Search results for: linear multistep methods
17922 Starting Order Eight Method Accurately for the Solution of First Order Initial Value Problems of Ordinary Differential Equations
Authors: James Adewale, Joshua Sunday
Abstract:
In this paper, we developed a linear multistep method, which is implemented in predictor corrector-method. The corrector is developed by method of collocation and interpretation of power series approximate solutions at some selected grid points, to give a continuous linear multistep method, which is evaluated at some selected grid points to give a discrete linear multistep method. The predictors were also developed by method of collocation and interpolation of power series approximate solution, to give a continuous linear multistep method. The continuous linear multistep method is then solved for the independent solution to give a continuous block formula, which is evaluated at some selected grid point to give discrete block method. Basic properties of the corrector were investigated and found to be zero stable, consistent and convergent. The efficiency of the method was tested on some linear, non-learn, oscillatory and stiff problems of first order, initial value problems of ordinary differential equations. The results were found to be better in terms of computer time and error bound when compared with the existing methods.Keywords: predictor, corrector, collocation, interpolation, approximate solution, independent solution, zero stable, consistent, convergent
Procedia PDF Downloads 49917921 A Continuous Boundary Value Method of Order 8 for Solving the General Second Order Multipoint Boundary Value Problems
Authors: T. A. Biala
Abstract:
This paper deals with the numerical integration of the general second order multipoint boundary value problems. This has been achieved by the development of a continuous linear multistep method (LMM). The continuous LMM is used to construct a main discrete method to be used with some initial and final methods (also obtained from the continuous LMM) so that they form a discrete analogue of the continuous second order boundary value problems. These methods are used as boundary value methods and adapted to cope with the integration of the general second order multipoint boundary value problems. The convergence, the use and the region of absolute stability of the methods are discussed. Several numerical examples are implemented to elucidate our solution process.Keywords: linear multistep methods, boundary value methods, second order multipoint boundary value problems, convergence
Procedia PDF Downloads 37617920 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs
Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu
Abstract:
This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.Keywords: interpolation, approximate solution, collocation, differential system, half step, converges, block method, efficiency
Procedia PDF Downloads 33617919 High Order Block Implicit Multi-Step (Hobim) Methods for the Solution of Stiff Ordinary Differential Equations
Authors: J. P. Chollom, G. M. Kumleng, S. Longwap
Abstract:
The search for higher order A-stable linear multi-step methods has been the interest of many numerical analysts and has been realized through either higher derivatives of the solution or by inserting additional off step points, supper future points and the likes. These methods are suitable for the solution of stiff differential equations which exhibit characteristics that place a severe restriction on the choice of step size. It becomes necessary that only methods with large regions of absolute stability remain suitable for such equations. In this paper, high order block implicit multi-step methods of the hybrid form up to order twelve have been constructed using the multi-step collocation approach by inserting one or more off step points in the multi-step method. The accuracy and stability properties of the new methods are investigated and are shown to yield A-stable methods, a property desirable of methods suitable for the solution of stiff ODE’s. The new High Order Block Implicit Multistep methods used as block integrators are tested on stiff differential systems and the results reveal that the new methods are efficient and compete favourably with the state of the art Matlab ode23 code.Keywords: block linear multistep methods, high order, implicit, stiff differential equations
Procedia PDF Downloads 35817918 A Hybrid Block Multistep Method for Direct Numerical Integration of Fourth Order Initial Value Problems
Authors: Adamu S. Salawu, Ibrahim O. Isah
Abstract:
Direct solution to several forms of fourth-order ordinary differential equations is not easily obtained without first reducing them to a system of first-order equations. Thus, numerical methods are being developed with the underlying techniques in the literature, which seeks to approximate some classes of fourth-order initial value problems with admissible error bounds. Multistep methods present a great advantage of the ease of implementation but with a setback of several functions evaluation for every stage of implementation. However, hybrid methods conventionally show a slightly higher order of truncation for any k-step linear multistep method, with the possibility of obtaining solutions at off mesh points within the interval of solution. In the light of the foregoing, we propose the continuous form of a hybrid multistep method with Chebyshev polynomial as a basis function for the numerical integration of fourth-order initial value problems of ordinary differential equations. The basis function is interpolated and collocated at some points on the interval [0, 2] to yield a system of equations, which is solved to obtain the unknowns of the approximating polynomial. The continuous form obtained, its first and second derivatives are evaluated at carefully chosen points to obtain the proposed block method needed to directly approximate fourth-order initial value problems. The method is analyzed for convergence. Implementation of the method is done by conducting numerical experiments on some test problems. The outcome of the implementation of the method suggests that the method performs well on problems with oscillatory or trigonometric terms since the approximations at several points on the solution domain did not deviate too far from the theoretical solutions. The method also shows better performance compared with an existing hybrid method when implemented on a larger interval of solution.Keywords: Chebyshev polynomial, collocation, hybrid multistep method, initial value problems, interpolation
Procedia PDF Downloads 12117917 On a Continuous Formulation of Block Method for Solving First Order Ordinary Differential Equations (ODEs)
Authors: A. M. Sagir
Abstract:
The aim of this paper is to investigate the performance of the developed linear multistep block method for solving first order initial value problem of Ordinary Differential Equations (ODEs). The method calculates the numerical solution at three points simultaneously and produces three new equally spaced solution values within a block. The continuous formulations enable us to differentiate and evaluate at some selected points to obtain three discrete schemes, which were used in block form for parallel or sequential solutions of the problems. A stability analysis and efficiency of the block method are tested on ordinary differential equations involving practical applications, and the results obtained compared favorably with the exact solution. Furthermore, comparison of error analysis has been developed with the help of computer software.Keywords: block method, first order ordinary differential equations, linear multistep, self-starting
Procedia PDF Downloads 30517916 Development of Variable Order Block Multistep Method for Solving Ordinary Differential Equations
Authors: Mohamed Suleiman, Zarina Bibi Ibrahim, Nor Ain Azeany, Khairil Iskandar Othman
Abstract:
In this paper, a class of variable order fully implicit multistep Block Backward Differentiation Formulas (VOBBDF) using uniform step size for the numerical solution of stiff ordinary differential equations (ODEs) is developed. The code will combine three multistep block methods of order four, five and six. The order selection is based on approximation of the local errors with specific tolerance. These methods are constructed to produce two approximate solutions simultaneously at each iteration in order to further increase the efficiency. The proposed VOBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with single order Block Backward Differentiation Formula (BBDF). Numerical results shows the advantage of using VOBBDF for solving ODEs.Keywords: block backward differentiation formulas, uniform step size, ordinary differential equations
Procedia PDF Downloads 44617915 Basis Theorem of Equivalence of Explicit-Type Iterations for the Class of Multivalued Phi-Quasi-Contrative Maps in Modular Function Spaces
Authors: Hudson Akewe
Abstract:
We prove that the convergence of explicit Mann, explicit Ishikawa, explicit Noor, explicit SP, explicit multistep and explicit multistep-SP fixed point iterative procedures are equivalent for the classes of multi-valued phi-contraction, phi-Zamfirescu and phi-quasi-contractive mappings in the framework of modular function spaces. Our results complement equivalence results on normed and metric spaces in the literature as they elegantly cut out the triangle inequality.Keywords: multistep iterative procedures, multivalued mappings, equivalence results, fixed point
Procedia PDF Downloads 13117914 Reducing Uncertainty of Monte Carlo Estimated Fatigue Damage in Offshore Wind Turbines Using FORM
Authors: Jan-Tore H. Horn, Jørgen Juncher Jensen
Abstract:
Uncertainties related to fatigue damage estimation of non-linear systems are highly dependent on the tail behaviour and extreme values of the stress range distribution. By using a combination of the First Order Reliability Method (FORM) and Monte Carlo simulations (MCS), the accuracy of the fatigue estimations may be improved for the same computational efforts. The method is applied to a bottom-fixed, monopile-supported large offshore wind turbine, which is a non-linear and dynamically sensitive system. Different curve fitting techniques to the fatigue damage distribution have been used depending on the sea-state dependent response characteristics, and the effect of a bi-linear S-N curve is discussed. Finally, analyses are performed on several environmental conditions to investigate the long-term applicability of this multistep method. Wave loads are calculated using state-of-the-art theory, while wind loads are applied with a simplified model based on rotor thrust coefficients.Keywords: fatigue damage, FORM, monopile, Monte Carlo, simulation, wind turbine
Procedia PDF Downloads 25917913 Seismic Performance Point of RC Frame Buildings Using ATC-40, FEMA 356 and FEMA 440 Guidelines
Authors: Gram Y. Rivas Sanchez
Abstract:
The seismic design codes in the world allow the analysis of structures considering an elastic-linear behavior; however, against earthquakes, the structures exhibit non-linear behaviors that induce damage to their elements. For this reason, it is necessary to use non-linear methods to analyze these structures, being the dynamic methods that provide more reliable results but require a lot of computational costs; on the other hand, non-linear static methods do not have this disadvantage and are being used more and more. In the present work, the nonlinear static analysis (pushover) of RC frame buildings of three, five, and seven stories is carried out considering models of concentrated plasticity using plastic hinges; and the seismic performance points are determined using ATC-40, FEMA 356, and FEMA 440 guidelines. Using this last standard, the highest inelastic displacements and basal shears are obtained, providing designs that are more conservative.Keywords: pushover, nonlinear, RC building, FEMA 440, ATC 40
Procedia PDF Downloads 14617912 Development of a Multi-Factorial Instrument for Accident Analysis Based on Systemic Methods
Authors: C. V. Pietreanu, S. E. Zaharia, C. Dinu
Abstract:
The present research is built on three major pillars, commencing by making some considerations on accident investigation methods and pointing out both defining aspects and differences between linear and non-linear analysis. The traditional linear focus on accident analysis describes accidents as a sequence of events, while the latest systemic models outline interdependencies between different factors and define the processes evolution related to a specific (normal) situation. Linear and non-linear accident analysis methods have specific limitations, so the second point of interest is mirrored by the aim to discover the drawbacks of systemic models which becomes a starting point for developing new directions to identify risks or data closer to the cause of incidents/accidents. Since communication represents a critical issue in the interaction of human factor and has been proved to be the answer of the problems made by possible breakdowns in different communication procedures, from this focus point, on the third pylon a new error-modeling instrument suitable for risk assessment/accident analysis will be elaborated.Keywords: accident analysis, multi-factorial error modeling, risk, systemic methods
Procedia PDF Downloads 20617911 Formulation of Corrector Methods from 3-Step Hybid Adams Type Methods for the Solution of First Order Ordinary Differential Equation
Authors: Y. A. Yahaya, Ahmad Tijjani Asabe
Abstract:
This paper focuses on the formulation of 3-step hybrid Adams type method for the solution of first order differential equation (ODE). The methods which was derived on both grid and off grid points using multistep collocation schemes and also evaluated at some points to produced Block Adams type method and Adams moulton method respectively. The method with the highest order was selected to serve as the corrector. The convergence was valid and efficient. The numerical experiments were carried out and reveal that hybrid Adams type methods performed better than the conventional Adams moulton method.Keywords: adam-moulton type (amt), corrector method, off-grid, block method, convergence analysis
Procedia PDF Downloads 62517910 On the Approximate Solution of Continuous Coefficients for Solving Third Order Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
This paper derived four newly schemes which are combined in order to form an accurate and efficient block method for parallel or sequential solution of third order ordinary differential equations of the form y^'''= f(x,y,y^',y^'' ), y(α)=y_0,〖y〗^' (α)=β,y^('' ) (α)=μ with associated initial or boundary conditions. The implementation strategies of the derived method have shown that the block method is found to be consistent, zero stable and hence convergent. The derived schemes were tested on stiff and non-stiff ordinary differential equations, and the numerical results obtained compared favorably with the exact solution.Keywords: block method, hybrid, linear multistep, self-starting, third order ordinary differential equations
Procedia PDF Downloads 27017909 Solving Linear Systems Involved in Convex Programming Problems
Authors: Yixun Shi
Abstract:
Many interior point methods for convex programming solve an (n+m)x(n+m)linear system in each iteration. Many implementations solve this system in each iteration by considering an equivalent mXm system (4) as listed in the paper, and thus the job is reduced into solving the system (4). However, the system(4) has to be solved exactly since otherwise the error would be entirely passed onto the last m equations of the original system. Often the Cholesky factorization is computed to obtain the exact solution of (4). One Cholesky factorization is to be done in every iteration, resulting in higher computational costs. In this paper, two iterative methods for solving linear systems using vector division are combined together and embedded into interior point methods. Instead of computing one Cholesky factorization in each iteration, it requires only one Cholesky factorization in the entire procedure, thus significantly reduces the amount of computation needed for solving the problem. Based on that, a hybrid algorithm for solving convex programming problems is proposed.Keywords: convex programming, interior point method, linear systems, vector division
Procedia PDF Downloads 40117908 System of Linear Equations, Gaussian Elimination
Authors: Rabia Khan, Nargis Munir, Suriya Gharib, Syeda Roshana Ali
Abstract:
In this paper linear equations are discussed in detail along with elimination method. Gaussian elimination and Gauss Jordan schemes are carried out to solve the linear system of equation. This paper comprises of matrix introduction, and the direct methods for linear equations. The goal of this research was to analyze different elimination techniques of linear equations and measure the performance of Gaussian elimination and Gauss Jordan method, in order to find their relative importance and advantage in the field of symbolic and numeric computation. The purpose of this research is to revise an introductory concept of linear equations, matrix theory and forms of Gaussian elimination through which the performance of Gauss Jordan and Gaussian elimination can be measured.Keywords: direct, indirect, backward stage, forward stage
Procedia PDF Downloads 59417907 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.Keywords: block method, first order ordinary differential equations, hybrid, self-starting
Procedia PDF Downloads 48017906 Convergence of Generalized Jacobi, Gauss-Seidel and Successive Overrelaxation Methods for Various Classes of Matrices
Authors: Manideepa Saha, Jahnavi Chakrabarty
Abstract:
Generalized Jacobi (GJ) and Generalized Gauss-Seidel (GGS) methods are most effective than conventional Jacobi and Gauss-Seidel methods for solving linear system of equations. It is known that GJ and GGS methods converge for strictly diagonally dominant (SDD) and for M-matrices. In this paper, we study the convergence of GJ and GGS converge for symmetric positive definite (SPD) matrices, L-matrices and H-matrices. We introduce a generalization of successive overrelaxation (SOR) method for solving linear systems and discuss its convergence for the classes of SDD matrices, SPD matrices, M-matrices, L-matrices and for H-matrices. Advantages of generalized SOR method are established through numerical experiments over GJ, GGS, and SOR methods.Keywords: convergence, Gauss-Seidel, iterative method, Jacobi, SOR
Procedia PDF Downloads 18717905 On the Construction of Some Optimal Binary Linear Codes
Authors: Skezeer John B. Paz, Ederlina G. Nocon
Abstract:
Finding an optimal binary linear code is a central problem in coding theory. A binary linear code C = [n, k, d] is called optimal if there is no linear code with higher minimum distance d given the length n and the dimension k. There are bounds giving limits for the minimum distance d of a linear code of fixed length n and dimension k. The lower bound which can be taken by construction process tells that there is a known linear code having this minimum distance. The upper bound is given by theoretic results such as Griesmer bound. One way to find an optimal binary linear code is to make the lower bound of d equal to its higher bound. That is, to construct a binary linear code which achieves the highest possible value of its minimum distance d, given n and k. Some optimal binary linear codes were presented by Andries Brouwer in his published table on bounds of the minimum distance d of binary linear codes for 1 ≤ n ≤ 256 and k ≤ n. This was further improved by Markus Grassl by giving a detailed construction process for each code exhibiting the lower bound. In this paper, we construct new optimal binary linear codes by using some construction processes on existing binary linear codes. Particularly, we developed an algorithm applied to the codes already constructed to extend the list of optimal binary linear codes up to 257 ≤ n ≤ 300 for k ≤ 7.Keywords: bounds of linear codes, Griesmer bound, construction of linear codes, optimal binary linear codes
Procedia PDF Downloads 75417904 On the Algorithmic Iterative Solutions of Conjugate Gradient, Gauss-Seidel and Jacobi Methods for Solving Systems of Linear Equations
Authors: Hussaini Doko Ibrahim, Hamilton Cyprian Chinwenyi, Henrietta Nkem Ude
Abstract:
In this paper, efforts were made to examine and compare the algorithmic iterative solutions of the conjugate gradient method as against other methods such as Gauss-Seidel and Jacobi approaches for solving systems of linear equations of the form Ax=b, where A is a real n×n symmetric and positive definite matrix. We performed algorithmic iterative steps and obtained analytical solutions of a typical 3×3 symmetric and positive definite matrix using the three methods described in this paper (Gauss-Seidel, Jacobi, and conjugate gradient methods), respectively. From the results obtained, we discovered that the conjugate gradient method converges faster to exact solutions in fewer iterative steps than the two other methods, which took many iterations, much time, and kept tending to the exact solutions.Keywords: conjugate gradient, linear equations, symmetric and positive definite matrix, gauss-seidel, Jacobi, algorithm
Procedia PDF Downloads 14817903 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways
Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh
Abstract:
In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway. The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4 μm in the measurement range of 100 mm. The maximum measuring speed of the proposed automatic measurement instrument is 1 m/sec.Keywords: 2-D measurement, linear guideway, motion errors, running straightness
Procedia PDF Downloads 48917902 Comparative Analysis of Spectral Estimation Methods for Brain-Computer Interfaces
Authors: Rafik Djemili, Hocine Bourouba, M. C. Amara Korba
Abstract:
In this paper, we present a method in order to classify EEG signals for Brain-Computer Interfaces (BCI). EEG signals are first processed by means of spectral estimation methods to derive reliable features before classification step. Spectral estimation methods used are standard periodogram and the periodogram calculated by the Welch method; both methods are compared with Logarithm of Band Power (logBP) features. In the method proposed, we apply Linear Discriminant Analysis (LDA) followed by Support Vector Machine (SVM). Classification accuracy reached could be as high as 85%, which proves the effectiveness of classification of EEG signals based BCI using spectral methods.Keywords: brain-computer interface, motor imagery, electroencephalogram, linear discriminant analysis, support vector machine
Procedia PDF Downloads 49817901 Extension of Positive Linear Operator
Authors: Manal Azzidani
Abstract:
This research consideres the extension of special functions called Positive Linear Operators. the bounded linear operator which defined from normed space to Banach space will extend to the closure of the its domain, And extend identified linear functional on a vector subspace by Hana-Banach theorem which could be generalized to the positive linear operators.Keywords: extension, positive operator, Riesz space, sublinear function
Procedia PDF Downloads 51617900 Harmonic Pollution Caused by Non-Linear Load: Analysis and Identification
Authors: K. Khlifi, A. Haddouk, M. Hlaili, H. Mechergui
Abstract:
The present paper provides a detailed analysis of prior methods and approaches for non-linear load identification in residential buildings. The main goal of this analysis is to decipher the distorted signals and to estimate the harmonics influence on power systems. We have performed an analytical study of non-linear loads behavior in the residential environment. Simulations have been performed in order to evaluate the distorted rate of the current and follow his behavior. To complete this work, an instrumental platform has been realized to carry out practical tests on single-phase non-linear loads which illustrate the current consumption of some domestic appliances supplied with single-phase sinusoidal voltage. These non-linear loads have been processed and tracked in order to limit their influence on the power grid and to reduce the Joule effect losses. As a result, the study has allowed to identify responsible circuits of harmonic pollution.Keywords: distortion rate, harmonic analysis, harmonic pollution, non-linear load, power factor
Procedia PDF Downloads 14217899 Reliability Prediction of Tires Using Linear Mixed-Effects Model
Authors: Myung Hwan Na, Ho- Chun Song, EunHee Hong
Abstract:
We widely use normal linear mixed-effects model to analysis data in repeated measurement. In case of detecting heteroscedasticity and the non-normality of the population distribution at the same time, normal linear mixed-effects model can give improper result of analysis. To achieve more robust estimation, we use heavy tailed linear mixed-effects model which gives more exact and reliable analysis conclusion than standard normal linear mixed-effects model.Keywords: reliability, tires, field data, linear mixed-effects model
Procedia PDF Downloads 56317898 Measuring Multi-Class Linear Classifier for Image Classification
Authors: Fatma Susilawati Mohamad, Azizah Abdul Manaf, Fadhillah Ahmad, Zarina Mohamad, Wan Suryani Wan Awang
Abstract:
A simple and robust multi-class linear classifier is proposed and implemented. For a pair of classes of the linear boundary, a collection of segments of hyper planes created as perpendicular bisectors of line segments linking centroids of the classes or part of classes. Nearest Neighbor and Linear Discriminant Analysis are compared in the experiments to see the performances of each classifier in discriminating ripeness of oil palm. This paper proposes a multi-class linear classifier using Linear Discriminant Analysis (LDA) for image identification. Result proves that LDA is well capable in separating multi-class features for ripeness identification.Keywords: multi-class, linear classifier, nearest neighbor, linear discriminant analysis
Procedia PDF Downloads 53717897 Sensitivity Analysis in Fuzzy Linear Programming Problems
Authors: S. H. Nasseri, A. Ebrahimnejad
Abstract:
Fuzzy set theory has been applied to many fields, such as operations research, control theory, and management sciences. In this paper, we consider two classes of fuzzy linear programming (FLP) problems: Fuzzy number linear programming and linear programming with trapezoidal fuzzy variables problems. We state our recently established results and develop fuzzy primal simplex algorithms for solving these problems. Finally, we give illustrative examples.Keywords: fuzzy linear programming, fuzzy numbers, duality, sensitivity analysis
Procedia PDF Downloads 56417896 A Gradient Orientation Based Efficient Linear Interpolation Method
Authors: S. Khan, A. Khan, Abdul R. Soomrani, Raja F. Zafar, A. Waqas, G. Akbar
Abstract:
This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges.Keywords: edge detection, gradient orientation, image upscaling, linear interpolation, slope tracing
Procedia PDF Downloads 25917895 Development of Residual Power Series Methods for Efficient Solutions of Stiff Differential Equations
Authors: Gebreegziabher Hailu
Abstract:
This paper presents the development of residual power series methods aimed at efficiently solving stiff differential equations, which pose significant challenges in numerical analysis due to their rapid changes in solution behavior. The RPSM is a numerical approach that generates polynomial-based approximate solutions without the need for linearization, discretization, or perturbation techniques, making it straightforward to implement and less prone to computational errors. We introduce an approach that utilizes power series expansions combined with residual minimization techniques to enhance convergence and stability. By analyzing the theoretical foundations of stiffness, we delve into the formulation of the residual power series method, detailing how it effectively captures the dynamics of stiff systems while maintaining computational efficiency. Numerical experiments demonstrate the method's superiority in terms of accuracy and computational cost when compared to traditional methods like implicit Runge-Kutta or multistep techniques. We also explore adaptive strategies within our framework to automatically adjust parameters based on the stiffness characteristics of the problem at hand. Ultimately, our findings contribute to the broader toolkit for tackling stiff differential equations, offering a robust alternative that promises to streamline computational workflows in various applied mathematics and engineering contexts.Keywords: residual power series methods, stiff differential equoations, numerical approach, Runge Kutta methods
Procedia PDF Downloads 2217894 Numerical Studies for Standard Bi-Conjugate Gradient Stabilized Method and the Parallel Variants for Solving Linear Equations
Authors: Kuniyoshi Abe
Abstract:
Bi-conjugate gradient (Bi-CG) is a well-known method for solving linear equations Ax = b, for x, where A is a given n-by-n matrix, and b is a given n-vector. Typically, the dimension of the linear equation is high and the matrix is sparse. A number of hybrid Bi-CG methods such as conjugate gradient squared (CGS), Bi-CG stabilized (Bi-CGSTAB), BiCGStab2, and BiCGstab(l) have been developed to improve the convergence of Bi-CG. Bi-CGSTAB has been most often used for efficiently solving the linear equation, but we have seen the convergence behavior with a long stagnation phase. In such cases, it is important to have Bi-CG coefficients that are as accurate as possible, and the stabilization strategy, which stabilizes the computation of the Bi-CG coefficients, has been proposed. It may avoid stagnation and lead to faster computation. Motivated by a large number of processors in present petascale high-performance computing hardware, the scalability of Krylov subspace methods on parallel computers has recently become increasingly prominent. The main bottleneck for efficient parallelization is the inner products which require a global reduction. The resulting global synchronization phases cause communication overhead on parallel computers. The parallel variants of Krylov subspace methods reducing the number of global communication phases and hiding the communication latency have been proposed. However, the numerical stability, specifically, the convergence speed of the parallel variants of Bi-CGSTAB may become worse than that of the standard Bi-CGSTAB. In this paper, therefore, we compare the convergence speed between the standard Bi-CGSTAB and the parallel variants by numerical experiments and show that the convergence speed of the standard Bi-CGSTAB is faster than the parallel variants. Moreover, we propose the stabilization strategy for the parallel variants.Keywords: bi-conjugate gradient stabilized method, convergence speed, Krylov subspace methods, linear equations, parallel variant
Procedia PDF Downloads 16317893 Bipolar Impulse Noise Removal and Edge Preservation in Color Images and Video Using Improved Kuwahara Filter
Authors: Reji Thankachan, Varsha PS
Abstract:
Both image capturing devices and human visual systems are nonlinear. Hence nonlinear filtering methods outperforms its linear counterpart in many applications. Linear methods are unable to remove impulsive noise in images by preserving its edges and fine details. In addition, linear algorithms are unable to remove signal dependent or multiplicative noise in images. This paper presents an approach to denoise and smoothen the Bipolar impulse noised images and videos using improved Kuwahara filter. It involves a 2 stage algorithm which includes a noise detection followed by filtering. Numerous simulation demonstrate that proposed method outperforms the existing method by eliminating the painting like flattening effect along the local feature direction while preserving edge with improvement in PSNR and MSE.Keywords: bipolar impulse noise, Kuwahara, PSNR MSE, PDF
Procedia PDF Downloads 498