions and theory about optimization and ionizing radiation monitoring procedures. Moreover, the content presents further discussions related to some national and international recommendations, such as potential exposure, which is currently one of the most important research fields in radiological protection. Only two publications of ICRP develop expressively the issue and there is still a lack of knowledge of fail probabilities, for there are still uncertainties to find effective paths to quantify probabilistically the occurrence of potential exposures and the probabilities to reach a certain level of dose. To respond to this challenge, this project discusses and introduces potential exposures in a more quantitative way than national and international recommendations. Articulating ICRP and AIEA valid recommendations and official reports, in addition to scientific papers published in major international congresses, the website discusses and suggests a number of effective actions towards safety which can be incorporated into labor practice. The WEB platform was created according to corporate public needs, taking into account the development of a robust but flexible system, which can be easily adapted to future demands. ICTs provide a vast array of new communication capabilities and allow to spread information to as many people as possible at low costs and high quality communication. This initiative shall provide opportunities for employees to increase professional skills, stimulating development in this large country where it is an enormous challenge to ensure effective and updated information to geographically distant facilities, minimizing costs and optimizing results.

Keywords: distance learning, information and communication technology, nuclear science, radioactive facilities

Procedia PDF Downloads 171
122 Reconceptualizing Evidence and Evidence Types for Digital Journalism Studies

Authors: Hai L. Tran

Abstract:

In the digital age, evidence-based reporting is touted as a best practice for seeking the truth and keeping the public well-informed. Journalists are expected to rely on evidence to demonstrate the validity of a factual statement and lend credence to an individual account. Evidence can be obtained from various sources, and due to a rich supply of evidence types available, the definition of this important concept varies semantically. To promote clarity and understanding, it is necessary to break down the various types of evidence and categorize them in a more coherent, systematic way. There is a wide array of devices that digital journalists deploy as proof to back up or refute a truth claim. Evidence can take various formats, including verbal and visual materials. Verbal evidence encompasses quotes, soundbites, talking heads, testimonies, voice recordings, anecdotes, and statistics communicated through written or spoken language. There are instances where evidence is simply non-verbal, such as when natural sounds are provided without any verbalized words. On the other hand, other language-free items exhibited in photos, video footage, data visualizations, infographics, and illustrations can serve as visual evidence. Moreover, there are different sources from which evidence can be cited. Supporting materials, such as public or leaked records and documents, data, research studies, surveys, polls, or reports compiled by governments, organizations, and other entities, are frequently included as informational evidence. Proof can also come from human sources via interviews, recorded conversations, public and private gatherings, or press conferences. Expert opinions, eye-witness insights, insider observations, and official statements are some of the common examples of testimonial evidence. Digital journalism studies tend to make broad references when comparing qualitative versus quantitative forms of evidence. Meanwhile, limited efforts are being undertaken to distinguish between sister terms, such as “data,” “statistical,” and “base-rate” on one side of the spectrum and “narrative,” “anecdotal,” and “exemplar” on the other. The present study seeks to develop the evidence taxonomy, which classifies evidence through the quantitative-qualitative juxtaposition and in a hierarchical order from broad to specific. According to this scheme, data, statistics, and base rate belong to the quantitative evidence group, whereas narrative, anecdote, and exemplar fall into the qualitative evidence group. Subsequently, the taxonomical classification arranges data versus narrative at the top of the hierarchy of types of evidence, followed by statistics versus anecdote and base rate versus exemplar. This research reiterates the central role of evidence in how journalists describe and explain social phenomena and issues. By defining the various types of evidence and delineating their logical connections it helps remove a significant degree of conceptual inconsistency, ambiguity, and confusion in digital journalism studies.

Keywords: evidence, evidence forms, evidence types, taxonomy

Procedia PDF Downloads 36
121 Navigating AI in Higher Education: Exploring Graduate Students’ Perspectives on Teacher-Provided AI Guidelines

Authors: Mamunur Rashid, Jialin Yan

Abstract:

The current years have witnessed a rapid evolution and integration of artificial intelligence (AI) in various fields, prominently influencing the education industry. Acknowledging this transformative wave, AI tools like ChatGPT and Grammarly have undeniably introduced perspectives and skills, enriching the educational experiences of higher education students. The prevalence of AI utilization in higher education also drives an increasing number of researchers' attention in various dimensions. Departments, offices, and professors in universities also designed and released a set of policies and guidelines on using AI effectively. In regard to this, the study targets exploring and analyzing graduate students' perspectives regarding AI guidelines set by teachers. A mixed-methods study will be mainly conducted in this study, employing in-depth interviews and focus groups to investigate and collect students' perspectives. Relevant materials, such as syllabi and course instructions, will also be analyzed through the documentary analysis to facilitate understanding of the study. Surveys will also be used for data collection and students' background statistics. The integration of both interviews and surveys will provide a comprehensive array of student perspectives across various academic disciplines. The study is anchored in the theoretical framework of self-determination theory (SDT), which emphasizes and explains the students' perspective under the AI guidelines through three core needs: autonomy, competence, and relatedness. This framework is instrumental in understanding how AI guidelines influence students' intrinsic motivation and sense of empowerment in their learning environments. Through qualitative analysis, the study reveals a sense of confusion and uncertainty among students regarding the appropriate application and ethical considerations of AI tools, indicating potential challenges in meeting their needs for competence and autonomy. The quantitative data further elucidates these findings, highlighting a significant communication gap between students and educators in the formulation and implementation of AI guidelines. The critical findings of this study mainly come from two aspects: First, the majority of graduate students are uncertain and confused about relevant AI guidelines given by teachers. Second, this study also demonstrates that the design and effectiveness of course materials, such as the syllabi and instructions, also need to adapt in regard to AI policies. It indicates that certain of the existing guidelines provided by teachers lack consideration of students' perspectives, leading to a misalignment with students' needs for autonomy, competence, and relatedness. More emphasize and efforts need to be dedicated to both teacher and student training on AI policies and ethical considerations. To conclude, in this study, graduate students' perspectives on teacher-provided AI guidelines are explored and reflected upon, calling for additional training and strategies to improve how these guidelines can be better disseminated for their effective integration and adoption. Although AI guidelines provided by teachers may be helpful and provide new insights for students, educational institutions should take a more anchoring role to foster a motivating, empowering, and student-centered learning environment. The study also provides some relevant recommendations, including guidance for students on the ethical use of AI and AI policy training for teachers in higher education.

Keywords: higher education policy, graduate students’ perspectives, higher education teacher, AI guidelines, AI in education

Procedia PDF Downloads 28
120 'You’re Not Alone': Peer Feedback Practices for Cross-Cultural Writing Classrooms and Centers

Authors: Cassandra Branham, Danielle Farrar

Abstract:

As writing instructors and writing center administrators at a large research university with a significant population of English language learners (ELLs), we are interested in how peer feedback pedagogy can be effectively translated for writing center purposes, as well as how various modes of peer feedback can enrich the learning experiences of L1 and L2 writers in these spaces. Although peer feedback is widely used in classrooms and centers, instructor, student, and researcher opinions vary in respect to its effectiveness. We argue that peer feedback - traditional and digital, synchronous and asynchronous - is an indispensable element for both classrooms and centers and emphasize that it should occur with both L1 and L2 students to further develop an array of reading and writing skills. We also believe that further understanding of the best practices of peer feedback in such cross-cultural spaces, like the classroom and center, can optimize the benefits of peer feedback. After a critical review of the literature, we implemented an embedded tutoring program in our university’s writing center in collaboration with its First-Year Composition (FYC) program and Language Institute. The embedded tutoring program matches a graduate writing consultant with L1 and L2 writers enrolled in controlled-matriculation composition courses where ELLs make up at least 50% of each class. Furthermore, this program is informed by what we argue to be some best practices of peer feedback for both classroom and center purposes, including expectation-based training through rubrics, modeling effective feedback, hybridizing traditional and digital modes of feedback, recognizing the significance the body in composition (what we call writer embodiment), and maximizing digital technologies to exploit extended cognition. After conducting surveys and follow-up interviews with students, instructors, and writing consultants in the embedded tutoring program, we found that not only did students see an increased value in peer feedback, but also instructors saw an improvement in both writing style and critical thinking skills. Our L2 participants noted improvements in language acquisition while our L1 students recognized a broadening of their worldviews. We believe that both L1 and L2 students developed self-efficacy and agency in their identities as writers because they gained confidence in their abilities to offer feedback, as well as in the legitimacy of feedback they received from peers. We also argue that these best practices situate novice writers as experts, as writers become a valued and integral part of the revision process with their own and their peers’ papers. Finally, the use of iPads in embedded tutoring recovered the importance of the body and its senses in writing; the highly sensory feedback from these multi-modal sessions that offer audio and visual input underscores the significant role both the body and mind play in compositional practices. After beginning with a brief review of the literature that sparked this research, this paper will discuss the embedded tutoring program in detail, report on the results of the pilot program, and will conclude with a discussion of the pedagogical implications that arise from this research for both classroom and center.

Keywords: English language learners, peer feedback, writing center, writing classroom

Procedia PDF Downloads 380
119 Identification of Electric Energy Storage Acceptance Types: Empirical Findings from the German Manufacturing Industry

Authors: Dominik Halstrup, Marlene Schriever

Abstract:

The industry, as one of the main energy consumer, is of critical importance along the way of transforming the energy system to Renewable Energies. The distributed character of the Energy Transition demands for further flexibility being introduced to the grid. In order to shed further light on the acceptance of Electric Energy Storage (ESS) from an industrial point of view, this study therefore examines the German manufacturing industry. The analysis in this paper uses data composed of a survey amongst 101 manufacturing companies in Germany. Being part of a two-stage research design, both qualitative and quantitative data was collected. Based on a literature review an acceptance concept was developed in the paper and four user-types identified: (Dedicated) User, Impeded User, Forced User and (Dedicated) Non-User and incorporated in the questionnaire. Both descriptive and bivariate analysis is deployed to identify the level of acceptance in the different organizations. After a factor analysis has been conducted, variables were grouped to form independent acceptance factors. Out of the 22 organizations that do show a positive attitude towards ESS, 5 have already implemented ESS and show a positive attitude towards ESS. They can be therefore considered ‘Dedicated Users’. The remaining 17 organizations have a positive attitude but have not implemented ESS yet. The results suggest that profitability plays an important role as well as load-management systems that are already in place. Surprisingly, 2 organizations have implemented ESS even though they have a negative attitude towards it. This is an example for a ‘Forced User’ where reasons of overriding importance or supporters with overriding authority might have forced the company to implement ESS. By far the biggest subset of the sample shows (critical) distance and can therefore be considered ‘(Dedicated) Non-Users’. The results indicate that the majority of the respondents have not thought ESS in their own organization through yet. For the majority of the sample one can therefore not speak of critical distance but rather a distance due to insufficient information and the perceived unprofitability. This paper identifies the relative state of acceptance of ESS in the manufacturing industry as well as current reasons for hindrance and perspectives for future growth of ESS in an industrial setting from a policy level. The interest that is currently generated by the media could be channeled and taken into a more substantial and individual discussion about ESS in an industrial setting. If the current perception of profitability could be addressed and communicated accordingly, ESS and their use in for instance cooperative business models could become a topic for more organizations in Germany and other parts of the world. As price mechanisms tend to favor existing technologies, policy makers need to further access the use of ESS and acknowledge the positive effects when integrated in an energy system. The subfields of generation, transmission and distribution become increasingly intertwined. New technologies and business models, such as ESS or cooperative arrangements entering the market, increase the number of stakeholders. Organizations need to find their place within this array of stakeholders.

Keywords: acceptance, energy storage solutions, German energy transition, manufacturing industry

Procedia PDF Downloads 195
118 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays

Authors: Maher Z. Mohammed, Barry G. Clarke

Abstract:

As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.

Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio

Procedia PDF Downloads 132
117 Bioactive Substances-Loaded Water-in-Oil/Oil-in-Water Emulsions for Dietary Supplementation in the Elderly

Authors: Agnieszka Markowska-Radomska, Ewa Dluska

Abstract:

Maintaining a bioactive substances dense diet is important for the elderly, especially to prevent diseases and to support healthy ageing. Adequate bioactive substances intake can reduce the risk of developing chronic diseases (e.g. cardiovascular, osteoporosis, neurodegenerative syndromes, diseases of the oral cavity, gastrointestinal (GI) disorders, diabetes, and cancer). This can be achieved by introducing a comprehensive supplementation of components necessary for the proper functioning of the ageing body. The paper proposes the multiple emulsions of the W1/O/W2 (water-in-oil-in-water) type as carriers for effective co-encapsulation and co-delivery of bioactive substances in supplementation of the elderly. Multiple emulsions are complex structured systems ("drops in drops"). The functional structure of the W1/O/W2 emulsion enables (i) incorporation of one or more bioactive components (lipophilic and hydrophilic); (ii) enhancement of stability and bioavailability of encapsulated substances; (iii) prevention of interactions between substances, as well as with the external environment, delivery to a specific location; and (iv) release in a controlled manner. The multiple emulsions were prepared by a one-step method in the Couette-Taylor flow (CTF) contactor in a continuous manner. In general, a two-step emulsification process is used to obtain multiple emulsions. The paper contains a proposal of emulsion functionalization by introducing pH-responsive biopolymer—carboxymethylcellulose sodium salt (CMC-Na) to the external phase, which made it possible to achieve a release of components controlled by the pH of the gastrointestinal environment. The membrane phase of emulsions was soybean oil. The W1/O/W2 emulsions were evaluated for their characteristics (drops size/drop size distribution, volume packing fraction), encapsulation efficiency and stability during storage (to 30 days) at 4ºC and 25ºC. Also, the in vitro multi-substance co-release process were investigated in a simulated gastrointestinal environment (different pH and composition of release medium). Three groups of stable multiple emulsions were obtained: emulsions I with co-encapsulated vitamins B12, B6 and resveratrol; emulsions II with vitamin A and β-carotene; and emulsions III with vitamins C, E and D3. The substances were encapsulated in the appropriate emulsion phases depending on the solubility. For all emulsions, high encapsulation efficience (over 95%) and high volume packing fraction of internal droplets (0.54-0.76) were reached. In addition, due to the presence of a polymer (CMC-Na) with adhesive properties, high encapsulation stability during emulsions storage were achieved. The co-release study of encapsulated bioactive substances confirmed the possibility to modify the release profiles. It was found that the releasing process can be controlled through the composition, structure, physicochemical parameters of emulsions and pH of the release medium. The results showed that the obtained multiple emulsions might be used as potential liquid complex carriers for controlled/modified/site-specific co-delivery of bioactive substances in dietary supplementation in the elderly.

Keywords: bioactive substance co-release, co-encapsulation, elderly supplementation, multiple emulsion

Procedia PDF Downloads 171
116 Vibration and Freeze-Thaw Cycling Tests on Fuel Cells for Automotive Applications

Authors: Gema M. Rodado, Jose M. Olavarrieta

Abstract:

Hydrogen fuel cell technologies have experienced a great boost in the last decades, significantly increasing the production of these devices for both stationary and portable (mainly automotive) applications; these are influenced by two main factors: environmental pollution and energy shortage. A fuel cell is an electrochemical device that converts chemical energy directly into electricity by using hydrogen and oxygen gases as reactive components and obtaining water and heat as byproducts of the chemical reaction. Fuel cells, specifically those of Proton Exchange Membrane (PEM) technology, are considered an alternative to internal combustion engines, mainly because of the low emissions they produce (almost zero), high efficiency and low operating temperatures (< 373 K). The introduction and use of fuel cells in the automotive market requires the development of standardized and validated procedures to test and evaluate their performance in different environmental conditions including vibrations and freeze-thaw cycles. These situations of vibration and extremely low/high temperatures can affect the physical integrity or even the excellent operation or performance of the fuel cell stack placed in a vehicle in circulation or in different climatic conditions. The main objective of this work is the development and validation of vibration and freeze-thaw cycling test procedures for fuel cell stacks that can be used in a vehicle in order to consolidate their safety, performance, and durability. In this context, different experimental tests were carried out at the facilities of the National Hydrogen Centre (CNH2). The experimental equipment used was: A vibration platform (shaker) for vibration test analysis on fuel cells in three axes directions with different vibration profiles. A walk-in climatic chamber to test the starting, operating, and stopping behavior of fuel cells under defined extreme conditions. A test station designed and developed by the CNH2 to test and characterize PEM fuel cell stacks up to 10 kWe. A 5 kWe PEM fuel cell stack in off-operation mode was used to carry out two independent experimental procedures. On the one hand, the fuel cell was subjected to a sinusoidal vibration test on the shaker in the three axes directions. It was defined by acceleration and amplitudes in the frequency range of 7 to 200 Hz for a total of three hours in each direction. On the other hand, the climatic chamber was used to simulate freeze-thaw cycles by defining a temperature range between +313 K and -243 K with an average relative humidity of 50% and a recommended ramp up and rump down of 1 K/min. The polarization curve and gas leakage rate were determined before and after the vibration and freeze-thaw tests at the fuel cell stack test station to evaluate the robustness of the stack. The results were very similar, which indicates that the tests did not affect the fuel cell stack structure and performance. The proposed procedures were verified and can be used as an initial point to perform other tests with different fuel cells.

Keywords: climatic chamber, freeze-thaw cycles, PEM fuel cell, shaker, vibration tests

Procedia PDF Downloads 86
115 Transient Heat Transfer: Experimental Investigation near the Critical Point

Authors: Andreas Kohlhepp, Gerrit Schatte, Wieland Christoph, Spliethoff Hartmut

Abstract:

In recent years the research of heat transfer phenomena of water and other working fluids near the critical point experiences a growing interest for power engineering applications. To match the highly volatile characteristics of renewable energies, conventional power plants need to shift towards flexible operation. This requires speeding up the load change dynamics of steam generators and their heating surfaces near the critical point. In dynamic load transients, both a high heat flux with an unfavorable ratio to the mass flux and a high difference in fluid and wall temperatures, may cause problems. It may lead to deteriorated heat transfer (at supercritical pressures), dry-out or departure from nucleate boiling (at subcritical pressures), all cases leading to an extensive rise of temperatures. For relevant technical applications, the heat transfer coefficients need to be predicted correctly in case of transient scenarios to prevent damage to the heated surfaces (membrane walls, tube bundles or fuel rods). In transient processes, the state of the art method of calculating the heat transfer coefficients is using a multitude of different steady-state correlations for the momentarily existing local parameters for each time step. This approach does not necessarily reflect the different cases that may lead to a significant variation of the heat transfer coefficients and shows gaps in the individual ranges of validity. An algorithm was implemented to calculate the transient behavior of steam generators during load changes. It is used to assess existing correlations for transient heat transfer calculations. It is also desirable to validate the calculation using experimental data. By the use of a new full-scale supercritical thermo-hydraulic test rig, experimental data is obtained to describe the transient phenomena under dynamic boundary conditions as mentioned above and to serve for validation of transient steam generator calculations. Aiming to improve correlations for the prediction of the onset of deteriorated heat transfer in both, stationary and transient cases the test rig was specially designed for this task. It is a closed loop design with a directly electrically heated evaporation tube, the total heating power of the evaporator tube and the preheater is 1MW. To allow a big range of parameters, including supercritical pressures, the maximum pressure rating is 380 bar. The measurements contain the most important extrinsic thermo-hydraulic parameters. Moreover, a high geometric resolution allows to accurately predict the local heat transfer coefficients and fluid enthalpies.

Keywords: departure from nucleate boiling, deteriorated heat transfer, dryout, supercritical working fluid, transient operation of steam generators

Procedia PDF Downloads 198
114 Regeneration of Cesium-Exhausted Activated Carbons by Microwave Irradiation

Authors: Pietro P. Falciglia, Erica Gagliano, Vincenza Brancato, Alfio Catalfo, Guglielmo Finocchiaro, Guido De Guidi, Stefano Romano, Paolo Roccaro, Federico G. A. Vagliasindi

Abstract:

Cesium-137 (¹³⁷Cs) is a major radionuclide in spent nuclear fuel processing, and it represents the most important cause of contamination related to nuclear accidents. Cesium-137 has long-term radiological effects representing a major concern for the human health. Several physico-chemical methods have been proposed for ¹³⁷Cs removal from impacted water: ion-exchange, adsorption, chemical precipitation, membrane process, coagulation, and electrochemical. However, these methods can be limited by ionic selectivity and efficiency, or they present very restricted full-scale application due to equipment and chemical high costs. On the other hand, adsorption is considered a more cost-effective solution, and activated carbons (ACs) are known as a low-cost and effective adsorbent for a wide range of pollutants among which radionuclides. However, adsorption of Cs onto ACs has been investigated in very few and not exhaustive studies. In addition, exhausted activated carbons are generally discarded in landfill, that is not an eco-friendly and economic solution. Consequently, the regeneration of exhausted ACs must be considered a preferable choice. Several alternatives, including conventional thermal-, solvent-, biological- and electrochemical-regeneration, are available but are affected by several economic or environmental concerns. Microwave (MW) irradiation has been widely used in industrial and environmental applications and it has attracted many attentions to regenerating activated carbons. The growing interest in MW irradiation is based on the passive ability of the irradiated medium to convert a low power irradiation energy into a rapid and large temperature increase if the media presents good dielectric features. ACs are excellent MW-absorbers, with a high mechanical strength and a good resistance towards heating process. This work investigates the feasibility of MW irradiation for the regeneration of Cs-exhausted ACs. Adsorption batch experiments were carried out using commercially available granular activated carbon (GAC), then Cs-saturated AC samples were treated using a controllable bench-scale 2.45-GHz MW oven and investigating different adsorption-regeneration cycles. The regeneration efficiency (RE), weight loss percentage, and textural properties of the AC samples during the adsorption-regeneration cycles were also assessed. Main results demonstrated a relatively low adsorption capacity for Cs, although the feasibility of ACs was strictly linked to their dielectric nature, which allows a very efficient thermal regeneration by MW irradiation. The weight loss percentage was found less than 2%, and an increase in RE after three cycles was also observed. Furthermore, MW regeneration preserved the pore structure of the regenerated ACs. For a deeper exploration of the full-scale applicability of MW regeneration, further investigations on more adsorption-regeneration cycles or using fixed-bed columns are required.

Keywords: adsorption mechanisms, cesium, granular activated carbons, microwave regeneration

Procedia PDF Downloads 115
113 Decorative Plant Motifs in Traditional Art and Craft Practices: Pedagogical Perspectives

Authors: Geetanjali Sachdev

Abstract:

This paper explores the decorative uses of plant motifs and symbols in traditional Indian art and craft practices in order to assess their pedagogical significance within the context of plant study in higher education in art and design. It examines existing scholarship on decoration and plants in Indian art and craft practices. The impulse to elaborate upon an existing form or surface is an intrinsic part of many Indian traditional art and craft traditions where a deeply ingrained love for decoration exists. Indian craftsmen use an array of motifs and embellishments to adorn surfaces across a range of practices, and decoration is widely seen in textiles, jewellery, temple sculptures, vehicular art, architecture, and various other art, craft, and design traditions. Ornamentation in Indian cultural traditions has been attributed to religious and spiritual influences in the lives of India’s art and craft practitioners. Through adornment, surfaces and objects were ritually transformed to function both spiritually and physically. Decorative formations facilitate spiritual development and attune our minds to concepts that support contemplation. Within practices of ornamentation and adornment, there is extensive use of botanical motifs as Indian art and craft practitioners have historically been drawn towards nature as a source of inspiration. This is due to the centrality of agriculture in the lives of Indian people as well as in religion, where plants play a key role in religious rituals and festivals. Plant representations thus abound in two-dimensional and three-dimensional surface designs and patterns where the motifs range from being realistic, highly stylized, and curvilinear forms to geometric and abstract symbols. Existing scholarship reveals that these botanical embellishments reference a wide range of plants that include native and non-indigenous plants, as well as imaginary and mythical plants. Structural components of plant anatomy, such as leaves, stems, branches and buds, and flowers, are part of the repertoire of design motifs used, as are plant forms indicating different stages of growth, such as flowering buds and flowers in full bloom. Symmetry is a characteristic feature, and within the decorative register of various practices, plants are part of border zones and bands, connecting corners and all-over patterns, used as singular motifs and floral sprays on panels, and as elements within ornamental scenes. The results of the research indicate that decoration as a mode of inquiry into plants can serve as a platform to learn about local and global biodiversity and plant anatomy and develop artistic modes of thinking symbolically, metaphorically, imaginatively, and relationally about the plant world. The conclusion is drawn that engaging with ornamental modes of plant representation in traditional Indian art and craft practices is pedagogically significant for two reasons. Decoration as a mode of engagement cultivates both botanical and artistic understandings of plants. It also links learners with the indigenous art and craft traditions of their own culture.

Keywords: art and design pedagogy, decoration, plant motifs, traditional art and craft

Procedia PDF Downloads 56
112 Risk Factors Associated with Increased Emergency Department Visits and Hospital Admissions Among Child and Adolescent Patients

Authors: Lalanthica Yogendran, Manassa Hany, Saira Pasha, Benjamin Chaucer, Simarpreet Kaur, Christopher Janusz

Abstract:

Children and adolescent patients visit the Psychiatric Emergency Department (ED) for multiple reasons. Visiting the Psychiatric ED itself can be a traumatic experience that can affect an adolescents mental well-being, regardless of a history of mental illness. Despite this, limited research exists in this domain. Prospective studies have correlated adverse psychosocial determinants among adolescents to risk factors for poor well-being and unfavorable behavior outcomes. Studies have also shown that physiological stress is a contributor in the development of health problems and an increase in substance abuse in adolescents. This study aimed to retrospectively determine which psychosocial factors are associated with an increase in psychiatric ED visits. 600 charts of patients who had a psychiatric ED and inpatient admission visit from January 2014 through December 2014 were reviewed. Sociodemographics, diagnoses, ED visits and inpatient admissions were collected. Descriptive statistics, chi-square tests and independent t-test analyses were utilized to examine differences in the sample to determine which factors affected ED visits and admissions. The sample was 50% female, 35.2% self-identified black, and had a mean age of 13 years. The majority, 85%, went to public school and 17% were in special education. Attention Deficit Hyperactivity Disorder was the most common admitting diagnosis, found in 132(23%) responders. Most patients came from single parent household 305 (53%). The mean ages of patients that were sexually active, with legal issues, and reporting marijuana substance abuse were 15, 14.35, and 15 years respectively. Patients from two biological parent households had significantly fewer ED visits (1.2 vs. 1.7, p < 0.01) and admissions (0.09 vs. 0.26, p < 0.01). Among social factors, those who reported sexual, physical or emotional abuse had a significantly greater number of ED visits (2.1 vs. 1.5, p < 0.01) and admissions (0.61 vs. 0.14, p < 0.01) than those who did not. Patients that were sexually active or had legal issues or substance abuse with marijuana had a significantly greater number of admissions (0.43 vs. 0.17, p < 0.01), (0.54 vs. .18, p < 0.01) and (0.46 vs. 0.18, p < 0.01) respectively. This data supports the theory of the stability of a two parent home. Dual parenting plays a role in creating a safe space where a child can develop; this is shown by subsequent decreases in psychiatric ED visits and admissions. This may highlight the psychological protective role of a two parent household. Abuse can exacerbate existing psychiatric illness or initiate the onset of new disease. Substance abuse and legal issues result in early induction to the criminal system. Results show that this causes an increase in frequency of visits and severity of symptoms. Only marijuana, but not other illicit substances, correlated with higher incidence of psychiatric ED visits. This may speak to the psychotropic nature of tetrahydrocannabinols and their role in mental illness. This study demonstrates the array of psychosocial factors that lead to increased ED visits and admissions in children and adolescents.

Keywords: adolescent, child psychiatry, emergency department, substance abuse

Procedia PDF Downloads 304
111 Gold-Mediated Modification of Apoferritin Surface with Targeting Antibodies

Authors: Simona Dostalova, Pavel Kopel, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

Protein apoferritin seems to be a very promising structure for use as a nanocarrier. It is prepared from intracellular ferritin protein naturally found in most organisms. The role of ferritin proteins is to store and transport ferrous ions. Apoferritin is a hollow protein cage without ferrous ions that can be prepared from ferritin by reduction with thioglycolic acid or dithionite. The structure of apoferritin is composed of 24 protein subunits, creating a sphere with 12 nm in diameter. The inner cavity has a diameter of 8 nm. The drug encapsulation process is based on the response of apoferritin structure to the pH changes of surrounding solution. In low pH, apoferritin is disassembled into individual subunits and its structure is “opened”. It can then be mixed with any desired cytotoxic drug and after adjustment of pH back to neutral the subunits are reconnected again and the drug is encapsulated within the apoferritin particles. Excess drug molecules can be removed by dialysis. The receptors for apoferritin, SCARA5 and TfR1 can be found in the membrane of both healthy and cancer cells. To enhance the specific targeting of apoferritin nanocarrier, it is possible to modify its surface with targeting moieties, such as antibodies. To ensure sterically correct complex, we used a a peptide linker based on a protein G with N-terminus affinity towards Fc region of antibodies. To connect the peptide to the surface of apoferritin, the C-terminus of peptide was made of cysteine with affinity to gold. The surface of apoferritin with encapsulated doxorubicin (ApoDox) was coated either with gold nanoparticles (ApoDox-Nano) or gold (III) chloride hydrate reduced with sodium borohydride (ApoDox-HAu). The applied amount of gold in form of gold (III) chloride hydrate was 10 times higher than in the case of gold nanoparticles. However, after removal of the excess unbound ions by electrophoretic separation, the concentration of gold on the surface of apoferritin was only 6 times higher for ApoDox-HAu in comparison with ApoDox-Nano. Moreover, the reduction with sodium borohydride caused a loss of doxorubicin fluorescent properties (excitation maximum at 480 nm with emission maximum at 600 nm) and thus its biological activity. Fluorescent properties of ApoDox-Nano were similar to the unmodified ApoDox, therefore it was more suited for the intended use. To evaluate the specificity of apoferritin modified with antibodies, we used ELISA-like method with the surface of microtitration plate wells coated by the antigen (goat anti-human IgG antibodies). To these wells, we applied ApoDox without targeting antibodies and ApoDox-Nano modified with targeting antibodies (human IgG antibodies). The amount of unmodified ApoDox on antigen after incubation and subsequent rinsing with water was 5 times lower than in the case of ApoDox-Nano modified with targeting antibodies. The modification of non-gold ApoDox with antibodies caused no change in its targeting properties. It can therefore be concluded that the demonstrated procedure allows us to create nanocarrier with enhanced targeting properties, suitable for nanomedicine.

Keywords: apoferritin, doxorubicin, nanocarrier, targeting antibodies

Procedia PDF Downloads 362
110 Sensitivity Improvement of Optical Ring Resonator for Strain Analysis with the Direction of Strain Recognition Possibility

Authors: Tayebeh Sahraeibelverdi, Ahmad Shirazi Hadi Veladi, Mazdak Radmalekshah

Abstract:

Optical sensors became attractive due to preciseness, low power consumption, and intrinsic electromagnetic interference-free characteristic. Among the waveguide optical sensors, cavity-based ones attended for the high Q-factor. Micro ring resonators as a potential platform have been investigated for various applications as biosensors to pressure sensors thanks to their sensitive ring structure responding to any small change in the refractive index. Furthermore, these small micron size structures can come in an array, bringing the opportunity to have any of the resonance in a specific wavelength and be addressed in this way. Another exciting application is applying a strain to the ring and making them an optical strain gauge where the traditional ones are based on the piezoelectric material. Making them in arrays needs electrical wiring and about fifty times bigger in size. Any physical element that impacts the waveguide cross-section, Waveguide elastic-optic property change, or ring circumference can play a role. In comparison, ring size change has a larger effect than others. Here an engineered ring structure is investigated to study the strain effect on the ring resonance wavelength shift and its potential for more sensitive strain devices. At the same time, these devices can measure any strain by mounting on the surface of interest. The idea is to change the" O" shape ring to a "C" shape ring with a small opening starting from 2π/360 or one degree. We used the Mode solution of Lumbrical software to investigate the effect of changing the ring's opening and the shift induced by applied strain. The designed ring radius is a three Micron silicon on isolator ring which can be fabricated by standard complementary metal-oxide-semiconductor (CMOS) micromachining. The measured wavelength shifts from1-degree opening of the ring to a 6-degree opening have been investigated. Opening the ring for 1-degree affects the ring's quality factor from 3000 to 300, showing an order of magnitude Q-factor reduction. Assuming a strain making the ring-opening from 1 degree to 6 degrees, our simulation results showing negligible Q-factor reduction from 300 to 280. A ring resonator quality factor can reach up to 108 where an order of magnitude reduction is negligible. The resonance wavelength shift showed a blue shift and was obtained to be 1581, 1579,1578,1575nm for 1-, 2-, 4- and 6-degree ring-opening, respectively. This design can find the direction of the strain-induced by applying the opening on different parts of the ring. Moreover, by addressing the specified wavelength, we can precisely find the direction. We can open a significant opportunity to find cracks and any surface mechanical property very specifically and precisely. This idea can be implemented on polymer ring resonators while they can come with a flexible substrate and can be very sensitive to any strain making the two ends of the ring in the slit part come closer or further.

Keywords: optical ring resonator, strain gauge, strain sensor, surface mechanical property analysis

Procedia PDF Downloads 94
109 Augmented Reality Enhanced Order Picking: The Potential for Gamification

Authors: Stavros T. Ponis, George D. Plakas-Koumadorakis, Sotiris P. Gayialis

Abstract:

Augmented Reality (AR) can be defined as a technology, which takes the capabilities of computer-generated display, sound, text and effects to enhance the user's real-world experience by overlaying virtual objects into the real world. By doing that, AR is capable of providing a vast array of work support tools, which can significantly increase employee productivity, enhance existing job training programs by making them more realistic and in some cases introduce completely new forms of work and task executions. One of the most promising AR industrial applications, as literature shows, is the use of Head Worn, monocular or binocular Displays (HWD) to support logistics and production operations, such as order picking, part assembly and maintenance. This paper presents the initial results of an ongoing research project for the introduction of a dedicated AR-HWD solution to the picking process of a Distribution Center (DC) in Greece operated by a large Telecommunication Service Provider (TSP). In that context, the proposed research aims to determine whether gamification elements should be integrated in the functional requirements of the AR solution, such as providing points for reaching objectives and creating leaderboards and awards (e.g. badges) for general achievements. Up to now, there is a an ambiguity on the impact of gamification in logistics operations since gamification literature mostly focuses on non-industrial organizational contexts such as education and customer/citizen facing applications, such as tourism and health. To the contrary, the gamification efforts described in this study focus in one of the most labor- intensive and workflow dependent logistics processes, i.e. Customer Order Picking (COP). Although introducing AR in COP, undoubtedly, creates significant opportunities for workload reduction and increased process performance the added value of gamification is far from certain. This paper aims to provide insights on the suitability and usefulness of AR-enhanced gamification in the hard and very demanding environment of a logistics center. In doing so, it will utilize a review of the current state-of-the art regarding gamification of production and logistics processes coupled with the results of questionnaire guided interviews with industry experts, i.e. logisticians, warehouse workers (pickers) and AR software developers. The findings of the proposed research aim to contribute towards a better understanding of AR-enhanced gamification, the organizational change it entails and the consequences it potentially has for all implicated entities in the often highly standardized and structured work required in the logistics setting. The interpretation of these findings will support the decision of logisticians regarding the introduction of gamification in their logistics processes by providing them useful insights and guidelines originating from a real life case study of a large DC operating more than 300 retail outlets in Greece.

Keywords: augmented reality, technology acceptance, warehouse management, vision picking, new forms of work, gamification

Procedia PDF Downloads 117
108 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 54
107 Construction Port Requirements for Floating Wind Turbines

Authors: Alan Crowle, Philpp Thies

Abstract:

As the floating offshore wind turbine industry continues to develop and grow, the capabilities of established port facilities need to be assessed as to their ability to support the expanding construction and installation requirements. This paper assesses current infrastructure requirements and projected changes to port facilities that may be required to support the floating offshore wind industry. Understanding the infrastructure needs of the floating offshore renewable industry will help to identify the port-related requirements. Floating Offshore Wind Turbines can be installed further out to sea and in deeper waters than traditional fixed offshore wind arrays, meaning that it can take advantage of stronger winds. Separate ports are required for substructure construction, fit-out of the turbines, moorings, subsea cables and maintenance. Large areas are required for the laydown of mooring equipment; inter-array cables, turbine blades and nacelles. The capabilities of established port facilities to support floating wind farms are assessed by evaluation of the size of substructures, the height of wind turbine with regards to the cranes for fitting of blades, distance to offshore site and offshore installation vessel characteristics. The paper will discuss the advantages and disadvantages of using large land-based cranes, inshore floating crane vessels or offshore crane vessels at the fit-out port for the installation of the turbine. Water depths requirements for import of materials and export of the completed structures will be considered. There are additional costs associated with any emerging technology. However part of the popularity of Floating Offshore Wind Turbines stems from the cost savings against permanent structures like fixed wind turbines. Floating Offshore Wind Turbine developers can benefit from lighter, more cost-effective equipment which can be assembled in port and towed to the site rather than relying on large, expensive installation vessels to transport and erect fixed bottom turbines. The ability to assemble Floating Offshore Wind Turbines equipment onshore means minimizing highly weather-dependent operations like offshore heavy lifts and assembly, saving time and costs and reducing safety risks for offshore workers. Maintenance might take place in safer onshore conditions for barges and semi-submersibles. Offshore renewables, such as floating wind, can take advantage of this wealth of experience, while oil and gas operators can deploy this experience at the same time as entering the renewables space The floating offshore wind industry is in the early stages of development and port facilities are required for substructure fabrication, turbine manufacture, turbine construction and maintenance support. The paper discusses the potential floating wind substructures as this provides a snapshot of the requirements at the present time, and potential technological developments required for commercial development. Scaling effects of demonstration-scale projects will be addressed, however, the primary focus will be on commercial-scale (30+ units) device floating wind energy farms.

Keywords: floating wind, port, marine construction, offshore renewables

Procedia PDF Downloads 254